메뉴 건너뛰기




Volumn 134, Issue , 2016, Pages 550-562

STGP: Spatio-temporal Gaussian process models for longitudinal neuroimaging data

Author keywords

Functional principal component analysis; Kriging; Neuroimaging; Prediction; Spatio temporal modeling

Indexed keywords

ACCURACY; AGED; ALZHEIMER DISEASE; ARTICLE; BRAIN FUNCTION; BRAIN STRUCTURE; COMPARATIVE STUDY; COMPUTER SIMULATION; CONTROLLED STUDY; CORTICAL THICKNESS (BRAIN); FEMALE; FUNCTIONAL PRINCIPAL COMPONENT MODEL; HUMAN; IMAGE ANALYSIS; IMAGE PROCESSING; LATERAL BRAIN VENTRICLE; LONGITUDINAL STUDY; MAJOR CLINICAL STUDY; MALE; MILD COGNITIVE IMPAIRMENT; NERVOUS SYSTEM PARAMETERS; NEUROIMAGING; PARTITION PARAMETRIC SPACE TIME COVARIANCE MODEL; POSITRON EMISSION TOMOGRAPHY; PREDICTIVE VALUE; PRIORITY JOURNAL; PROCESS OPTIMIZATION; SIGNAL NOISE RATIO; SPATIOTEMPORAL GAUSSIAN PROCESS MODEL; STATISTICAL MODEL; THREE DIMENSIONAL IMAGING; TIME SERIES ANALYSIS; VALIDATION STUDY; WHITE NOISE; BRAIN; DIAGNOSTIC IMAGING; GROWTH, DEVELOPMENT AND AGING; NORMAL DISTRIBUTION; PATHOLOGY; PRINCIPAL COMPONENT ANALYSIS; PROCEDURES; SIGNAL PROCESSING;

EID: 84964421394     PISSN: 10538119     EISSN: 10959572     Source Type: Journal    
DOI: 10.1016/j.neuroimage.2016.04.023     Document Type: Article
Times cited : (38)

