-
1
-
-
85121045899
-
Multitask learning: A knowledge-based source of inductive bias
-
R. Caruna, "Multitask learning: A knowledge-based source of inductive bias, " in Proc. Int. Conf. Mach. Learn., 1993, pp. 41-48.
-
(1993)
Proc. Int. Conf. Mach. Learn
, pp. 41-48
-
-
Caruna, R.1
-
2
-
-
70450188142
-
Boosted multi-Task learning for face verification with applications to web image and video search
-
X. Wang, C. Zhang, and Z. Zhang, "Boosted multi-Task learning for face verification with applications to web image and video search, " in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2009, pp. 142-149.
-
(2009)
Proc IEEE Conf. Comput. Vis. Pattern Recog
, pp. 142-149
-
-
Wang, X.1
Zhang, C.2
Zhang, Z.3
-
3
-
-
77955999539
-
Multi-Task warped gaussian process for personalized age estimation
-
Y. Zhang and D.-Y. Yeung, "Multi-Task warped gaussian process for personalized age estimation, " in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2010, pp. 2622-2629.
-
(2010)
Proc IEEE Conf. Comput. Vis. Pattern Recog
, pp. 2622-2629
-
-
Zhang, Y.1
Yeung, D.-Y.2
-
4
-
-
84866678444
-
Robust visual tracking via multi-Task sparse learning
-
T. Zhang, B. Ghanem, S. Liu, and N. Ahuja, "Robust visual tracking via multi-Task sparse learning, " in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2012, pp. 2042-2049.
-
(2012)
Proc IEEE Conf. Comput. Vis. Pattern Recog
, pp. 2042-2049
-
-
Zhang, T.1
Ghanem, B.2
Liu, S.3
Ahuja, N.4
-
5
-
-
73849084587
-
Bayesian online multitask learning of Gaussian processes
-
Feb
-
G. Pillonetto, F. Dinuzzo, and G. De Nicolao, "Bayesian online multitask learning of Gaussian processes, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 2, pp. 193-205, Feb. 2010.
-
(2010)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.32
, Issue.2
, pp. 193-205
-
-
Pillonetto, G.1
Dinuzzo, F.2
De Nicolao, G.3
-
6
-
-
56449095373
-
A unified architecture for natural language processing: Deep neural networks with multitask learning
-
R. Collobert and J. Weston, "A unified architecture for natural language processing: Deep neural networks with multitask learning, " in Proc. 25th Int. Conf. Mach. Learn., 2008, pp. 160-167.
-
(2008)
Proc. 25th Int. Conf. Mach. Learn
, pp. 160-167
-
-
Collobert, R.1
Weston, J.2
-
7
-
-
55149088329
-
Convex multi-Task feature learning
-
A. Argyriou, T. Evgeniou, and M. Pontil, "Convex multi-Task feature learning, " Mach. Learn., vol. 73, no. 3, pp. 243-272, 2008.
-
(2008)
Mach. Learn
, vol.73
, Issue.3
, pp. 243-272
-
-
Argyriou, A.1
Evgeniou, T.2
Pontil, M.3
-
8
-
-
84907020149
-
Efficient multi-Task feature learning with calibration
-
P. Gong, J. Zhou, W. Fan, and J. Ye, "Efficient multi-Task feature learning with calibration, " in Proc. 20th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2014, pp. 761-770.
-
(2014)
Proc. 20th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining
, pp. 761-770
-
-
Gong, P.1
Zhou, J.2
Fan, W.3
Ye, J.4
-
9
-
-
84916931592
-
Convex discriminative multitask clustering
-
Jan
-
X.-L. Zhang, "Convex discriminative multitask clustering, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 1, pp. 28-40, Jan. 2015.
