-
1
-
-
84961922827
-
Fuelling the future: microbial engineering for the production of sustainable biofuels
-
1 Liao, J.C., Mi, L., Pontrelli, S., Luo, S., Fuelling the future: microbial engineering for the production of sustainable biofuels. Nat Rev Microbiol 14 (2016), 288–304.
-
(2016)
Nat Rev Microbiol
, vol.14
, pp. 288-304
-
-
Liao, J.C.1
Mi, L.2
Pontrelli, S.3
Luo, S.4
-
2
-
-
84907921289
-
Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces
-
2 Kuhl, K.P., Hatsukade, T., Cave, E.R., Abram, D.N., Kibsgaard, J., Jaramillo, T.F., Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J Am Chem Soc 136 (2014), 14107–14113.
-
(2014)
J Am Chem Soc
, vol.136
, pp. 14107-14113
-
-
Kuhl, K.P.1
Hatsukade, T.2
Cave, E.R.3
Abram, D.N.4
Kibsgaard, J.5
Jaramillo, T.F.6
-
3
-
-
84891830926
-
Efficient solar water-splitting using a nanocrystalline CoO photocatalyst
-
3 Liao, L.B., Zhang, Q.H., Su, Z.H., Zhao, Z.Z., Wang, Y.N., Li, Y., Lu, X.X., Wei, D.G., Feng, G.Y., Yu, Q.K., et al. Efficient solar water-splitting using a nanocrystalline CoO photocatalyst. Nat Nanotechnol 9 (2014), 69–73.
-
(2014)
Nat Nanotechnol
, vol.9
, pp. 69-73
-
-
Liao, L.B.1
Zhang, Q.H.2
Su, Z.H.3
Zhao, Z.Z.4
Wang, Y.N.5
Li, Y.6
Lu, X.X.7
Wei, D.G.8
Feng, G.Y.9
Yu, Q.K.10
-
4
-
-
79954417122
-
A new dawn for industrial photosynthesis
-
4 Robertson, D.E., Jacobson, S.A., Morgan, F., Berry, D., Church, G.M., Afeyan, N.B., A new dawn for industrial photosynthesis. Photosynth Res 107 (2011), 269–277.
-
(2011)
Photosynth Res
, vol.107
, pp. 269-277
-
-
Robertson, D.E.1
Jacobson, S.A.2
Morgan, F.3
Berry, D.4
Church, G.M.5
Afeyan, N.B.6
-
5
-
-
84973325121
-
Cyanobacterial chemical production
-
5 Case, A.E., Atsumi, S., Cyanobacterial chemical production. J Biotechnol 231 (2016), 106–114.
-
(2016)
J Biotechnol
, vol.231
, pp. 106-114
-
-
Case, A.E.1
Atsumi, S.2
-
7
-
-
84918822904
-
Cyanobacteria as photosynthetic biocatalysts: a systems biology perspective
-
7 Gudmundsson, S., Nogales, J., Cyanobacteria as photosynthetic biocatalysts: a systems biology perspective. Mol Biosyst 11 (2015), 60–70.
-
(2015)
Mol Biosyst
, vol.11
, pp. 60-70
-
-
Gudmundsson, S.1
Nogales, J.2
-
8
-
-
84961173840
-
2,3 Butanediol production in an obligate photoautotrophic cyanobacterium in dark conditions via diverse sugar consumption
-
8 McEwen, J.T., Kanno, M., Atsumi, S., 2,3 Butanediol production in an obligate photoautotrophic cyanobacterium in dark conditions via diverse sugar consumption. Metab Eng 36 (2016), 28–36.
-
(2016)
Metab Eng
, vol.36
, pp. 28-36
-
-
McEwen, J.T.1
Kanno, M.2
Atsumi, S.3
-
9
-
-
84888095603
-
Photoautotrophic production of D-lactic acid in an engineered cyanobacterium
-
9 Varman, A.M., Yu, Y., You, L., Tang, Y.J., Photoautotrophic production of D-lactic acid in an engineered cyanobacterium. Microb Cell Fact, 12, 2013, 117.
