메뉴 건너뛰기




Volumn 134, Issue , 2016, Pages 168-180

A novel hybrid decomposition-and-ensemble model based on CEEMD and GWO for short-term PM2.5 concentration forecasting

Author keywords

Complementary ensemble empirical mode decomposition; Grey wolf optimizer; Hybrid decomposition ensemble model; PM2.5 concentration forecasting; Support vector regression

Indexed keywords

ARTIFICIAL INTELLIGENCE; OPTIMIZATION; SIGNAL PROCESSING;

EID: 84962448935     PISSN: 13522310     EISSN: 18732844     Source Type: Journal    
DOI: 10.1016/j.atmosenv.2016.03.056     Document Type: Article
Times cited : (239)

References (33)
  • 2
    • 84877352016 scopus 로고    scopus 로고
    • 10 concentration forecast model based on stepwise regression and wavelet analysis
    • 10 concentration forecast model based on stepwise regression and wavelet analysis. Atmos. Environ. 2013, 74:346-359.
    • (2013) Atmos. Environ. , vol.74 , pp. 346-359
    • Chen, Y.1    Shi, R.2    Shu, S.3    Gao, W.4
  • 5
    • 84937851523 scopus 로고    scopus 로고
    • Single and multi-objective optimal power flow using grey wolf optimizer and differential evolution algorithms
    • El-Fergany A.A., Hasanien H.M. Single and multi-objective optimal power flow using grey wolf optimizer and differential evolution algorithms. Elect. Power Compon. Syst. 2015, 43:1548-1559.
    • (2015) Elect. Power Compon. Syst. , vol.43 , pp. 1548-1559
    • El-Fergany, A.A.1    Hasanien, H.M.2
  • 6
    • 84946490956 scopus 로고    scopus 로고
    • Binary grey wolf optimization approaches for feature selection
    • Emary E., Zawbaa H.M., Hassanien A.E. Binary grey wolf optimization approaches for feature selection. Neurocomputing 2016, 172:371-381.
    • (2016) Neurocomputing , vol.172 , pp. 371-381
    • Emary, E.1    Zawbaa, H.M.2    Hassanien, A.E.3
  • 8
    • 84860676627 scopus 로고    scopus 로고
    • An application of ARIMA model to predict submicron particle concentrations from meteorological factors at a busy roadside in Hangzhou, China
    • Jian L., Zhao Y., Zhu Y.P., Zhang M.B., Bertolatti D. An application of ARIMA model to predict submicron particle concentrations from meteorological factors at a busy roadside in Hangzhou, China. Sci. Total Environ. 2012, 426:336-345.
    • (2012) Sci. Total Environ. , vol.426 , pp. 336-345
    • Jian, L.1    Zhao, Y.2    Zhu, Y.P.3    Zhang, M.B.4    Bertolatti, D.5
  • 9
    • 79959896560 scopus 로고    scopus 로고
    • Factors influencing the variations of PM10 aerosol dust in Klang Valley, Malaysia during the summer
    • Juneng L., Latif M.T., Tangang F. Factors influencing the variations of PM10 aerosol dust in Klang Valley, Malaysia during the summer. Atmos. Environ. 2011, 45:4370-4378.
    • (2011) Atmos. Environ. , vol.45 , pp. 4370-4378
    • Juneng, L.1    Latif, M.T.2    Tangang, F.3
  • 11
    • 79551653314 scopus 로고    scopus 로고
    • Forecasting concentrations of air pollutants by logarithm support vector regression with immune algorithms
    • Lin K.P., Pai P.F., Yang S.L. Forecasting concentrations of air pollutants by logarithm support vector regression with immune algorithms. Appl. Math. Comput. 2011, 217:5318-5327.
    • (2011) Appl. Math. Comput. , vol.217 , pp. 5318-5327
    • Lin, K.P.1    Pai, P.F.2    Yang, S.L.3
  • 12
    • 15544389367 scopus 로고    scopus 로고
    • Potential assessment of the "support vector machine" method in forecasting ambient air pollutant trends
    • Lu W.Z., Wang W.J. Potential assessment of the "support vector machine" method in forecasting ambient air pollutant trends. Chemosphere 2005, 59:693-701.
