메뉴 건너뛰기




Volumn 45, Issue , 2017, Pages 1-7

Solar-to-chemical and solar-to-fuel production from CO2 by metabolically engineered microorganisms

Author keywords

[No Author keywords available]

Indexed keywords

CARBON; FUELS; GREENHOUSE GASES; INDICATORS (CHEMICAL); IODINE; METABOLIC ENGINEERING; MICROORGANISMS; SOLAR ENERGY;

EID: 85009126817     PISSN: 09581669     EISSN: 18790429     Source Type: Journal    
DOI: 10.1016/j.copbio.2016.11.017     Document Type: Review
Times cited : (72)

References (52)
  • 1
    • 84961922827 scopus 로고    scopus 로고
    • Fuelling the future: microbial engineering for the production of sustainable biofuels
    • 1 Liao, J.C., Mi, L., Pontrelli, S., Luo, S., Fuelling the future: microbial engineering for the production of sustainable biofuels. Nat Rev Microbiol 14 (2016), 288–304.
    • (2016) Nat Rev Microbiol , vol.14 , pp. 288-304
    • Liao, J.C.1    Mi, L.2    Pontrelli, S.3    Luo, S.4
  • 2
    • 84907921289 scopus 로고    scopus 로고
    • Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces
    • 2 Kuhl, K.P., Hatsukade, T., Cave, E.R., Abram, D.N., Kibsgaard, J., Jaramillo, T.F., Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J Am Chem Soc 136 (2014), 14107–14113.
    • (2014) J Am Chem Soc , vol.136 , pp. 14107-14113
    • Kuhl, K.P.1    Hatsukade, T.2    Cave, E.R.3    Abram, D.N.4    Kibsgaard, J.5    Jaramillo, T.F.6
  • 5
    • 84973325121 scopus 로고    scopus 로고
    • Cyanobacterial chemical production
    • 5 Case, A.E., Atsumi, S., Cyanobacterial chemical production. J Biotechnol 231 (2016), 106–114.
    • (2016) J Biotechnol , vol.231 , pp. 106-114
    • Case, A.E.1    Atsumi, S.2
  • 7
    • 84918822904 scopus 로고    scopus 로고
    • Cyanobacteria as photosynthetic biocatalysts: a systems biology perspective
    • 7 Gudmundsson, S., Nogales, J., Cyanobacteria as photosynthetic biocatalysts: a systems biology perspective. Mol Biosyst 11 (2015), 60–70.
    • (2015) Mol Biosyst , vol.11 , pp. 60-70
    • Gudmundsson, S.1    Nogales, J.2
  • 8
    • 84961173840 scopus 로고    scopus 로고
    • 2,3 Butanediol production in an obligate photoautotrophic cyanobacterium in dark conditions via diverse sugar consumption
    • 8 McEwen, J.T., Kanno, M., Atsumi, S., 2,3 Butanediol production in an obligate photoautotrophic cyanobacterium in dark conditions via diverse sugar consumption. Metab Eng 36 (2016), 28–36.
    • (2016) Metab Eng , vol.36 , pp. 28-36
    • McEwen, J.T.1    Kanno, M.2    Atsumi, S.3
  • 9
    • 84888095603 scopus 로고    scopus 로고
    • Photoautotrophic production of D-lactic acid in an engineered cyanobacterium
    • 9 Varman, A.M., Yu, Y., You, L., Tang, Y.J., Photoautotrophic production of D-lactic acid in an engineered cyanobacterium. Microb Cell Fact, 12, 2013, 117.
    • (2013) Microb Cell Fact , vol.12 , pp. 117
    • Varman, A.M.1    Yu, Y.2    You, L.3    Tang, Y.J.4
  • 10
  • 11
    • 84948422885 scopus 로고    scopus 로고
    • Circadian rhythms in cyanobacteria
    • 11 Cohen, S.E., Golden, S.S., Circadian rhythms in cyanobacteria. Microbiol Mol Biol Rev 79 (2015), 373–385.
