메뉴 건너뛰기




Volumn 7, Issue , 2017, Pages

Longitudinal measurement and hierarchical classification framework for the prediction of Alzheimer's disease

(239)  Huang, Meiyan a   Yang, Wei a   Feng, Qianjin a   Chen, Wufan a   Weiner, Michael W b   Aisen, Paul c   Petersen, Ronald d   Jack, Clifford R d   Jagust, William e   Trojanowki, John Q f   Toga, Arthur W g   Beckett, Laurel h   Green, Robert C i   Saykin, Andrew J j   Morris, John C k   Shaw, Leslie M k   Kaye, Jeffrey l   Quinn, Joseph l   Silbert, Lisa l   Lind, Betty l   more..


Author keywords

[No Author keywords available]

Indexed keywords

AGED; ALZHEIMER DISEASE; BRAIN; COGNITIVE DEFECT; DIAGNOSTIC IMAGING; DISEASE EXACERBATION; EARLY DIAGNOSIS; FEMALE; FOLLOW UP; HUMAN; LONGITUDINAL STUDY; MALE; MIDDLE AGED; NEUROIMAGING; NUCLEAR MAGNETIC RESONANCE IMAGING; PREDICTIVE VALUE; SENSITIVITY AND SPECIFICITY; VERY ELDERLY;

EID: 85009350821     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep39880     Document Type: Article
Times cited : (51)