    • (2005) Chemosphere , vol.59 , pp. 693-701
    • Lu, W.Z.1    Wang, W.J.2
  • 14
    • 84958158929 scopus 로고    scopus 로고
    • An innovative integrated model using the singular spectrum analysis and nonlinear multi-layer perceptron network optimized by hybrid intelligent algorithm for short-term load forecasting
    • Niu M., Sun S., Wu J., Yu L., Wang J. An innovative integrated model using the singular spectrum analysis and nonlinear multi-layer perceptron network optimized by hybrid intelligent algorithm for short-term load forecasting. Appl. Math. Model 2015, 40:4079-4093.
    • (2015) Appl. Math. Model , vol.40 , pp. 4079-4093
    • Niu, M.1    Sun, S.2    Wu, J.3    Yu, L.4    Wang, J.5
  • 15
    • 84934928100 scopus 로고    scopus 로고
    • Short-Term wind speed hybrid forecasting model based on bias correcting study and its application
    • Niu M., Sun S., Wu J., Zhang Y. Short-Term wind speed hybrid forecasting model based on bias correcting study and its application. Math. Probl. Eng. 2015, 2015:13. Article ID 351354. 10.1155/2015/351354.
    • (2015) Math. Probl. Eng. , vol.2015 , pp. 13
    • Niu, M.1    Sun, S.2    Wu, J.3    Zhang, Y.4
  • 17
    • 79551508219 scopus 로고    scopus 로고
    • 10 concentration in Cyprus through artificial neural networks and multiple regression models: implications to local environmental management
    • 10 concentration in Cyprus through artificial neural networks and multiple regression models: implications to local environmental management. Environ. Sci. Pollut. Res. 2011, 18:316-327.
    • (2011) Environ. Sci. Pollut. Res. , vol.18 , pp. 316-327
    • Paschalidou, A.K.1    Karakitsios, S.2    Kleanthous, S.3    Kassomenos, P.A.4
  • 18
    • 80755189969 scopus 로고    scopus 로고
    • PM10 forecasting using clusterwise regression
    • Poggi J.M., Portier B. PM10 forecasting using clusterwise regression. Atmos. Environ. 2011, 45:7005-7014.
    • (2011) Atmos. Environ. , vol.45 , pp. 7005-7014
    • Poggi, J.M.1    Portier, B.2
  • 19
    • 84907857975 scopus 로고    scopus 로고
    • Analysis and forecasting of the particulate matter (PM) concentration levels over four major cities of China using hybrid models
    • Qin S., Liu F., Wang J., Sun B. Analysis and forecasting of the particulate matter (PM) concentration levels over four major cities of China using hybrid models. Atmos. Environ. 2014, 98:665-675.
    • (2014) Atmos. Environ. , vol.98 , pp. 665-675
    • Qin, S.1    Liu, F.2    Wang, J.3    Sun, B.4
  • 20
    • 84938849391 scopus 로고    scopus 로고
    • The forecasting research of early warning systems for atmospheric pollutants: a case in Yangtze River Delta region
    • Song Y., Qin S., Qu J., Liu F. The forecasting research of early warning systems for atmospheric pollutants: a case in Yangtze River Delta region. Atmos. Environ. 2015, 118:58-69.
    • (2015) Atmos. Environ. , vol.118 , pp. 58-69
    • Song, Y.1    Qin, S.2    Qu, J.3    Liu, F.4
  • 22
    • 84927918795 scopus 로고    scopus 로고
    • Using the gray wolf optimizer for solving optimal reactive power dispatch problem
    • Sulaiman M.H., Mustaffa Z., Mohamed M.R., Aliman O. Using the gray wolf optimizer for solving optimal reactive power dispatch problem. Appl. Soft Comput. 2015, 32:286-292.
    • (2015) Appl. Soft Comput. , vol.32 , pp. 286-292
    • Sulaiman, M.H.1    Mustaffa, Z.2    Mohamed, M.R.3    Aliman, O.4
  • 23
    • 84858001572 scopus 로고    scopus 로고
    • A novel hybrid ensemble learning paradigm for nuclear energy consumption forecasting