-
(2013)
Microb Cell Fact
, vol.12
, pp. 117
-
-
Varman, A.M.1
Yu, Y.2
You, L.3
Tang, Y.J.4
-
10
-
-
84936932476
-
Engineered xylose utilization enhances bio-products productivity in the cyanobacterium Synechocystis sp. PCC 6803
-
10 Lee, T.C., Xiong, W., Paddock, T., Carrieri, D., Chang, I.F., Chiu, H.F., Ungerer, J., Juo, S.H., Maness, P.C., Yu, J., Engineered xylose utilization enhances bio-products productivity in the cyanobacterium Synechocystis sp. PCC 6803. Metab Eng 30 (2015), 179–189.
-
(2015)
Metab Eng
, vol.30
, pp. 179-189
-
-
Lee, T.C.1
Xiong, W.2
Paddock, T.3
Carrieri, D.4
Chang, I.F.5
Chiu, H.F.6
Ungerer, J.7
Juo, S.H.8
Maness, P.C.9
Yu, J.10
-
11
-
-
84948422885
-
Circadian rhythms in cyanobacteria
-
11 Cohen, S.E., Golden, S.S., Circadian rhythms in cyanobacteria. Microbiol Mol Biol Rev 79 (2015), 373–385.
-
(2015)
Microbiol Mol Biol Rev
, vol.79
, pp. 373-385
-
-
Cohen, S.E.1
Golden, S.S.2
-
12
-
-
84978971791
-
Diurnal regulation of cellular processes in the Cyanobacterium Synechocystis sp. strain PCC 6803: insights from transcriptomic, fluxomic, and physiological analyses
-
+ ratio is a key endogenous determinant of the diurnal behavior.
-
+ ratio is a key endogenous determinant of the diurnal behavior.
-
(2016)
MBio
, vol.7
-
-
Saha, R.1
Liu, D.2
Hoynes-O'Connor, A.3
Liberton, M.4
Yu, J.5
Bhattacharyya-Pakrasi, M.6
Balassy, A.7
Zhang, F.8
Moon, T.S.9
Maranas, C.D.10
-
13
-
-
84928139480
-
The circadian oscillator in Synechococcus elongatus controls metabolite partitioning during diurnal growth
-
This paper demonstrated that the circadian oscillator influences the rhythms of cellular metabolism under diurnal conditions. The metabolomics analysis showed that the oxidative pentose phosphate pathway was inhibited by a circadian clock mechanism in the morning.
-
13• Diamond, S., Jun, D., Rubin, B.E., Golden, S.S., The circadian oscillator in Synechococcus elongatus controls metabolite partitioning during diurnal growth. Proc Natl Acad Sci U S A 112 (2015), E1916–E1925 This paper demonstrated that the circadian oscillator influences the rhythms of cellular metabolism under diurnal conditions. The metabolomics analysis showed that the oxidative pentose phosphate pathway was inhibited by a circadian clock mechanism in the morning.
-
(2015)
Proc Natl Acad Sci U S A
, vol.112
, pp. E1916-E1925
-
-
Diamond, S.1
Jun, D.2
Rubin, B.E.3
Golden, S.S.4
-
14
-
-
83755181765
-
The tricarboxylic acid cycle in cyanobacteria
-
14 Zhang, S., Bryant, D.A., The tricarboxylic acid cycle in cyanobacteria. Science 334 (2011), 1551–1553.
-
(2011)
Science
, vol.334
, pp. 1551-1553
-
-
Zhang, S.1
Bryant, D.A.2
-
15
-
-
84966376785
-
The Entner–Doudoroff pathway is an overlooked glycolytic route in cyanobacteria and plants
-
15 Chen, X., Schreiber, K., Appel, J., Makowka, A., Fahnrich, B., Roettger, M., Hajirezaei, M.R., Sonnichsen, F.D., Schonheit, P., Martin, W.F., et al. The Entner–Doudoroff pathway is an overlooked glycolytic route in cyanobacteria and plants. Proc Natl Acad Sci U S A 113 (2016), 5441–5446.
-
(2016)
Proc Natl Acad Sci U S A
, vol.113
, pp. 5441-5446
-
-
Chen, X.1
Schreiber, K.2
Appel, J.3
Makowka, A.4
Fahnrich, B.5
Roettger, M.6
Hajirezaei, M.R.7
Sonnichsen, F.D.8
Schonheit, P.9
Martin, W.F.10
-
16
-
-
84930221887
-
Biochemical validation of the glyoxylate cycle in the cyanobacterium Chlorogloeopsis fritschii strain PCC 9212
-
16 Zhang, S.Y., Bryant, D.A., Biochemical validation of the glyoxylate cycle in the cyanobacterium Chlorogloeopsis fritschii strain PCC 9212. J Biol Chem 290 (2015), 14019–14030.