References (42)
  • 1
    • 84855418467 scopus 로고    scopus 로고
    • Individual subject classification for Alzheimers disease based on incremental learning using a spatial frequency representation of cortical thickness data
    • Cho, Y., Seong, J. K., Jeong, Y. & Shin, S. Y. Individual subject classification for Alzheimers disease based on incremental learning using a spatial frequency representation of cortical thickness data. Neuroimage 59, 2217-2230 (2012).
    • (2012) Neuroimage , vol.59 , pp. 2217-2230
    • Cho, Y.1    Seong, J.K.2    Jeong, Y.3    Shin, S.Y.4
  • 2
    • 84862778147 scopus 로고    scopus 로고
    • Ensemble sparse classification of Alzheimers disease
    • Liu, M., Zhang, D. & Shen, D. Ensemble sparse classification of Alzheimers disease. Neuroimage 60, 1106-1116 (2012).
    • (2012) Neuroimage , vol.60 , pp. 1106-1116
    • Liu, M.1    Zhang, D.2    Shen, D.3
  • 3
    • 84863351725 scopus 로고    scopus 로고
    • Predicting Future Clinical Changes of MCI Patients Using Longitudinal and Multimodal Biomarkers
    • ARTN e3318210.1371/journal.pone.0033182 (2012)
    • Zhang, D. Q., Shen, D. G. & Neuroimagin, A. s. D. Predicting Future Clinical Changes of MCI Patients Using Longitudinal and Multimodal Biomarkers. PloS one 7, doi: ARTN e3318210.1371/journal.pone.0033182 (2012)
    • PloS One , vol.7
    • Zhang, D.Q.1    Shen, D.G.2    Neuroimagin, A.S.D.3
  • 4
    • 84963532467 scopus 로고    scopus 로고
    • Combining multiple anatomical mri measures improves alzheimers disease classification
    • Vos, F. D. et al. Combining Multiple Anatomical MRI Measures Improves Alzheimers Disease Classification. Human brain mapping 37, 1920-1929 (2016).
    • (2016) Human Brain Mapping , vol.37 , pp. 1920-1929
    • Vos, F.D.1
  • 5
    • 84927690405 scopus 로고    scopus 로고
    • View-centralized multi-Atlas classification for alzheimers disease diagnosis
    • Liu, M., Zhang, D., Shen, D. & Alzheimers Disease Neuroimaging, I. View-centralized multi-Atlas classification for Alzheimers disease diagnosis. Human brain mapping 36, 1847-1865, doi: 10.1002/hbm.22741 (2015).
    • (2015) Human Brain Mapping , vol.36 , pp. 1847-1865
    • Liu, M.1    Zhang, D.2    Shen, D.3    Alzheimers Disease Neuroimaging, I.4
  • 6
    • 58549083944 scopus 로고    scopus 로고
    • Support vector machine-based classification of Alzheimers disease from whole-brain anatomical MRI
    • Magnin, B. et al. Support vector machine-based classification of Alzheimers disease from whole-brain anatomical MRI. Neuroradiology 51, 73-83, doi: 10.1007/s00234-008-0463-x (2009).
    • (2009) Neuroradiology , vol.51 , pp. 73-83
    • Magnin, B.1
  • 7
    • 58149386194 scopus 로고    scopus 로고
    • Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-Term conversion to AD: Results from ADNI
    • Misra, C., Fan, Y. & Davatzikos, C. Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-Term conversion to AD: results from ADNI. Neuroimage 44, 1415-1422 (2009).
    • (2009) Neuroimage , vol.44 , pp. 1415-1422
    • Misra, C.1    Fan, Y.2    Davatzikos, C.3
  • 8
    • 79952617583 scopus 로고    scopus 로고
    • Principal component analysis-based techniques and supervised classification schemes for the early detection of Alzheimers disease
    • Lopez, M. et al. Principal component analysis-based techniques and supervised classification schemes for the early detection of Alzheimers disease. Neurocomputing 74, 1260-1270 (2011).
    • (2011) Neurocomputing , vol.74 , pp. 1260-1270
    • Lopez, M.1
  • 9
    • 84925058025 scopus 로고    scopus 로고
    • Machine learning framework for early MRI-based Alzheimers conversion prediction in MCI subjects
    • Moradi, E. et al. Machine learning framework for early MRI-based Alzheimers conversion prediction in MCI subjects. Neuroimage 104, 398-412, doi: 10.1016/j.neuroimage.2014.10.002 (2015).
    • (2015) Neuroimage , vol.104 , pp. 398-412
    • Moradi, E.1
  • 10
    • 84868000111 scopus 로고    scopus 로고
    • Dimensionality reduced cortical features and their use in the classification of Alzheimers disease and mild cognitive impairment
    • Park, H., Yang, J., Seo, J. & Lee, J. Dimensionality reduced cortical features and their use in the classification of Alzheimers disease and mild cognitive impairment. Neuroscience Letters 529, 123-127 (2012).
    • (2012) Neuroscience Letters , vol.529 , pp. 123-127
    • Park, H.1    Yang, J.2    Seo, J.3    Lee, J.4
  • 11
    • 84861645859 scopus 로고    scopus 로고
    • Combining MRI and CSF measures for classification of Alzheimers disease and prediction of mild cognitive impairment conversion