    • (2015) Microbiol Mol Biol Rev , vol.79 , pp. 373-385
    • Cohen, S.E.1    Golden, S.S.2
  • 13
    • 84928139480 scopus 로고    scopus 로고
    • The circadian oscillator in Synechococcus elongatus controls metabolite partitioning during diurnal growth
    • This paper demonstrated that the circadian oscillator influences the rhythms of cellular metabolism under diurnal conditions. The metabolomics analysis showed that the oxidative pentose phosphate pathway was inhibited by a circadian clock mechanism in the morning.
    • 13• Diamond, S., Jun, D., Rubin, B.E., Golden, S.S., The circadian oscillator in Synechococcus elongatus controls metabolite partitioning during diurnal growth. Proc Natl Acad Sci U S A 112 (2015), E1916–E1925 This paper demonstrated that the circadian oscillator influences the rhythms of cellular metabolism under diurnal conditions. The metabolomics analysis showed that the oxidative pentose phosphate pathway was inhibited by a circadian clock mechanism in the morning.
    • (2015) Proc Natl Acad Sci U S A , vol.112 , pp. E1916-E1925
    • Diamond, S.1    Jun, D.2    Rubin, B.E.3    Golden, S.S.4
  • 14
    • 83755181765 scopus 로고    scopus 로고
    • The tricarboxylic acid cycle in cyanobacteria
    • 14 Zhang, S., Bryant, D.A., The tricarboxylic acid cycle in cyanobacteria. Science 334 (2011), 1551–1553.
    • (2011) Science , vol.334 , pp. 1551-1553
    • Zhang, S.1    Bryant, D.A.2
  • 16
    • 84930221887 scopus 로고    scopus 로고
    • Biochemical validation of the glyoxylate cycle in the cyanobacterium Chlorogloeopsis fritschii strain PCC 9212
    • 16 Zhang, S.Y., Bryant, D.A., Biochemical validation of the glyoxylate cycle in the cyanobacterium Chlorogloeopsis fritschii strain PCC 9212. J Biol Chem 290 (2015), 14019–14030.
    • (2015) J Biol Chem , vol.290 , pp. 14019-14030
    • Zhang, S.Y.1    Bryant, D.A.2
  • 17
    • 84918792766 scopus 로고    scopus 로고
    • The gamma-aminobutyric acid shunt contributes to closing the tricarboxylic acid cycle in Synechocystis sp. PCC 6803
    • 17 Xiong, W., Brune, D., Vermaas, W.F., The gamma-aminobutyric acid shunt contributes to closing the tricarboxylic acid cycle in Synechocystis sp. PCC 6803. Mol Microbiol 93 (2014), 786–796.
    • (2014) Mol Microbiol , vol.93 , pp. 786-796
    • Xiong, W.1    Brune, D.2    Vermaas, W.F.3
  • 18
    • 85020458852 scopus 로고    scopus 로고
    • 2 conversion to ethylene
    • 2 via the remodeled TCA cycle of engineered Synechocystis sp. PCC 6803. Kinetic metabolite profiling analysis revealed that ethylene production was enhanced through the TCA cycle with 37% of total fixed carbon. In this paper, the plasticity of cellular metabolism in cyanobacteria was also discussed.
    • 2 via the remodeled TCA cycle of engineered Synechocystis sp. PCC 6803. Kinetic metabolite profiling analysis revealed that ethylene production was enhanced through the TCA cycle with 37% of total fixed carbon. In this paper, the plasticity of cellular metabolism in cyanobacteria was also discussed.
    • (2015) Nat Plants , vol.1 , pp. 15053
    • Xiong, W.1    Morgan, J.A.2    Ungerer, J.3    Wang, B.4    Maness, P.C.5    Yu, J.P.6
  • 21
    • 84959145501 scopus 로고    scopus 로고
    • Engineering of a modular and synthetic phosphoketolase pathway for photosynthetic production of acetone from CO in Synechococcus elongatus PCC 7942 under light and aerobic condition
    • 21 Chwa, J.W., Kim, W.J., Sim, S.J., Um, Y., Woo, H.M., Engineering of a modular and synthetic phosphoketolase pathway for photosynthetic production of acetone from CO in Synechococcus elongatus PCC 7942 under light and aerobic condition. Plant Biotechnol J 14 (2016), 1768–1776.