-
(2015)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.37
, Issue.1
, pp. 28-40
-
-
Zhang, X.-L.1
-
10
-
-
84875472724
-
A convex formulation for learning a shared predictive structure from multiple tasks
-
May
-
J. Chen, L. Tang, J. Liu, and J. Ye, "A convex formulation for learning a shared predictive structure from multiple tasks, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 5, pp. 1025-1038, May 2013.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.35
, Issue.5
, pp. 1025-1038
-
-
Chen, J.1
Tang, L.2
Liu, J.3
Ye, J.4
-
11
-
-
14344277592
-
A model of inductive bias learning
-
J. Baxter, "A model of inductive bias learning, " J. Artif. Intell. Res., vol. 12, no. 1, pp. 149-198, 2000.
-
(2000)
J. Artif. Intell. Res
, vol.12
, Issue.1
, pp. 149-198
-
-
Baxter, J.1
-
13
-
-
27844439373
-
A framework for learning predictive structures from multiple tasks and unlabeled data
-
R. K. Ando and T. Zhang, "A framework for learning predictive structures from multiple tasks and unlabeled data, " J. Mach. Learn. Res., vol. 6, pp. 1817-1853, 2005.
-
(2005)
J. Mach. Learn. Res
, vol.6
, pp. 1817-1853
-
-
Ando, R.K.1
Zhang, T.2
-
14
-
-
30744438843
-
Bounds for linear multi-Task learning
-
A. Maurer, "Bounds for linear multi-Task learning, " J. Mach. Learn. Res., vol. 7, pp. 117-139, 2006.
-
(2006)
J. Mach. Learn. Res
, vol.7
, pp. 117-139
-
-
Maurer, A.1
-
15
-
-
67349277101
-
Transfer bounds for linear feature learning
-
A. Maurer, "Transfer bounds for linear feature learning, " Mach. Learn., vol. 75, no. 3, pp. 327-350, 2009.
-
(2009)
Mach. Learn
, vol.75
, Issue.3
, pp. 327-350
-
-
Maurer, A.1
-
16
-
-
84897513685
-
Sparse coding for multitask and transfer learning
-
A. Maurer, M. Pontil, and B. Romera-Paredes, "Sparse coding for multitask and transfer learning, " in Proc. 30th Int. Conf. Mach. Learn., 2013, pp. 343-351.
-
(2013)
Proc. 30th Int. Conf. Mach. Learn
, pp. 343-351
-
-
Maurer, A.1
Pontil, M.2
Romera-Paredes, B.3
-
18
-
-
0032166068
-
Structural risk minimization over data-dependent hierarchies
-
Sep
-
J. Shawe-Taylor, P. L. Bartlett, R. C. Williamson, and M. Anthony, "Structural risk minimization over data-dependent hierarchies, " IEEE Trans. Inf. Theory, vol. 44, no. 5, pp. 1926-1940, Sep. 1998.
-
(1998)
IEEE Trans. Inf. Theory
, vol.44
, Issue.5
, pp. 1926-1940
-
-
Shawe-Taylor, J.1
Bartlett, P.L.2
Williamson, R.C.3
Anthony, M.4
-
20
-
-
0031235711
-
Covering numbers for realvalued function classes
-
Sep
-
P. Bartlett, S. Kulkarni, and S. Posner, "Covering numbers for realvalued function classes, " IEEE Trans. Inf. Theory, vol. 43, no. 5, pp. 1721-1724, Sep. 1997.
-
(1997)
IEEE Trans. Inf. Theory
, vol.43
, Issue.5
, pp. 1721-1724
-
-
Bartlett, P.1
Kulkarni, S.2
Posner, S.3
-
21
-
-
0347067948
-
Covering number bounds of certain regularized linear function classes
-
T. Zhang, "Covering number bounds of certain regularized linear function classes, " J. Mach. Learn. Res., vol. 2, pp. 527-550, 2002.
-
(2002)
J. Mach. Learn. Res
, vol.2
, pp. 527-550
-
-
Zhang, T.1
-
22
-
-
0038105204
-
Capacity of reproducing kernel spaces in learning theory
-
Jul
-
D.-X. Zhou, "Capacity of reproducing kernel spaces in learning theory, " IEEE Trans. Inf. Theory, vol. 49, no. 7, pp. 1743-1752, Jul. 2003.