-
(2015)
J Biol Chem
, vol.290
, pp. 14019-14030
-
-
Zhang, S.Y.1
Bryant, D.A.2
-
17
-
-
84918792766
-
The gamma-aminobutyric acid shunt contributes to closing the tricarboxylic acid cycle in Synechocystis sp. PCC 6803
-
17 Xiong, W., Brune, D., Vermaas, W.F., The gamma-aminobutyric acid shunt contributes to closing the tricarboxylic acid cycle in Synechocystis sp. PCC 6803. Mol Microbiol 93 (2014), 786–796.
-
(2014)
Mol Microbiol
, vol.93
, pp. 786-796
-
-
Xiong, W.1
Brune, D.2
Vermaas, W.F.3
-
18
-
-
85020458852
-
2 conversion to ethylene
-
2 via the remodeled TCA cycle of engineered Synechocystis sp. PCC 6803. Kinetic metabolite profiling analysis revealed that ethylene production was enhanced through the TCA cycle with 37% of total fixed carbon. In this paper, the plasticity of cellular metabolism in cyanobacteria was also discussed.
-
2 via the remodeled TCA cycle of engineered Synechocystis sp. PCC 6803. Kinetic metabolite profiling analysis revealed that ethylene production was enhanced through the TCA cycle with 37% of total fixed carbon. In this paper, the plasticity of cellular metabolism in cyanobacteria was also discussed.
-
(2015)
Nat Plants
, vol.1
, pp. 15053
-
-
Xiong, W.1
Morgan, J.A.2
Ungerer, J.3
Wang, B.4
Maness, P.C.5
Yu, J.P.6
-
19
-
-
84949663711
-
Phosphoketolase pathway contributes to carbon metabolism in cyanobacteria
-
19 Xiong, W., Lee, T.C., Rommelfanger, S., Gjersing, E., Cano, M., Maness, P.C., Ghirardi, M., Yu, J., Phosphoketolase pathway contributes to carbon metabolism in cyanobacteria. Nat Plants, 2, 2015, 15187.
-
(2015)
Nat Plants
, vol.2
, pp. 15187
-
-
Xiong, W.1
Lee, T.C.2
Rommelfanger, S.3
Gjersing, E.4
Cano, M.5
Maness, P.C.6
Ghirardi, M.7
Yu, J.8
-
20
-
-
84944474444
-
Genetic and nutrient modulation of acetyl-CoA levels in Synechocystis for n-butanol production
-
20 Anfelt, J., Kaczmarzyk, D., Shabestary, K., Renberg, B., Rockberg, J., Nielsen, J., Uhlen, M., Hudson, E.P., Genetic and nutrient modulation of acetyl-CoA levels in Synechocystis for n-butanol production. Microb Cell Fact, 14, 2015, 167.
-
(2015)
Microb Cell Fact
, vol.14
, pp. 167
-
-
Anfelt, J.1
Kaczmarzyk, D.2
Shabestary, K.3
Renberg, B.4
Rockberg, J.5
Nielsen, J.6
Uhlen, M.7
Hudson, E.P.8
-
21
-
-
84959145501
-
Engineering of a modular and synthetic phosphoketolase pathway for photosynthetic production of acetone from CO in Synechococcus elongatus PCC 7942 under light and aerobic condition
-
21 Chwa, J.W., Kim, W.J., Sim, S.J., Um, Y., Woo, H.M., Engineering of a modular and synthetic phosphoketolase pathway for photosynthetic production of acetone from CO in Synechococcus elongatus PCC 7942 under light and aerobic condition. Plant Biotechnol J 14 (2016), 1768–1776.
-
(2016)
Plant Biotechnol J
, vol.14
, pp. 1768-1776
-
-
Chwa, J.W.1
Kim, W.J.2
Sim, S.J.3
Um, Y.4
Woo, H.M.5
-
22
-
-
84943633967
-
A phycocyanin. phellandrene synthase fusion enhances recombinant protein expression and beta-phellandrene (monoterpene) hydrocarbons production in Synechocystis (cyanobacteria)
-
2.