    • (2016) Plant Biotechnol J , vol.14 , pp. 1768-1776
    • Chwa, J.W.1    Kim, W.J.2    Sim, S.J.3    Um, Y.4    Woo, H.M.5
  • 22
    • 84943633967 scopus 로고    scopus 로고
    • A phycocyanin. phellandrene synthase fusion enhances recombinant protein expression and beta-phellandrene (monoterpene) hydrocarbons production in Synechocystis (cyanobacteria)
    • 2.
    • 2.
    • (2015) Metab Eng , vol.32 , pp. 116-124
    • Formighieri, C.1    Melis, A.2
  • 23
    • 84958772492 scopus 로고    scopus 로고
    • Sustainable heterologous production of terpene hydrocarbons in cyanobacteria
    • 23 Formighieri, C., Melis, A., Sustainable heterologous production of terpene hydrocarbons in cyanobacteria. Photosynth Res 130 (2016), 123–135.
    • (2016) Photosynth Res , vol.130 , pp. 123-135
    • Formighieri, C.1    Melis, A.2
  • 26
    • 70449336249 scopus 로고    scopus 로고
    • Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism
    • 26 Lindberg, P., Park, S., Melis, A., Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab Eng 12 (2010), 70–79.
    • (2010) Metab Eng , vol.12 , pp. 70-79
    • Lindberg, P.1    Park, S.2    Melis, A.3
  • 28
    • 84953395638 scopus 로고    scopus 로고
    • From cyanochemicals to cyanofactories: a review and perspective
    • 28 Zhou, J., Zhu, T., Cai, Z., Li, Y., From cyanochemicals to cyanofactories: a review and perspective. Microb Cell Fact, 15, 2016, 2.
    • (2016) Microb Cell Fact , vol.15 , pp. 2
    • Zhou, J.1    Zhu, T.2    Cai, Z.3    Li, Y.4
  • 30
    • 84947983632 scopus 로고    scopus 로고
    • Genome engineering in cyanobacteria: where we are and where we need to go
    • 30 Ramey, C.J., Baron-Sola, A., Aucoin, H.R., Boyle, N.R., Genome engineering in cyanobacteria: where we are and where we need to go. ACS Synth Biol 4 (2015), 1186–1196.
    • (2015) ACS Synth Biol , vol.4 , pp. 1186-1196
    • Ramey, C.J.1    Baron-Sola, A.2    Aucoin, H.R.3    Boyle, N.R.4
  • 31
    • 84876709042 scopus 로고    scopus 로고
    • Wide-dynamic-range promoters engineered for cyanobacteria
    • 31 Huang, H.H., Lindblad, P., Wide-dynamic-range promoters engineered for cyanobacteria. J Biol Eng, 7, 2013, 10.
    • (2013) J Biol Eng , vol.7 , pp. 10
    • Huang, H.H.1    Lindblad, P.2
  • 32
    • 84929593888 scopus 로고    scopus 로고
    • Synthetic biology toolbox for controlling gene expression in the cyanobacterium Synechococcus sp. strain PCC 7002
    • 32 Markley, A.L., Begemann, M.B., Clarke, R.E., Gordon, G.C., Pfleger, B.F., Synthetic biology toolbox for controlling gene expression in the cyanobacterium Synechococcus sp. strain PCC 7002. ACS Synth Biol 4 (2015), 595–603.
    • (2015) ACS Synth Biol , vol.4 , pp. 595-603
    • Markley, A.L.1    Begemann, M.B.2    Clarke, R.E.3    Gordon, G.C.4    Pfleger, B.F.5
  • 33
    • 84893904897 scopus 로고    scopus 로고
    • Engineering of a green-light inducible gene expression system in Synechocystis sp. PCC6803
    • 33 Abe, K., Miyake, K., Nakamura, M., Kojima, K., Ferri, S., Ikebukuro, K., Sode, K., Engineering of a green-light inducible gene expression system in Synechocystis sp. PCC6803. Microb Biotechnol 7 (2014), 177–183.