    • Westman, E., Muehlboeck, J. S. & Simmons, A. Combining MRI and CSF measures for classification of Alzheimers disease and prediction of mild cognitive impairment conversion. Neuroimage 62, 229-238, doi: 10.1016/j.neuroimage.2012.04.056 (2012).
    • (2012) Neuroimage , vol.62 , pp. 229-238
    • Westman, E.1    Muehlboeck, J.S.2    Simmons, A.3
  • 12
    • 84855181990 scopus 로고    scopus 로고
    • Simultaneous segmentation and grading of anatomical structures for patients classification: Application to Alzheimers disease
    • Coupe, P. et al. Simultaneous segmentation and grading of anatomical structures for patients classification: Application to Alzheimers disease. Neuroimage 59, 3736-3747, doi: 10.1016/j.neuroimage.2011.10.080 (2012).
    • (2012) Neuroimage , vol.59 , pp. 3736-3747
    • Coupe, P.1
  • 13
    • 83055184373 scopus 로고    scopus 로고
    • Multi-modal multi-Task learning for joint prediction of multiple regression and classification variables in Alzheimers disease
    • Zhang, D., Shen, D. & Alzheimers Disease Neuroimaging, I. Multi-modal multi-Task learning for joint prediction of multiple regression and classification variables in Alzheimers disease. Neuroimage 59, 895-907, doi: 10.1016/j.neuroimage.2011.09.069 (2012).
    • (2012) Neuroimage , vol.59 , pp. 895-907
    • Zhang, D.1    Shen, D.2    Alzheimers Disease Neuroimaging, I.3
  • 14
    • 84903899707 scopus 로고    scopus 로고
    • A novel matrix-similarity based loss function for joint regression and classification in AD diagnosis
    • Zhu, X., Suk, H. I. & Shen, D. A novel matrix-similarity based loss function for joint regression and classification in AD diagnosis. Neuroimage 100, 91-105, doi: 10.1016/j.neuroimage.2014.05.078 (2014).
    • (2014) Neuroimage , vol.100 , pp. 91-105
    • Zhu, X.1    Suk, H.I.2    Shen, D.3
  • 16
    • 84907019192 scopus 로고    scopus 로고
    • Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis
    • Suk, H. I., Lee, S. W., Shen, D. & Alzheimers Disease Neuroimaging, I. Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. Neuroimage 101, 569-582, doi: 10.1016/j.neuroimage.2014.06.077 (2014).
    • (2014) Neuroimage , vol.101 , pp. 569-582
    • Suk, H.I.1    Lee, S.W.2    Shen, D.3    Alzheimers Disease Neuroimaging, I.4
  • 17
    • 84953206879 scopus 로고    scopus 로고
    • Joint reconstruction of white-matter pathways from longitudinal diffusion MRI data with anatomical priors
    • Yendiki, A., Reuter, M., Wilkens, P., Rosas, H. D. & Fischl, B. Joint reconstruction of white-matter pathways from longitudinal diffusion MRI data with anatomical priors. Neuroimage 127, 277-286, doi: 10.1016/j.neuroimage.2015.12.003 (2016).
    • (2016) Neuroimage , vol.127 , pp. 277-286
    • Yendiki, A.1    Reuter, M.2    Wilkens, P.3    Rosas, H.D.4    Fischl, B.5
  • 18
    • 84964421394 scopus 로고    scopus 로고
    • STGP: Spatio-Temporal Gaussian process models for longitudinal neuroimaging data
    • Hyun, J. W. et al. STGP: Spatio-Temporal Gaussian process models for longitudinal neuroimaging data. Neuroimage 134, 550-562 (2016).
    • (2016) Neuroimage , vol.134 , pp. 550-562
    • Hyun, J.W.1
  • 19
    • 84873723896 scopus 로고    scopus 로고
    • Multiscale adaptive generalized estimating equations for longitudinal neuroimaging data
    • Li, Y. M. et al. Multiscale adaptive generalized estimating equations for longitudinal neuroimaging data. Neuroimage 72, 91-105, doi: 10.1016/j.neuroimage.2013.01.034 (2013).
    • (2013) Neuroimage , vol.72 , pp. 91-105
    • Li, Y.M.1
  • 20
    • 82755161873 scopus 로고    scopus 로고
    • Discriminant analysis of longitudinal cortical thickness changes in Alzheimers disease using dynamic and network features
    • ARTN 427.e1510.1016/j.neurobiolaging.2010.11.008 (2012)
    • Li, Y. et al. Discriminant analysis of longitudinal cortical thickness changes in Alzheimers disease using dynamic and network features. Neurobiol Aging 33, doi: ARTN 427.e1510.1016/j.neurobiolaging.2010.11.008 (2012)
    • Neurobiol Aging , vol.33
    • Li, Y.1
  • 21
    • 74949097405 scopus 로고    scopus 로고
    • Alzheimers disease neuroimaging initiative (adni) clinical characterization
    • Petersen, R. C. et al. Alzheimers Disease Neuroimaging Initiative (ADNI) Clinical characterization. Neurology 74, 201-209 (2010).
    • (2010) Neurology , vol.74 , pp. 201-209
    • Petersen, R.C.1
  • 22
    • 32644441220 scopus 로고    scopus 로고
    • The NIH MRI study of normal brain development
    • Evans, A. C. & Grp, B. D. C. The NIH MRI study of normal brain development. Neuroimage 30, 184-202, doi: 10.1016/j. neuroimage.2005.09.068 (2006).