-
2.
-
(2015)
Metab Eng
, vol.32
, pp. 116-124
-
-
Formighieri, C.1
Melis, A.2
-
23
-
-
84958772492
-
Sustainable heterologous production of terpene hydrocarbons in cyanobacteria
-
23 Formighieri, C., Melis, A., Sustainable heterologous production of terpene hydrocarbons in cyanobacteria. Photosynth Res 130 (2016), 123–135.
-
(2016)
Photosynth Res
, vol.130
, pp. 123-135
-
-
Formighieri, C.1
Melis, A.2
-
24
-
-
77957329119
-
Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli
-
24 Ajikumar, P.K., Xiao, W.H., Tyo, K.E., Wang, Y., Simeon, F., Leonard, E., Mucha, O., Phon, T.H., Pfeifer, B., Stephanopoulos, G., Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330 (2010), 70–74.
-
(2010)
Science
, vol.330
, pp. 70-74
-
-
Ajikumar, P.K.1
Xiao, W.H.2
Tyo, K.E.3
Wang, Y.4
Simeon, F.5
Leonard, E.6
Mucha, O.7
Phon, T.H.8
Pfeifer, B.9
Stephanopoulos, G.10
-
26
-
-
70449336249
-
Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism
-
26 Lindberg, P., Park, S., Melis, A., Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab Eng 12 (2010), 70–79.
-
(2010)
Metab Eng
, vol.12
, pp. 70-79
-
-
Lindberg, P.1
Park, S.2
Melis, A.3
-
27
-
-
85009121364
-
2 to farnesyl diphosphate-derived phytochemicals (amorpha-4,11-diene and squalene) by engineered cyanobacteria
-
2 to farnesyl diphosphate-derived phytochemicals (amorpha-4,11-diene and squalene) by engineered cyanobacteria. Biotechnol Biofuels 9 (2016), 1–12.
-
(2016)
Biotechnol Biofuels
, vol.9
, pp. 1-12
-
-
Choi, S.Y.1
Lee, H.J.2
Choi, J.3
Kim, J.4
Sim, S.J.5
Um, Y.6
Kim, Y.7
Lee, T.S.8
Keasling, J.D.9
Woo, H.M.10
-
28
-
-
84953395638
-
From cyanochemicals to cyanofactories: a review and perspective
-
28 Zhou, J., Zhu, T., Cai, Z., Li, Y., From cyanochemicals to cyanofactories: a review and perspective. Microb Cell Fact, 15, 2016, 2.
-
(2016)
Microb Cell Fact
, vol.15
, pp. 2
-
-
Zhou, J.1
Zhu, T.2
Cai, Z.3
Li, Y.4
-
29
-
-
84884227283
-
Synthetic biology of cyanobacteria: unique challenges and opportunities
-
29 Berla, B.M., Saha, R., Immethun, C.M., Maranas, C.D., Moon, T.S., Pakrasi, H.B., Synthetic biology of cyanobacteria: unique challenges and opportunities. Front Microbiol, 4, 2013, 246.
-
(2013)
Front Microbiol
, vol.4
, pp. 246
-
-
Berla, B.M.1
Saha, R.2
Immethun, C.M.3
Maranas, C.D.4
Moon, T.S.5
Pakrasi, H.B.6
-
30
-
-
84947983632
-
Genome engineering in cyanobacteria: where we are and where we need to go
-
30 Ramey, C.J., Baron-Sola, A., Aucoin, H.R., Boyle, N.R., Genome engineering in cyanobacteria: where we are and where we need to go. ACS Synth Biol 4 (2015), 1186–1196.
-
(2015)
ACS Synth Biol
, vol.4
, pp. 1186-1196
-
-
Ramey, C.J.1
Baron-Sola, A.2
Aucoin, H.R.3
Boyle, N.R.4
-
31
-
-
84876709042
-
Wide-dynamic-range promoters engineered for cyanobacteria
-
31 Huang, H.H., Lindblad, P., Wide-dynamic-range promoters engineered for cyanobacteria. J Biol Eng, 7, 2013, 10.
-
(2013)
J Biol Eng
, vol.7
, pp. 10
-
-
Huang, H.H.1
Lindblad, P.2
-
32
-
-
84929593888
-
Synthetic biology toolbox for controlling gene expression in the cyanobacterium Synechococcus sp. strain PCC 7002
-
32 Markley, A.L., Begemann, M.B., Clarke, R.E., Gordon, G.C., Pfleger, B.F., Synthetic biology toolbox for controlling gene expression in the cyanobacterium Synechococcus sp. strain PCC 7002. ACS Synth Biol 4 (2015), 595–603.