References (42)
  • 1
    • 33846956793 scopus 로고    scopus 로고
    • The nih mri study of normal brain development (objective-2): newborns, infants, toddlers, and preschoolers
    • Almli C.R., Rivkin M.J., McKinstry R.C., Group., B.D.C. The nih mri study of normal brain development (objective-2): newborns, infants, toddlers, and preschoolers. IEEE Trans. Med. Imaging 2007, 35:308-325.
    • (2007) IEEE Trans. Med. Imaging , vol.35 , pp. 308-325
    • Almli, C.R.1    Rivkin, M.J.2    McKinstry, R.C.3
  • 2
    • 84906969760 scopus 로고    scopus 로고
    • Symmetric diffeomorphic modeling of longitudinal structural mri
    • Ashburner J., Ridgway G.R. Symmetric diffeomorphic modeling of longitudinal structural mri. Front. Neurosci. 2012, 6.
    • (2012) Front. Neurosci. , vol.6
    • Ashburner, J.1    Ridgway, G.R.2
  • 3
    • 84870014716 scopus 로고    scopus 로고
    • Statistical analysis of longitudinal neuroimage data with linear mixed effects models
    • Bernal-Rusiel J., Greve D., Reuter M., Fischl B., Sabuncu M.R. Statistical analysis of longitudinal neuroimage data with linear mixed effects models. NeuroImage 2013, 66:249-260.
    • (2013) NeuroImage , vol.66 , pp. 249-260
    • Bernal-Rusiel, J.1    Greve, D.2    Reuter, M.3    Fischl, B.4    Sabuncu, M.R.5
  • 5
    • 34249054454 scopus 로고    scopus 로고
    • Adaptive gaussian markov random fields with applications in human brain mapping
    • Brezger A., Fahrmeir L., Hennerfeind A. Adaptive gaussian markov random fields with applications in human brain mapping. J. R. Stat. Soc.: Ser. C: Appl. Stat. 2007, 56(3):327-345.
    • (2007) J. R. Stat. Soc.: Ser. C: Appl. Stat. , vol.56 , Issue.3 , pp. 327-345
    • Brezger, A.1    Fahrmeir, L.2    Hennerfeind, A.3
  • 8
    • 84959906698 scopus 로고    scopus 로고
    • Spatio-temporal models for some data sets in continuous space and discrete time
    • Demel S.S., Du J. Spatio-temporal models for some data sets in continuous space and discrete time. Stat. Sin. 2015, 25:81-98.
    • (2015) Stat. Sin. , vol.25 , pp. 81-98
    • Demel, S.S.1    Du, J.2
  • 9
    • 77956861781 scopus 로고    scopus 로고
    • Modeling the spatial and temporal dependence in fmri data
    • Derado G., Bowman F.D., Kilts C.D. Modeling the spatial and temporal dependence in fmri data. Biometrics 2010, 66(3):949-957.
    • (2010) Biometrics , vol.66 , Issue.3 , pp. 949-957
    • Derado, G.1    Bowman, F.D.2    Kilts, C.D.3
  • 10
    • 84881422357 scopus 로고    scopus 로고
    • Predicting brain activity using a bayesian spatial model
    • Derado G., Bowman F.D., Zhang L. Predicting brain activity using a bayesian spatial model. Stat. Methods Med. Res. 2013, 22(4):382-397.
    • (2013) Stat. Methods Med. Res. , vol.22 , Issue.4 , pp. 382-397
    • Derado, G.1    Bowman, F.D.2    Zhang, L.3
  • 11
    • 32644441220 scopus 로고    scopus 로고
    • The nih mri study of normal brain development
    • Evans A.C., Group., B.D.C The nih mri study of normal brain development. NeuroImage 2006, 30:184-202.
    • (2006) NeuroImage , vol.30 , pp. 184-202
    • Evans, A.C.1
  • 13
    • 0035998830 scopus 로고    scopus 로고
    • Nonseparable, stationary covariance functions for space-time data
    • Gneiting T. Nonseparable, stationary covariance functions for space-time data. J. Am. Stat. Assoc. 2002, 97(458):590-600.
    • (2002) J. Am. Stat. Assoc. , vol.97 , Issue.458 , pp. 590-600
    • Gneiting, T.1
  • 14
    • 0035013277 scopus 로고    scopus 로고
    • Bayesian spatiotemporal inference in functional magnetic resonance imaging
    • Gössl C., Auer D.P., Fahrmeir L. Bayesian spatiotemporal inference in functional magnetic resonance imaging. Biometrics 2001, 57(2):554-562.
    • (2001) Biometrics , vol.57 , Issue.2 , pp. 554-562
    • Gössl, C.1    Auer, D.P.2    Fahrmeir, L.3
  • 16
    • 84898664663 scopus 로고    scopus 로고
    • Fast and accurate modelling of longitudinal and repeated measures neuroimaging data
    • Guillaume B., Hua X., Thompson P.M., Waldorp L., Nichols T.E. Fast and accurate modelling of longitudinal and repeated measures neuroimaging data. NeuroImage 2014, 94:287-302.
    • (2014) NeuroImage , vol.94 , pp. 287-302
    • Guillaume, B.1    Hua, X.2    Thompson, P.M.3    Waldorp, L.4    Nichols, T.E.5