    • (2014) Microb Biotechnol , vol.7 , pp. 177-183
    • Abe, K.1    Miyake, K.2    Nakamura, M.3    Kojima, K.4    Ferri, S.5    Ikebukuro, K.6    Sode, K.7
  • 34
    • 84885929738 scopus 로고    scopus 로고
    • Theophylline-dependent riboswitch as a novel genetic tool for strict regulation of protein expression in cyanobacterium Synechococcus elongatus PCC 7942
    • 34 Nakahira, Y., Ogawa, A., Asano, H., Oyama, T., Tozawa, Y., Theophylline-dependent riboswitch as a novel genetic tool for strict regulation of protein expression in cyanobacterium Synechococcus elongatus PCC 7942. Plant Cell Physiol 54 (2013), 1724–1735.
    • (2013) Plant Cell Physiol , vol.54 , pp. 1724-1735
    • Nakahira, Y.1    Ogawa, A.2    Asano, H.3    Oyama, T.4    Tozawa, Y.5
  • 35
    • 84965157479 scopus 로고    scopus 로고
    • Construction of new synthetic biology tools for the control of gene expression in the cyanobacterium Synechococcus sp. strain PCC 7002
    • 35 Zess, E.K., Begemann, M.B., Pfleger, B.F., Construction of new synthetic biology tools for the control of gene expression in the cyanobacterium Synechococcus sp. strain PCC 7002. Biotechnol Bioeng 113 (2016), 424–432.
    • (2016) Biotechnol Bioeng , vol.113 , pp. 424-432
    • Zess, E.K.1    Begemann, M.B.2    Pfleger, B.F.3
  • 37
    • 84978153360 scopus 로고    scopus 로고
    • CRISPR/Cas9 mediated targeted mutagenesis of the fast growing cyanobacterium Synechococcus elongatus UTEX 2973
    • 37 Wendt, K.E., Ungerer, J., Cobb, R.E., Zhao, H., Pakrasi, H.B., CRISPR/Cas9 mediated targeted mutagenesis of the fast growing cyanobacterium Synechococcus elongatus UTEX 2973. Microb Cell Fact, 15, 2016, 115.
    • (2016) Microb Cell Fact , vol.15 , pp. 115
    • Wendt, K.E.1    Ungerer, J.2    Cobb, R.E.3    Zhao, H.4    Pakrasi, H.B.5
  • 38
    • 84961794371 scopus 로고    scopus 로고
    • Multiple gene repression in cyanobacteria using CRISPRi
    • In this work, multiple gene repression using CRISPR interference technology was achieved by repressing the target genes at 50–90% levels in Synechocystis sp. PCC 6803. This paper also showed that tightly repressed promoters allowed for tunable and reversible gene expression.
    • 38• Yao, L., Cengic, I., Anfelt, J., Hudson, E.P., Multiple gene repression in cyanobacteria using CRISPRi. ACS Synth Biol 5 (2016), 207–212 In this work, multiple gene repression using CRISPR interference technology was achieved by repressing the target genes at 50–90% levels in Synechocystis sp. PCC 6803. This paper also showed that tightly repressed promoters allowed for tunable and reversible gene expression.
    • (2016) ACS Synth Biol , vol.5 , pp. 207-212
    • Yao, L.1    Cengic, I.2    Anfelt, J.3    Hudson, E.P.4
  • 39
    • 84982860066 scopus 로고    scopus 로고
    • CRISPR interference as a titratable, trans-acting regulatory tool for metabolic engineering in the cyanobacterium Synechococcus sp. strain PCC 7002
    • 39 Gordon, G.C., Korosh, T.C., Cameron, J.C., Markley, A.L., Begemann, M.B., Pfleger, B.F., CRISPR interference as a titratable, trans-acting regulatory tool for metabolic engineering in the cyanobacterium Synechococcus sp. strain PCC 7002. Metab Eng 38 (2016), 170–179.
    • (2016) Metab Eng , vol.38 , pp. 170-179
    • Gordon, G.C.1    Korosh, T.C.2    Cameron, J.C.3    Markley, A.L.4    Begemann, M.B.5    Pfleger, B.F.6
  • 41
    • 84926020090 scopus 로고    scopus 로고
    • C1-carbon sources for chemical and fuel production by microbial gas fermentation
    • 41 Durre, P., Eikmanns, B.J., C1-carbon sources for chemical and fuel production by microbial gas fermentation. Curr Opin Biotechnol 35 (2015), 63–72.