    • (2006) Neuroimage , vol.30 , pp. 184-202
    • Evans, A.C.1    Grp, B.D.C.2
  • 23
    • 77953998854 scopus 로고    scopus 로고
    • Longitudinal mri atrophy biomarkers: Relationship to conversion in the adni cohort
    • Risacher, S. L. et al. Longitudinal MRI atrophy biomarkers: Relationship to conversion in the ADNI cohort. Neurobiol Aging 31, 1401-1418, doi: 10.1016/j.neurobiolaging.2010.04.029 (2010).
    • (2010) Neurobiol Aging , vol.31 , pp. 1401-1418
    • Risacher, S.L.1
  • 24
    • 67749130881 scopus 로고    scopus 로고
    • Longitudinal progression of Alzheimers-like patterns of atrophy in normal older adults: The SPARE-AD index
    • Davatzikos, C., Xu, F., An, Y., Fan, Y. & Resnick, S. M. Longitudinal progression of Alzheimers-like patterns of atrophy in normal older adults: The SPARE-AD index. Brain 132, 2026-2035 (2009).
    • (2009) Brain , vol.132 , pp. 2026-2035
    • Davatzikos, C.1    Xu, F.2    An, Y.3    Fan, Y.4    Resnick, S.M.5
  • 25
    • 24944495484 scopus 로고    scopus 로고
    • Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: A longitudinal MRI study
    • Chetelat, G. et al. Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: A longitudinal MRI study. Neuroimage 27, 934-946, doi: 10.1016/j.neuroimage.2005.05.015 (2005).
    • (2005) Neuroimage , vol.27 , pp. 934-946
    • Chetelat, G.1
  • 26
    • 79956306210 scopus 로고    scopus 로고
    • Mild cognitive impairment: Baseline and longitudinal structural mr imaging measures improve predictive prognosis
    • McEvoy, L. K. et al. Mild Cognitive Impairment: Baseline and Longitudinal Structural MR Imaging Measures Improve Predictive Prognosis. Radiology 259, 834-843, doi: 10.1148/radiol.11101975 (2011).
    • (2011) Radiology , vol.259 , pp. 834-843
    • McEvoy, L.K.1
  • 27
    • 79551576499 scopus 로고    scopus 로고
    • Predictive markers for AD in a multi-modality framework: An analysis of MCI progression in the ADNI population
    • Hinrichs, C., Singh, V., Xu, G. F., Johnson, S. C. & Neuroimaging, A. D. Predictive markers for AD in a multi-modality framework: An analysis of MCI progression in the ADNI population. Neuroimage 55, 574-589, doi: 10.1016/j.neuroimage.2010.10.081 (2011).
    • (2011) Neuroimage , vol.55 , pp. 574-589
    • Hinrichs, C.1    Singh, V.2    Xu, G.F.3    Johnson, S.C.4    Neuroimaging, A.D.5
  • 28
    • 34447636593 scopus 로고    scopus 로고
    • 3D maps from multiple MRI illustrate changing atrophy patterns as subjects progress from mild cognitive impairment to Alzheimers disease
    • Whitwell, J. L. et al. 3D maps from multiple MRI illustrate changing atrophy patterns as subjects progress from mild cognitive impairment to Alzheimers disease. Brain 130, 1777-1786, doi: 10.1093/brain/awml12 (2007).
    • (2007) Brain , vol.130 , pp. 1777-1786
    • Whitwell, J.L.1
  • 29
    • 34548533960 scopus 로고    scopus 로고
    • Voxel-based morphometry to detect brain atrophy in progressive mild cognitive impairment
    • Hamalainen, A. et al. Voxel-based morphometry to detect brain atrophy in progressive mild cognitive impairment. Neuroimage 37, 1122-1131, doi: 10.1016/j.neuroimage.2007.06.016 (2007).
    • (2007) Neuroimage , vol.37 , pp. 1122-1131
    • Hamalainen, A.1
  • 30
    • 84896396327 scopus 로고    scopus 로고
    • Hierarchical fusion of features and classifier decisions for alzheimers disease diagnosis
    • Liu, M. H., Zhang, D. Q., Shen, D. G. & Initi, A. s. D. N. Hierarchical Fusion of Features and Classifier Decisions for Alzheimers Disease Diagnosis. Human brain mapping 35, 1305-1319, doi: 10.1002/hbm.22254 (2014).
    • (2014) Human Brain Mapping , vol.35 , pp. 1305-1319
    • Liu, M.H.1    Zhang, D.Q.2    Shen, D.G.3    Initi, A.S.D.N.4
  • 31
    • 41949137974 scopus 로고    scopus 로고
    • The alzheimers disease neuroimaging initiative (adni): Mri methods
    • Jack, C. R. et al. The Alzheimers Disease Neuroimaging Initiative (ADNI): MRI methods. J Magn Reson Imaging 27, 685-691, doi: 10.1002/jmri.21049 (2008).
    • (2008) J Magn Reson Imaging , vol.27 , pp. 685-691
    • Jack, C.R.1
  • 32
    • 0031987382 scopus 로고    scopus 로고
    • A nonparametric method for automatic correction of intensity nonuniformity in MRI data
    • Sled, J. G., Zijdenbos, A. P. & Evans, A. C. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE transactions on medical imaging 17, 87-97, doi: 10.1109/42.668698 (1998).
    • (1998) IEEE Transactions on Medical Imaging , vol.17 , pp. 87-97
    • Sled, J.G.1    Zijdenbos, A.P.2    Evans, A.C.3
  • 33
    • 0033624997 scopus 로고    scopus 로고
    • New variants of a method of MRI scale standardization