  • 17
    • 51449118420 scopus 로고    scopus 로고
    • Predicting the brain response to treatment using a bayesian hierarchical model with application to a study of schizophrenia
    • Guo Y., DuBois Bowman F., Kilts C. Predicting the brain response to treatment using a bayesian hierarchical model with application to a study of schizophrenia. Hum. Brain Mapp. 2008, 29(9):1092-1109.
    • (2008) Hum. Brain Mapp. , vol.29 , Issue.9 , pp. 1092-1109
    • Guo, Y.1    DuBois Bowman, F.2    Kilts, C.3
  • 18
    • 33747153005 scopus 로고    scopus 로고
    • Properties of principal component methods for functional and longitudinal data analysis
    • Hall P., Müller H.-G., Wang J.-L. Properties of principal component methods for functional and longitudinal data analysis. Ann. Stat. 2006, 34:1493-1517.
    • (2006) Ann. Stat. , vol.34 , pp. 1493-1517
    • Hall, P.1    Müller, H.-G.2    Wang, J.-L.3
  • 20
    • 84946911059 scopus 로고    scopus 로고
    • Clustering high-dimensional landmark-based two-dimensional shape data
    • Huang C., Styner M., Zhu H. Clustering high-dimensional landmark-based two-dimensional shape data. J. Am. Stat. Assoc. 2015, 110(511):946-961.
    • (2015) J. Am. Stat. Assoc. , vol.110 , Issue.511 , pp. 946-961
    • Huang, C.1    Styner, M.2    Zhu, H.3
  • 21
    • 84892880465 scopus 로고    scopus 로고
    • Sgpp: spatial gaussian predictive process models for neuroimaging data
    • Hyun J.W., Li Y., Gilmore J.H., Lu Z., Styner M., Zhu H. Sgpp: spatial gaussian predictive process models for neuroimaging data. NeuroImage 2014, 89:70-80.
    • (2014) NeuroImage , vol.89 , pp. 70-80
    • Hyun, J.W.1    Li, Y.2    Gilmore, J.H.3    Lu, Z.4    Styner, M.5    Zhu, H.6
  • 22
    • 77958134892 scopus 로고    scopus 로고
    • The plasticity of human maternal brain: longitudinal changes in brain anatomy during the early postpartum period
    • Kim P., Leckman J.F., Mayes L., Feldman R., Wang X., Swain J.E. The plasticity of human maternal brain: longitudinal changes in brain anatomy during the early postpartum period. Behav. Neurosci. 2010, 124:695-700.
    • (2010) Behav. Neurosci. , vol.124 , pp. 695-700
    • Kim, P.1    Leckman, J.F.2    Mayes, L.3    Feldman, R.4    Wang, X.5    Swain, J.E.6
  • 23
    • 84873723896 scopus 로고    scopus 로고
    • Multiscale adaptive generalized estimating equations for longitudinal neuroimaging data
    • Li Y., Gilmore J.H., Shen D., Styner M., Lin W., Zhu H.T. Multiscale adaptive generalized estimating equations for longitudinal neuroimaging data. NeuroImage 2013, 72:91-105.
    • (2013) NeuroImage , vol.72 , pp. 91-105
    • Li, Y.1    Gilmore, J.H.2    Shen, D.3    Styner, M.4    Lin, W.5    Zhu, H.T.6
  • 24
    • 84983683532 scopus 로고    scopus 로고
    • Efficient gaussian process-based modelling and prediction of image time series
    • Lorenzi M., Ziegler G., Alexander D.C., Ourselin S. Efficient gaussian process-based modelling and prediction of image time series. IPMI 2015 2015.
    • (2015) IPMI 2015
    • Lorenzi, M.1    Ziegler, G.2    Alexander, D.C.3    Ourselin, S.4
  • 26
    • 67449119154 scopus 로고    scopus 로고
    • Strategies for longitudinal neuroimaging studies of overt language production
    • Meltzer J.A., Postman-Caucheteux W., McArdle J.J., Braun A. Strategies for longitudinal neuroimaging studies of overt language production. NeuroImage 2009, 47:745-755.
    • (2009) NeuroImage , vol.47 , pp. 745-755
    • Meltzer, J.A.1    Postman-Caucheteux, W.2    McArdle, J.J.3    Braun, A.4
  • 27
    • 34249029861 scopus 로고    scopus 로고
    • Penalized model-based clustering with application to variable selection
    • Pan W., Shen X. Penalized model-based clustering with application to variable selection. J. Mach. Learn. Res. 2007, 8:1145-1164.
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 1145-1164
    • Pan, W.1    Shen, X.2
  • 28
    • 16244387927 scopus 로고    scopus 로고
    • Bayesian fmri time series analysis with spatial priors
    • Penny W.D., Trujillo-Barreto N.J., Friston K.J. Bayesian fmri time series analysis with spatial priors. NeuroImage 2005, 24(2):350-362.
    • (2005) NeuroImage , vol.24 , Issue.2 , pp. 350-362
    • Penny, W.D.1    Trujillo-Barreto, N.J.2    Friston, K.J.3