    • Tang L., Yu L., Wang S., Li J., Wang S.Y. A novel hybrid ensemble learning paradigm for nuclear energy consumption forecasting. Appl. Energy 2012, 93:432-443.
    • (2012) Appl. Energy , vol.93 , pp. 432-443
    • Tang, L.1    Yu, L.2    Wang, S.3    Li, J.4    Wang, S.Y.5
  • 24
    • 84929303492 scopus 로고    scopus 로고
    • A novel CEEMD-based EELM ensemble learning paradigm for crude oil price forecasting
    • Tang L., Dai W., Yu L., Wang S. A novel CEEMD-based EELM ensemble learning paradigm for crude oil price forecasting. Int. J. Info. Tech. Dec. Mak. 2015, 14:141-169.
    • (2015) Int. J. Info. Tech. Dec. Mak. , vol.14 , pp. 141-169
    • Tang, L.1    Dai, W.2    Yu, L.3    Wang, S.4
  • 26
    • 84903145112 scopus 로고    scopus 로고
    • Techniques of applying wavelet de-noising into a combined model for short-term load forecasting
    • Wang J., Wang J., Li Y., Zhu S., Zhao J. Techniques of applying wavelet de-noising into a combined model for short-term load forecasting. Int. J. Electr. Power Energy Syst. 2014, 62:816-824.
    • (2014) Int. J. Electr. Power Energy Syst. , vol.62 , pp. 816-824
    • Wang, J.1    Wang, J.2    Li, Y.3    Zhu, S.4    Zhao, J.5
  • 28
    • 80052078099 scopus 로고    scopus 로고
    • Ensemble empirical mode decomposition: a noise-assisted data analysis method
    • Wu Z., Huang N.E. Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 2008, 1:1-41.
    • (2008) Adv. Adapt. Data Anal. , vol.1 , pp. 1-41
    • Wu, Z.1    Huang, N.E.2
  • 29
    • 79956369785 scopus 로고    scopus 로고
    • Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method
    • Yeh J.R., Shieh J.S., Huang N.E. Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method. Adv. Adapt. Data Anal. 2010, 2:135-156.
    • (2010) Adv. Adapt. Data Anal. , vol.2 , pp. 135-156
    • Yeh, J.R.1    Shieh, J.S.2    Huang, N.E.3
  • 30
    • 48049095703 scopus 로고    scopus 로고
    • Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm
    • Yu L., Wang S.Y., Lai K.K. Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm. Energy Econ. 2008, 30:2623-2635.
    • (2008) Energy Econ. , vol.30 , pp. 2623-2635
    • Yu, L.1    Wang, S.Y.2    Lai, K.K.3
  • 31
    • 84937780994 scopus 로고    scopus 로고
    • A decomposition-ensemble model with data-characteristic-driven reconstruction for crude oil price forecasting
    • Yu L., Wang Z., Tang L. A decomposition-ensemble model with data-characteristic-driven reconstruction for crude oil price forecasting. Appl. Energy 2015, 156:251-267.
    • (2015) Appl. Energy , vol.156 , pp. 251-267
    • Yu, L.1    Wang, Z.2    Tang, L.3
  • 32
    • 84865759715 scopus 로고    scopus 로고
    • Prediction of ozone levels using a hidden markov model (HMM) with gamma distribution
    • Zhang H., Zhang W., Palazoglu A., Sun W. Prediction of ozone levels using a hidden markov model (HMM) with gamma distribution. Atmos. Environ. 2012, 62:64-73.
    • (2012) Atmos. Environ. , vol.62 , pp. 64-73
    • Zhang, H.1    Zhang, W.2    Palazoglu, A.3    Sun, W.4
  • 33
    • 84921373570 scopus 로고    scopus 로고
    • A soft self-repairing for FBG sensor network in SHM system based on PSO-SVR model reconstruction
    • Zhang X., Wang P., Liang D., Fan C., Li C. A soft self-repairing for FBG sensor network in SHM system based on PSO-SVR model reconstruction. Opt. Commun. 2015, 343:38-46.
    • (2015) Opt. Commun. , vol.343 , pp. 38-46
    • Zhang, X.1    Wang, P.2    Liang, D.3    Fan, C.4    Li, C.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.