-
(2015)
ACS Synth Biol
, vol.4
, pp. 595-603
-
-
Markley, A.L.1
Begemann, M.B.2
Clarke, R.E.3
Gordon, G.C.4
Pfleger, B.F.5
-
33
-
-
84893904897
-
Engineering of a green-light inducible gene expression system in Synechocystis sp. PCC6803
-
33 Abe, K., Miyake, K., Nakamura, M., Kojima, K., Ferri, S., Ikebukuro, K., Sode, K., Engineering of a green-light inducible gene expression system in Synechocystis sp. PCC6803. Microb Biotechnol 7 (2014), 177–183.
-
(2014)
Microb Biotechnol
, vol.7
, pp. 177-183
-
-
Abe, K.1
Miyake, K.2
Nakamura, M.3
Kojima, K.4
Ferri, S.5
Ikebukuro, K.6
Sode, K.7
-
34
-
-
84885929738
-
Theophylline-dependent riboswitch as a novel genetic tool for strict regulation of protein expression in cyanobacterium Synechococcus elongatus PCC 7942
-
34 Nakahira, Y., Ogawa, A., Asano, H., Oyama, T., Tozawa, Y., Theophylline-dependent riboswitch as a novel genetic tool for strict regulation of protein expression in cyanobacterium Synechococcus elongatus PCC 7942. Plant Cell Physiol 54 (2013), 1724–1735.
-
(2013)
Plant Cell Physiol
, vol.54
, pp. 1724-1735
-
-
Nakahira, Y.1
Ogawa, A.2
Asano, H.3
Oyama, T.4
Tozawa, Y.5
-
35
-
-
84965157479
-
Construction of new synthetic biology tools for the control of gene expression in the cyanobacterium Synechococcus sp. strain PCC 7002
-
35 Zess, E.K., Begemann, M.B., Pfleger, B.F., Construction of new synthetic biology tools for the control of gene expression in the cyanobacterium Synechococcus sp. strain PCC 7002. Biotechnol Bioeng 113 (2016), 424–432.
-
(2016)
Biotechnol Bioeng
, vol.113
, pp. 424-432
-
-
Zess, E.K.1
Begemann, M.B.2
Pfleger, B.F.3
-
36
-
-
84965098352
-
Oxygen-responsive genetic circuits constructed in Synechocystis sp. PCC 6803
-
36 Immethun, C.M., Ng, K.M., DeLorenzo, D.M., Waldron-Feinstein, B., Lee, Y.C., Moon, T.S., Oxygen-responsive genetic circuits constructed in Synechocystis sp. PCC 6803. Biotechnol Bioeng 113 (2016), 433–442.
-
(2016)
Biotechnol Bioeng
, vol.113
, pp. 433-442
-
-
Immethun, C.M.1
Ng, K.M.2
DeLorenzo, D.M.3
Waldron-Feinstein, B.4
Lee, Y.C.5
Moon, T.S.6
-
37
-
-
84978153360
-
CRISPR/Cas9 mediated targeted mutagenesis of the fast growing cyanobacterium Synechococcus elongatus UTEX 2973
-
37 Wendt, K.E., Ungerer, J., Cobb, R.E., Zhao, H., Pakrasi, H.B., CRISPR/Cas9 mediated targeted mutagenesis of the fast growing cyanobacterium Synechococcus elongatus UTEX 2973. Microb Cell Fact, 15, 2016, 115.
-
(2016)
Microb Cell Fact
, vol.15
, pp. 115
-
-
Wendt, K.E.1
Ungerer, J.2
Cobb, R.E.3
Zhao, H.4
Pakrasi, H.B.5
-
38
-
-
84961794371
-
Multiple gene repression in cyanobacteria using CRISPRi
-
In this work, multiple gene repression using CRISPR interference technology was achieved by repressing the target genes at 50–90% levels in Synechocystis sp. PCC 6803. This paper also showed that tightly repressed promoters allowed for tunable and reversible gene expression.