  • 29
    • 84901816548 scopus 로고    scopus 로고
    • Massively parallel nonparametric regression, with an application to developmental brain mapping
    • Reiss P.T., Huang L., Chen Y.-H., Huo L., Tarpey T., Mennes M. Massively parallel nonparametric regression, with an application to developmental brain mapping. J. Comput. Graph. Stat. 2014, 23(1):232-248.
    • (2014) J. Comput. Graph. Stat. , vol.23 , Issue.1 , pp. 232-248
    • Reiss, P.T.1    Huang, L.2    Chen, Y.-H.3    Huo, L.4    Tarpey, T.5    Mennes, M.6
  • 31
    • 0035498042 scopus 로고    scopus 로고
    • Automated graph-based analysis and correction of cortical volume topology
    • Shattuck D.W., Leahy R.M. Automated graph-based analysis and correction of cortical volume topology. IEEE Trans. Med. Imaging 2001, 20(11):1167-1177.
    • (2001) IEEE Trans. Med. Imaging , vol.20 , Issue.11 , pp. 1167-1177
    • Shattuck, D.W.1    Leahy, R.M.2
  • 32
    • 70349974425 scopus 로고    scopus 로고
    • Neonatal brain image segmentation in longitudinal mri studies
    • Shi F., Fan Y., Tang S., Gilmore J.H., Lin W., Shen D. Neonatal brain image segmentation in longitudinal mri studies. NeuroImage 2010, 49(1):391-400.
    • (2010) NeuroImage , vol.49 , Issue.1 , pp. 391-400
    • Shi, F.1    Fan, Y.2    Tang, S.3    Gilmore, J.H.4    Lin, W.5    Shen, D.6
  • 34
    • 84871663104 scopus 로고    scopus 로고
    • Multiscale adaptive marginal analysis of longitudinal neuroimaging data with time-varying covariates
    • Skup M., Zhu H., Zhang H. Multiscale adaptive marginal analysis of longitudinal neuroimaging data with time-varying covariates. Biometrics 2012, 68:1083-1092.
    • (2012) Biometrics , vol.68 , pp. 1083-1092
    • Skup, M.1    Zhu, H.2    Zhang, H.3
  • 36
    • 0031987382 scopus 로고    scopus 로고
    • A nonparametric method for automatic correction of intensity nonuniformity in mri data
    • Sled J.G., Zijdenbos A.P., Evans A.C. A nonparametric method for automatic correction of intensity nonuniformity in mri data. IEEE Trans. Med. Imaging 1998, 17(1):87-97.
    • (1998) IEEE Trans. Med. Imaging , vol.17 , Issue.1 , pp. 87-97
    • Sled, J.G.1    Zijdenbos, A.P.2    Evans, A.C.3
  • 37
    • 4444354714 scopus 로고    scopus 로고
    • Boundary and medial shape analysis of the hippocampus in schizophrenia
    • Styner M., Lieberman J.A., Pantazis D., Gerig G. Boundary and medial shape analysis of the hippocampus in schizophrenia. Med. Image Anal. 2004, 8:197-203.
    • (2004) Med. Image Anal. , vol.8 , pp. 197-203
    • Styner, M.1    Lieberman, J.A.2    Pantazis, D.3    Gerig, G.4
  • 40
    • 33645031408 scopus 로고    scopus 로고
    • Penalized spline models for functional principal component analysis
    • Yao F., Lee T. Penalized spline models for functional principal component analysis. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2006, 68:3-25.
    • (2006) J. R. Stat. Soc. Ser. B (Stat. Methodol.) , vol.68 , pp. 3-25
    • Yao, F.1    Lee, T.2
  • 41
    • 84901247723 scopus 로고    scopus 로고
    • A longitudinal functional analysis framework for analysis of white matter tract statistics
    • Springer Berlin/Heidelberg, W.M. Wells, S. Joshi, K.M. Pohl (Eds.) LNCS7917
    • Yuan Y., Gilmore J.H., Geng X., Styner M., Chen K., Wang J.L., Zhu H. A longitudinal functional analysis framework for analysis of white matter tract statistics. Information Processing in Medical Imaging 2013, 220-231. Springer Berlin/Heidelberg. W.M. Wells, S. Joshi, K.M. Pohl (Eds.).
    • (2013) Information Processing in Medical Imaging , pp. 220-231
    • Yuan, Y.1    Gilmore, J.H.2    Geng, X.3    Styner, M.4    Chen, K.5    Wang, J.L.6    Zhu, H.7
  • 42
    • 33744930583 scopus 로고    scopus 로고
    • User-guided 3d active contour segmentation of anatomical structures: significantly improved efficiency and reliability
    • Yushkevich P.A., Piven J., Hazlett H.C., Smith R.G., Ho S., Gee J.C., Gerig G. User-guided 3d active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage 2006, 31(3):1116-1128.
    • (2006) NeuroImage , vol.31 , Issue.3 , pp. 1116-1128
    • Yushkevich, P.A.1    Piven, J.2    Hazlett, H.C.3    Smith, R.G.4    Ho, S.5    Gee, J.C.6    Gerig, G.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.