-
(2003)
IEEE Trans. Inf. Theory
, vol.49
, Issue.7
, pp. 1743-1752
-
-
Zhou, D.-X.1
-
23
-
-
0036158359
-
Covering numbers for support vector machines
-
Jan
-
Y. Guo, P. Bartlett, J. Shawe-Taylor, and R. Williamson, "Covering numbers for support vector machines, " IEEE Trans. Inf. Theory, vol. 48, no. 1, pp. 239-250, Jan. 2002.
-
(2002)
IEEE Trans. Inf. Theory
, vol.48
, Issue.1
, pp. 239-250
-
-
Guo, Y.1
Bartlett, P.2
Shawe-Taylor, J.3
Williamson, R.4
-
24
-
-
0035397715
-
Rademacher penalties and structural risk minimization
-
Jul
-
V. Koltchinskii, "Rademacher penalties and structural risk minimization, " IEEE Trans. Inf. Theory, vol. 47, no. 5, pp. 1902-1914, Jul. 2001.
-
(2001)
IEEE Trans. Inf. Theory
, vol.47
, Issue.5
, pp. 1902-1914
-
-
Koltchinskii, V.1
-
25
-
-
0038453192
-
Rademacher and Gaussian complexities: Risk bounds and structural results
-
P. L. Bartlett and S. Mendelson, "Rademacher and Gaussian complexities: Risk bounds and structural results, " J. Mach. Learn. Res., vol. 3, pp. 463-482, 2003.
-
(2003)
J. Mach. Learn. Res
, vol.3
, pp. 463-482
-
-
Bartlett, P.L.1
Mendelson, S.2
-
27
-
-
84960102659
-
Multi-Task learning and algorithmic stability
-
Y. Zhang, "Multi-Task learning and algorithmic stability, " in Proc. 29th AAAI Conf. Artif. Intell., 2015, pp. 3181-3187.
-
(2015)
Proc. 29th AAAI Conf. Artif. Intell
, pp. 3181-3187
-
-
Zhang, Y.1
-
28
-
-
84908489084
-
Stability of multi-Task kernel regression algorithms
-
J. Audiffren and H. Kadri, "Stability of multi-Task kernel regression algorithms, " in Proc. ACML, 2013, pp. 1-16.
-
(2013)
Proc. ACML
, pp. 1-16
-
-
Audiffren, J.1
Kadri, H.2
-
29
-
-
33745847104
-
Leave-one-out error and stability of learning algorithms with applications
-
A. Elisseeff and M. Pontil, "Leave-one-out error and stability of learning algorithms with applications, " NATO Sci. Series Sub Series iii Comput. Syst. Sci., vol. 190, pp. 111-130, 2003.
-
(2003)
NATO Sci. Series Sub Series Iii Comput. Syst. Sci
, vol.190
, pp. 111-130
-
-
Elisseeff, A.1
Pontil, M.2
-
31
-
-
57749097129
-
A spectral regularization framework for multi-Task structure learning
-
A. Argyriou, M. Pontil, Y. Ying, and C. A. Micchelli, "A spectral regularization framework for multi-Task structure learning, " in Proc. Adv. Neural Inf. Process. Syst. 20, 2007, pp. 25-31.
-
(2007)
Proc. Adv. Neural Inf. Process. Syst
, vol.20
, pp. 25-31
-
-
Argyriou, A.1
Pontil, M.2
Ying, Y.3
Micchelli, C.A.4
-
32
-
-
79251515185
-
Trace norm regularization: Reformulations, algorithms, and multi-Task learning
-
T. K. Pong, P. Tseng, S. Ji, and J. Ye, "Trace norm regularization: Reformulations, algorithms, and multi-Task learning, " SIAM J. Optimization, vol. 20, no. 6, pp. 3465-3489, 2010.
-
(2010)
SIAM J. Optimization
, vol.20
, Issue.6
, pp. 3465-3489
-
-
Pong, T.K.1
Tseng, P.2
Ji, S.3
Ye, J.4
-
33
-
-
84898036145
-
Excess risk bounds for multitask learning with trace norm regularization
-
M. Pontil and A. Maurer, "Excess risk bounds for multitask learning with trace norm regularization, " in Proc. COLT, 2013, pp. 55-76.