-
38• Yao, L., Cengic, I., Anfelt, J., Hudson, E.P., Multiple gene repression in cyanobacteria using CRISPRi. ACS Synth Biol 5 (2016), 207–212 In this work, multiple gene repression using CRISPR interference technology was achieved by repressing the target genes at 50–90% levels in Synechocystis sp. PCC 6803. This paper also showed that tightly repressed promoters allowed for tunable and reversible gene expression.
-
(2016)
ACS Synth Biol
, vol.5
, pp. 207-212
-
-
Yao, L.1
Cengic, I.2
Anfelt, J.3
Hudson, E.P.4
-
39
-
-
84982860066
-
CRISPR interference as a titratable, trans-acting regulatory tool for metabolic engineering in the cyanobacterium Synechococcus sp. strain PCC 7002
-
39 Gordon, G.C., Korosh, T.C., Cameron, J.C., Markley, A.L., Begemann, M.B., Pfleger, B.F., CRISPR interference as a titratable, trans-acting regulatory tool for metabolic engineering in the cyanobacterium Synechococcus sp. strain PCC 7002. Metab Eng 38 (2016), 170–179.
-
(2016)
Metab Eng
, vol.38
, pp. 170-179
-
-
Gordon, G.C.1
Korosh, T.C.2
Cameron, J.C.3
Markley, A.L.4
Begemann, M.B.5
Pfleger, B.F.6
-
40
-
-
84948658955
-
The essential gene set of a photosynthetic organism
-
40 Rubin, B.E., Wetmore, K.M., Price, M.N., Diamond, S., Shultzaberger, R.K., Lowe, L.C., Curtin, G., Arkin, A.P., Deutschbauer, A., Golden, S.S., The essential gene set of a photosynthetic organism. Proc Natl Acad Sci U S A 112 (2015), E6634–E6643.
-
(2015)
Proc Natl Acad Sci U S A
, vol.112
, pp. E6634-E6643
-
-
Rubin, B.E.1
Wetmore, K.M.2
Price, M.N.3
Diamond, S.4
Shultzaberger, R.K.5
Lowe, L.C.6
Curtin, G.7
Arkin, A.P.8
Deutschbauer, A.9
Golden, S.S.10
-
41
-
-
84926020090
-
C1-carbon sources for chemical and fuel production by microbial gas fermentation
-
41 Durre, P., Eikmanns, B.J., C1-carbon sources for chemical and fuel production by microbial gas fermentation. Curr Opin Biotechnol 35 (2015), 63–72.
-
(2015)
Curr Opin Biotechnol
, vol.35
, pp. 63-72
-
-
Durre, P.1
Eikmanns, B.J.2
-
42
-
-
84930945149
-
Metabolic engineering in chemolithoautotrophic hosts for the production of fuels and chemicals
-
42 Nybo, S.E., Khan, N.E., Woolston, B.M., Curtis, W.R., Metabolic engineering in chemolithoautotrophic hosts for the production of fuels and chemicals. Metab Eng 30 (2015), 105–120.
-
(2015)
Metab Eng
, vol.30
, pp. 105-120
-
-
Nybo, S.E.1
Khan, N.E.2
Woolston, B.M.3
Curtis, W.R.4
-
43
-
-
84924545907
-
Engineering electrodes for microbial electrocatalysis
-
43 Guo, K., Prevoteau, A., Patil, S.A., Rabaey, K., Engineering electrodes for microbial electrocatalysis. Curr Opin Biotechnol 33 (2015), 149–156.
-
(2015)
Curr Opin Biotechnol
, vol.33
, pp. 149-156
-
-
Guo, K.1
Prevoteau, A.2
Patil, S.A.3
Rabaey, K.4
-
44
-
-
84952939707
-
Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production
-
44 Sakimoto, K.K., Wong, A.B., Yang, P., Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 351 (2016), 74–77.
-
(2016)
Science
, vol.351
, pp. 74-77
-
-
Sakimoto, K.K.1
Wong, A.B.2
Yang, P.3
-
45
-
-
84929190956
-
Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals
-
45 Liu, C., Gallagher, J.J., Sakimoto, K.K., Nichols, E.M., Chang, C.J., Chang, M.C., Yang, P., Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. Nano Lett 15 (2015), 3634–3639.