    • Nyul, L. G., Udupa, J. K. & Zhang, X. New variants of a method of MRI scale standardization. IEEE transactions on medical imaging 19, 143-150, doi: 10.1109/42.836373 (2000).
    • (2000) IEEE Transactions on Medical Imaging , vol.19 , pp. 143-150
    • Nyul, L.G.1    Udupa, J.K.2    Zhang, X.3
  • 34
    • 0010581323 scopus 로고    scopus 로고
    • A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM)
    • Mazziotta, J. et al. A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philosophical transactions of the Royal Society of London. Series B, Biological sciences 356, 1293-1322, doi: 10.1098/rstb.2001.0915 (2001).
    • (2001) Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences , vol.356 , pp. 1293-1322
    • Mazziotta, J.1
  • 35
    • 84896005008 scopus 로고    scopus 로고
    • Brain extraction based on locally linear representation-based classification
    • Huang, M. Y. et al. Brain extraction based on locally linear representation-based classification. Neuroimage 92, 322-339, doi: 10.1016/j.neuroimage.2014.01.059 (2014).
    • (2014) Neuroimage , vol.92 , pp. 322-339
    • Huang, M.Y.1
  • 36
    • 67949103436 scopus 로고    scopus 로고
    • Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset
    • Hinrichs, C. et al. Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset. Neuroimage 48, 138-149, doi: 10.1016/j.neuroimage.2009.05.056 (2009).
    • (2009) Neuroimage , vol.48 , pp. 138-149
    • Hinrichs, C.1
  • 37
    • 84940437292 scopus 로고    scopus 로고
    • FVGWAS: Fast voxelwise genome wide association analysis of large-scale imaging genetic data
    • Huang, M. et al. FVGWAS: Fast voxelwise genome wide association analysis of large-scale imaging genetic data. Neuroimage 118, 613-627, doi: 10.1016/j.neuroimage.2015.05.043 (2015).
    • (2015) Neuroimage , vol.118 , pp. 613-627
    • Huang, M.1
  • 38
    • 84929379453 scopus 로고    scopus 로고
    • Boosting diagnosis accuracy of Alzheimers disease using high dimensional recognition of longitudinal brain atrophy patterns
    • Farzan, A., Mashohor, S., Ramli, A. R. & Mahmud, R. Boosting diagnosis accuracy of Alzheimers disease using high dimensional recognition of longitudinal brain atrophy patterns. Behav Brain Res 290, 124-130, doi: 10.1016/j.bbr.2015.04.010 (2015).
    • (2015) Behav Brain Res , vol.290 , pp. 124-130
    • Farzan, A.1    Mashohor, S.2    Ramli, A.R.3    Mahmud, R.4
  • 39
    • 84921496460 scopus 로고    scopus 로고
    • Baseline shape diffeomorphometry patterns of subcortical and ventricular structures in predicting conversion of mild cognitive impairment to alzheimers disease
    • Tang, X., Holland, D., Dale, A. M., Younes, L. & Miller, M. I. Baseline Shape Diffeomorphometry Patterns of Subcortical and Ventricular Structures in Predicting Conversion of Mild Cognitive Impairment to Alzheimers Disease. Journal of Alzheimers disease: JAD 44, 599-611, doi: 10.3233/JAD-141605 (2015).
    • (2015) Journal of Alzheimers Disease: JAD , vol.44 , pp. 599-611
    • Tang, X.1    Holland, D.2    Dale, A.M.3    Younes, L.4    Miller, M.I.5
  • 40
    • 84886240845 scopus 로고    scopus 로고
    • Prediction of alzheimers disease and mild cognitive impairment using baseline cortical morphological abnormality patterns
    • Wee, C., Yap, P. & Shen, D. Prediction of Alzheimers Disease and Mild Cognitive Impairment Using Baseline Cortical Morphological Abnormality Patterns. Human brain mapping 34, 3411-3425, doi: 10.1002/hbm.22156 (2013).
    • (2013) Human Brain Mapping , vol.34 , pp. 3411-3425
    • Wee, C.1    Yap, P.2    Shen, D.3
  • 41
    • 84961180997 scopus 로고    scopus 로고
    • Predicting progression from mild cognitive impairment to alzheimers dementia using clinical, mri, and plasma biomarkers via probabilistic pattern classification
    • Korolev, I. O., Symonds, L. L. & Bozoki, A. C. Predicting Progression from Mild Cognitive Impairment to Alzheimers Dementia Using Clinical, MRI, and Plasma Biomarkers via Probabilistic Pattern Classification. PloS one 11, e0138866, doi: 10.1371/journal. pome.0138866 (2016).
    • (2016) PloS One , vol.11 , pp. e0138866
    • Korolev, I.O.1    Symonds, L.L.2    Bozoki, A.C.3
  • 42
    • 77949784467 scopus 로고    scopus 로고
    • Sparse multiple kernel learning for signal processing applications
    • Subrahmanya, N. & Shin, Y. C. Sparse Multiple Kernel Learning for Signal Processing Applications. Ieee T Pattern Anal 32, 788-798, doi: 10.1109/Tpami.2009.98 (2010).
    • (2010) IEEE T Pattern Anal , vol.32 , pp. 788-798
    • Subrahmanya, N.1    Shin, Y.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.