-
(2013)
Proc. COLT
, pp. 55-76
-
-
Pontil, M.1
Maurer, A.2
-
34
-
-
84898059927
-
Taking advantage of sparsity in multi-Task learning
-
K. Lounici, M. Pontil, A. B. Tsybakov, and S. van de Geer, "Taking advantage of sparsity in multi-Task learning, " in Proc. COLT, 2009, pp. 73-82.
-
(2009)
Proc. COLT
, pp. 73-82
-
-
Lounici, K.1
Pontil, M.2
Tsybakov, A.B.3
Geer De S.Van4
-
36
-
-
71149094644
-
A convex formulation for learning shared structures from multiple tasks
-
J. Chen, L. Tang, J. Liu, and J. Ye, "A convex formulation for learning shared structures from multiple tasks, " in Proc. 26th Annu. Int. Conf. Mach. Learn., 2009, pp. 137-144.
-
(2009)
Proc. 26th Annu. Int. Conf. Mach. Learn
, pp. 137-144
-
-
Chen, J.1
Tang, L.2
Liu, J.3
Ye, J.4
-
38
-
-
85162400077
-
Clustered multi-Task learning via alternating structure optimization
-
J. Zhou, J. Chen, and J. Ye, "Clustered multi-Task learning via alternating structure optimization, " in Proc. Adv. Neural Inf. Process. Syst. 24, 2011, pp. 702-710.
-
(2011)
Proc. Adv. Neural Inf. Process. Syst
, vol.24
, pp. 702-710
-
-
Zhou, J.1
Chen, J.2
Ye, J.3
-
39
-
-
84867114266
-
Learning task grouping and overlap in multi-Task learning
-
A. Kumar and H. Daume, "Learning task grouping and overlap in multi-Task learning, " in Proc. 29th Int. Conf. Mach. Learn., 2012, pp. 1383-1390.
-
(2012)
Proc. 29th Int. Conf. Mach. Learn
, pp. 1383-1390
-
-
Kumar, A.1
Daume, H.2
-
40
-
-
84877772304
-
Multi-Task vector field learning
-
B. Lin, S. Yang, C. Zhang, J. Ye, and X. He, "Multi-Task vector field learning, " in Proc. Adv. Neural Inf. Process. Syst. 25, 2012, pp. 296-304.
-
(2012)
Proc. Adv. Neural Inf. Process. Syst
, vol.25
, pp. 296-304
-
-
Lin, B.1
Yang, S.2
Zhang, C.3
Ye, J.4
He, X.5
-
41
-
-
65549146496
-
Semisupervised multitask learning
-
Jun
-
Q. Liu, X. Liao, H. Carin, J. Stack, and L. Carin, "Semisupervised multitask learning, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 6, p. 1074-1086, Jun. 2009.
-
(2009)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.31
, Issue.6
, pp. 1074-1086
-
-
Liu, Q.1
Liao, X.2
Carin, H.3
Stack, J.4
Carin, L.5
-
42
-
-
0033566418
-
Algorithmic stability and sanity-check bounds for leave-one-out cross-validation
-
M. Kearns and D. Ron, "Algorithmic stability and sanity-check bounds for leave-one-out cross-validation, " Neural Comput., vol. 11, no. 6, pp. 1427-1453, 1999.
-
(1999)
Neural Comput
, vol.11
, Issue.6
, pp. 1427-1453
-
-
Kearns, M.1
Ron, D.2
-
43
-
-
78649409695
-
Learnability, stability and uniform convergence
-
S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan, "Learnability, stability and uniform convergence, " J. Mach. Learn. Res., vol. 11, pp. 2635-2670, 2010.
-
(2010)
J. Mach. Learn. Res
, vol.11
, pp. 2635-2670
-
-
Shalev-Shwartz, S.1
Shamir, O.2
Srebro, N.3
Sridharan, K.4
-
44
-
-
0000595627
-
Some applications of concentration inequalities to statistics
-
P. Massart, "Some applications of concentration inequalities to statistics, " in Proc. Annales de la Faculte des Sci. de Toulouse, 2000, pp. 245-303.