-
(2015)
Nano Lett
, vol.15
, pp. 3634-3639
-
-
Liu, C.1
Gallagher, J.J.2
Sakimoto, K.K.3
Nichols, E.M.4
Chang, C.J.5
Chang, M.C.6
Yang, P.7
-
46
-
-
84941662879
-
Hybrid bioinorganic approach to solar-to-chemical conversion
-
2 using a biocompatible inorganic component and a methanotroph with 86% overall faradaic efficiency. The artificial photosynthesis system produced 4.3 mmol of methane over 7 days.
-
2 using a biocompatible inorganic component and a methanotroph with 86% overall faradaic efficiency. The artificial photosynthesis system produced 4.3 mmol of methane over 7 days.
-
(2015)
Proc Natl Acad Sci U S A
, vol.112
, pp. 11461-11466
-
-
Nichols, E.M.1
Gallagher, J.J.2
Liu, C.3
Su, Y.4
Resasco, J.5
Yu, Y.6
Sun, Y.7
Yang, P.8
Chang, M.C.9
Chang, C.J.10
-
47
-
-
84923676034
-
Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system
-
2 using metabolically-engineered Ralstonia eutropha in a bioelectrochemical reactor. The integrated set-up resulted in a solar-to-biomass efficiency of 3.2% that exceeded the efficiency of natural systems.
-
2 using metabolically-engineered Ralstonia eutropha in a bioelectrochemical reactor. The integrated set-up resulted in a solar-to-biomass efficiency of 3.2% that exceeded the efficiency of natural systems.
-
(2015)
Proc Natl Acad Sci U S A
, vol.112
, pp. 2337-2342
-
-
Torella, J.P.1
Gagliardi, C.J.2
Chen, J.S.3
Bediako, D.K.4
Colon, B.5
Way, J.C.6
Silver, P.A.7
Nocera, D.G.8
-
48
-
-
84974678646
-
Water splitting-biosynthetic system with CO(2) reduction efficiencies exceeding photosynthesis
-
48 Liu, C., Colon, B.C., Ziesack, M., Silver, P.A., Nocera, D.G., Water splitting-biosynthetic system with CO(2) reduction efficiencies exceeding photosynthesis. Science 352 (2016), 1210–1213.
-
(2016)
Science
, vol.352
, pp. 1210-1213
-
-
Liu, C.1
Colon, B.C.2
Ziesack, M.3
Silver, P.A.4
Nocera, D.G.5
-
49
-
-
84879830902
-
Engineering of Ralstonia eutropha H16 for autotrophic and heterotrophic production of methyl ketones
-
49 Muller, J., MacEachran, D., Burd, H., Sathitsuksanoh, N., Bi, C., Yeh, Y.C., Lee, T.S., Hillson, N.J., Chhabra, S.R., Singer, S.W., et al. Engineering of Ralstonia eutropha H16 for autotrophic and heterotrophic production of methyl ketones. Appl Environ Microbiol 79 (2013), 4433–4439.
-
(2013)
Appl Environ Microbiol
, vol.79
, pp. 4433-4439
-
-
Muller, J.1
MacEachran, D.2
Burd, H.3
Sathitsuksanoh, N.4
Bi, C.5
Yeh, Y.C.6
Lee, T.S.7
Hillson, N.J.8
Chhabra, S.R.9
Singer, S.W.10
-
51
-
-
84940508515
-
2 and water at 1% energy efficiency via copper iron oxide catalysis
-
2 and water at 1% energy efficiency via copper iron oxide catalysis. Energy Environ Sci 8 (2015), 2638–2643.
-
(2015)
Energy Environ Sci
, vol.8
, pp. 2638-2643
-
-
Kang, U.1
Choi, S.K.2
Ham, D.J.3
Ji, S.M.4
Choi, W.5
Han, D.S.6
Abdel-Wahabe, A.7
Park, H.8
-
52
-
-
84859111827
-
2 to higher alcohols
-
2 to higher alcohols. Science, 335, 2012, 1596.
-
(2012)
Science
, vol.335
, pp. 1596
-
-
Li, H.1
Opgenorth, P.H.2
Wernick, D.G.3
Rogers, S.4
Wu, T.Y.5
Higashide, W.6
Malati, P.7
Huo, Y.X.8
Cho, K.M.9
Liao, J.C.10
|