    • (2015) Curr Opin Biotechnol , vol.35 , pp. 63-72
    • Durre, P.1    Eikmanns, B.J.2
  • 42
    • 84930945149 scopus 로고    scopus 로고
    • Metabolic engineering in chemolithoautotrophic hosts for the production of fuels and chemicals
    • 42 Nybo, S.E., Khan, N.E., Woolston, B.M., Curtis, W.R., Metabolic engineering in chemolithoautotrophic hosts for the production of fuels and chemicals. Metab Eng 30 (2015), 105–120.
    • (2015) Metab Eng , vol.30 , pp. 105-120
    • Nybo, S.E.1    Khan, N.E.2    Woolston, B.M.3    Curtis, W.R.4
  • 43
    • 84924545907 scopus 로고    scopus 로고
    • Engineering electrodes for microbial electrocatalysis
    • 43 Guo, K., Prevoteau, A., Patil, S.A., Rabaey, K., Engineering electrodes for microbial electrocatalysis. Curr Opin Biotechnol 33 (2015), 149–156.
    • (2015) Curr Opin Biotechnol , vol.33 , pp. 149-156
    • Guo, K.1    Prevoteau, A.2    Patil, S.A.3    Rabaey, K.4
  • 44
    • 84952939707 scopus 로고    scopus 로고
    • Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production
    • 44 Sakimoto, K.K., Wong, A.B., Yang, P., Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 351 (2016), 74–77.
    • (2016) Science , vol.351 , pp. 74-77
    • Sakimoto, K.K.1    Wong, A.B.2    Yang, P.3
  • 45
    • 84929190956 scopus 로고    scopus 로고
    • Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals
    • 45 Liu, C., Gallagher, J.J., Sakimoto, K.K., Nichols, E.M., Chang, C.J., Chang, M.C., Yang, P., Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. Nano Lett 15 (2015), 3634–3639.
    • (2015) Nano Lett , vol.15 , pp. 3634-3639
    • Liu, C.1    Gallagher, J.J.2    Sakimoto, K.K.3    Nichols, E.M.4    Chang, C.J.5    Chang, M.C.6    Yang, P.7
  • 46
    • 84941662879 scopus 로고    scopus 로고
    • Hybrid bioinorganic approach to solar-to-chemical conversion
    • 2 using a biocompatible inorganic component and a methanotroph with 86% overall faradaic efficiency. The artificial photosynthesis system produced 4.3 mmol of methane over 7 days.
    • 2 using a biocompatible inorganic component and a methanotroph with 86% overall faradaic efficiency. The artificial photosynthesis system produced 4.3 mmol of methane over 7 days.
    • (2015) Proc Natl Acad Sci U S A , vol.112 , pp. 11461-11466
    • Nichols, E.M.1    Gallagher, J.J.2    Liu, C.3    Su, Y.4    Resasco, J.5    Yu, Y.6    Sun, Y.7    Yang, P.8    Chang, M.C.9    Chang, C.J.10
  • 47
    • 84923676034 scopus 로고    scopus 로고
    • Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system
    • 2 using metabolically-engineered Ralstonia eutropha in a bioelectrochemical reactor. The integrated set-up resulted in a solar-to-biomass efficiency of 3.2% that exceeded the efficiency of natural systems.
    • 2 using metabolically-engineered Ralstonia eutropha in a bioelectrochemical reactor. The integrated set-up resulted in a solar-to-biomass efficiency of 3.2% that exceeded the efficiency of natural systems.
    • (2015) Proc Natl Acad Sci U S A , vol.112 , pp. 2337-2342
    • Torella, J.P.1    Gagliardi, C.J.2    Chen, J.S.3    Bediako, D.K.4    Colon, B.5    Way, J.C.6    Silver, P.A.7    Nocera, D.G.8
  • 48
    • 84974678646 scopus 로고    scopus 로고
    • Water splitting-biosynthetic system with CO(2) reduction efficiencies exceeding photosynthesis
    • 48 Liu, C., Colon, B.C., Ziesack, M., Silver, P.A., Nocera, D.G., Water splitting-biosynthetic system with CO(2) reduction efficiencies exceeding photosynthesis. Science 352 (2016), 1210–1213.
    • (2016) Science , vol.352 , pp. 1210-1213
    • Liu, C.1    Colon, B.C.2    Ziesack, M.3    Silver, P.A.4    Nocera, D.G.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.