-
(2000)
Proc. Annales de la Faculte des Sci. de Toulouse
, pp. 245-303
-
-
Massart, P.1
-
45
-
-
0001703864
-
On the density of families of sets
-
N. Sauer, "On the density of families of sets, " J. Combinatorial Theory, Series A, vol. 13, no. 1, pp. 145-147, 1972.
-
(1972)
J. Combinatorial Theory, Series A
, vol.13
, Issue.1
, pp. 145-147
-
-
Sauer, N.1
-
46
-
-
0000660999
-
The sizes of compact subsets of hilbert space and continuity of Gaussian processes
-
R. M. Dudley, "The sizes of compact subsets of hilbert space and continuity of Gaussian processes, " J. Functional Anal., vol. 1, no. 3, pp. 290-330, 1967.
-
(1967)
J. Functional Anal
, vol.1
, Issue.3
, pp. 290-330
-
-
Dudley, R.M.1
-
47
-
-
84898471955
-
Beyond the regret minimization barrier: An optimal algorithm for stochastic strongly-convex optimization
-
E. Hazan and S. Kale, "Beyond the regret minimization barrier: An optimal algorithm for stochastic strongly-convex optimization, " in Proc. COLT, 2011, pp. 421-436.
-
(2011)
Proc. COLT
, pp. 421-436
-
-
Hazan, E.1
Kale, S.2
-
48
-
-
84867120686
-
Making gradient descent optimal for strongly convex stochastic optimization
-
A. Rakhlin, O. Shamir, and K. Sridharan, "Making gradient descent optimal for strongly convex stochastic optimization, " in Proc. 29th Int. Conf. Mach. Learn., 2012, pp. 449-456.
-
(2012)
Proc. 29th Int. Conf. Mach. Learn
, pp. 449-456
-
-
Rakhlin, A.1
Shamir, O.2
Sridharan, K.3
-
49
-
-
84875701478
-
Distributed strongly convex optimization
-
K. I. Tsianos and M. G. Rabbat, "Distributed strongly convex optimization, " in Proc. Annu. Allerton Conf. Commun., Control, Comput., 2012, pp. 593-600.
-
(2012)
Proc. Annu. Allerton Conf. Commun., Control, Comput
, pp. 593-600
-
-
Tsianos, K.I.1
Rabbat, M.G.2
-
50
-
-
85009798156
-
On the generalization ability of online strongly convex programming algorithms
-
S. M. Kakade and A. Tewari, "On the generalization ability of online strongly convex programming algorithms, " in Proc. 30th Int. Conf. Mach. Learn., 2009, pp. 441-449.
-
(2009)
Proc. 30th Int. Conf. Mach. Learn
, pp. 441-449
-
-
Kakade, S.M.1
Tewari, A.2
-
51
-
-
84877770961
-
-
Cambridge MA USA, MIT Press
-
M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine Learning. Cambridge, MA, USA: MIT Press, 2012.
-
(2012)
Foundations of Machine Learning
-
-
Mohri, M.1
Rostamizadeh, A.2
Talwalkar, A.3
-
52
-
-
0000672724
-
-
New Yor, NY, USA, Springer
-
C. McDiarmid, "Concentration, " in Probabilistic Methods for Algorithmic Discrete Mathematics. New Yor, NY, USA: Springer, 1998, pp. 195-248.
-
(1998)
Concentration Probabilistic Methods for Algorithmic Discrete Mathematics
, pp. 195-248
-
-
McDiarmid, C.1
-
53
-
-
84947403595
-
Probability inequalities for sums of bounded random variables
-
W. Hoeffding, "Probability inequalities for sums of bounded random variables, " J. Am. Statist. Assoc., vol. 58, no. 301, pp. 13-30, 1963.
-
(1963)
J. Am. Statist. Assoc
, vol.58
, Issue.301
, pp. 13-30
-
-
Hoeffding, W.1
-
54
-
-
0001638327
-
Optimum bounds for the distributions of martingales in Banach spaces
-
I. Pinelis, "Optimum bounds for the distributions of martingales in Banach spaces, " Ann. Probability, vol. 22, pp. 1679-1706, 1994.
-
(1994)
Ann. Probability
, vol.22
, pp. 1679-1706
-
-
Pinelis, I.1
|