-
1
-
-
21144469486
-
Global regularity for vortex patches
-
MR 1207667. Zbl 0771.76014
-
A. L. Bertozzi and P. Constantin, Global regularity for vortex patches, Comm. Math. Phys. 152 (1993), 19-28. MR 1207667. Zbl 0771.76014. Available at http://projecteuclid.org/euclid.cmp/1104252307.
-
(1993)
Comm. Math. Phys
, vol.152
, pp. 19-28
-
-
Bertozzi, A.L.1
Constantin, P.2
-
2
-
-
0040451263
-
The observation of singularities in the boundary of patches of constant vorticity
-
T. F. Buttke, The observation of singularities in the boundary of patches of constant vorticity, Physics of Fluids A: Fluid Dynamics 1 (1989), 1283-1285. http://dx.doi.org/10.1063/1.857353.
-
(1989)
Physics of Fluids A: Fluid Dynamics
, vol.1
, pp. 1283-1285
-
-
Buttke, T.F.1
-
3
-
-
77950869887
-
Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation
-
MR 2680400. Zbl 1204.35063
-
L. A. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math. 171 (2010), 1903-1930. MR 2680400. Zbl 1204.35063. http://dx.doi.org/10.4007/annals.2010.171.1903.
-
(2010)
Ann. of Math
, vol.171
, pp. 1903-1930
-
-
Caffarelli, L.A.1
Vasseur, A.2
-
4
-
-
84884318144
-
Finite time singularities for the free boundary incompressible Euler equations
-
MR 3092476. Zbl 1291.35199
-
A. Castro, D. Córdoba, C. Fefferman, F. Gancedo, and J. Gómez-Serrano, Finite time singularities for the free boundary incompressible Euler equations, Ann. of Math. 178 (2013), 1061-1134. MR 3092476. Zbl 1291.35199. http://dx.doi.org/10.4007/annals.2013.178.3.6.
-
(2013)
Ann. of Math
, vol.178
, pp. 1061-1134
-
-
Castro, A.1
Córdoba, D.2
Fefferman, C.3
Gancedo, F.4
Gómez-Serrano, J.5
-
5
-
-
84857721683
-
Rayleigh-Taylor breakdown for the Muskat problem with applications to water waves
-
MR 2993754. Zbl 1267.76033
-
Á. Castro, D. Córdoba, C. Fefferman, F. Gancedo, and M. López-Fernández, Rayleigh-Taylor breakdown for the Muskat problem with applications to water waves, Ann. of Math. 175 (2012), 909-948. MR 2993754. Zbl 1267.76033. http://dx.doi.org/10.4007/annals.2012.175.2.9.
-
(2012)
Ann. of Math
, vol.175
, pp. 909-948
-
-
Castro, Á.1
Córdoba, D.2
Fefferman, C.3
Gancedo, F.4
López-Fernández, M.5
-
6
-
-
84862807288
-
Generalized surface quasi-geostrophic equations with singular velocities
-
MR 2928091. Zbl 1244.35108
-
D. Chae, P. Constantin, D. Córdoba, F. Gancedo, and J. Wu, Generalized surface quasi-geostrophic equations with singular velocities, Comm. Pure Appl. Math. 65 (2012), 1037-1066. MR 2928091. Zbl 1244.35108. http://dx.doi.org/10.1002/cpa.21390.
-
(2012)
Comm. Pure Appl. Math
, vol.65
, pp. 1037-1066
-
-
Chae, D.1
Constantin, P.2
Córdoba, D.3
Gancedo, F.4
Wu, J.5
-
7
-
-
0037909765
-
Persistance de structures géométriques dans les uides incompressibles bidimensionnels
-
MR 1235440. Zbl 0779.76011
-
J.-Y. Chemin, Persistance de structures géométriques dans les uides incompressibles bidimensionnels, Ann. Sci. École Norm. Sup. 26 (1993), 517-542. MR 1235440. Zbl 0779.76011. Available at http://www.numdam.org/item?id=ASENS 1993 4 26 4 517 0.
-
(1993)
Ann. Sci. École Norm. Sup
, vol.26
, pp. 517-542
-
-
Chemin, J.-Y.1
-
8
-
-
84961967032
-
On the finite-time blowup of a 1D model for the 3D axisymmetric Euler equations
-
arXiv 1407.4776
-
K. Choi, T. Hou, A. Kiselev, G. Luo, V. Sverak, and Y. Yao, On the finite-time blowup of a 1D model for the 3D axisymmetric Euler equations, 2014. arXiv 1407.4776.
-
(2014)
-
-
Choi, K.1
Hou, T.2
Kiselev, A.3
Luo, G.4
Sverak, V.5
Yao, Y.6
-
9
-
-
59549099483
-
Global regularity for a modified critical dissipative quasi-geostrophic equation
-
MR 2482996. Zbl 1159.35059
-
P. Constantin, G. Iyer, and J. Wu, Global regularity for a modified critical dissipative quasi-geostrophic equation, Indiana Univ. Math. J. 57 (2008), 2681-2692. MR 2482996. Zbl 1159.35059. http://dx.doi.org/10.1512/iumj.2008.57.3629.
-
(2008)
Indiana Univ. Math. J.
, vol.57
, pp. 2681-2692
-
-
Constantin, P.1
Iyer, G.2
Wu, J.3
-
10
-
-
0043172071
-
Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar
-
MR 1304437. Zbl 0809.35057
-
P. Constantin, A. J. Majda, and E. Tabak, Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar, Nonlinearity 7 (1994), 1495-1533. MR 1304437. Zbl 0809.35057. Available at http://stacks.iop.org/0951-7715/7/1495.
-
(1994)
Nonlinearity
, vol.7
, pp. 1495-1533
-
-
Constantin, P.1
Majda, A.J.2
Tabak, E.3
-
11
-
-
84939891522
-
Long time dynamics of forced critical SQG
-
MR 3314501. Zbl 1316. 35238
-
P. Constantin, A. Tarfulea, and V. Vicol, Long time dynamics of forced critical SQG, Comm. Math. Phys. 335 (2015), 93-141. MR 3314501. Zbl 1316. 35238. http://dx.doi.org/10.1007/s00220-014-2129-3.
-
(2015)
Comm. Math. Phys
, vol.335
, pp. 93-141
-
-
Constantin, P.1
Tarfulea, A.2
Vicol, V.3
-
12
-
-
84868156364
-
Nonlinear maximum principles for dissipative linear nonlocal operators and applications
-
MR 2989434. Zbl 1256.35078
-
P. Constantin and V. Vicol, Nonlinear maximum principles for dissipative linear nonlocal operators and applications, Geom. Funct. Anal. 22 (2012), 1289-1321. MR 2989434. Zbl 1256.35078. http://dx.doi.org/10.1007/s00039-012-0172-9.
-
(2012)
Geom. Funct. Anal
, vol.22
, pp. 1289-1321
-
-
Constantin, P.1
Vicol, V.2
-
13
-
-
78751624212
-
Interface evolution: the Hele-Shaw and Muskat problems
-
MR 2753607.Zbl 1229.35204
-
A. Córdoba, D. Córdoba, and F. Gancedo, Interface evolution: the Hele-Shaw and Muskat problems, Ann. of Math. 173 (2011), 477-542. MR 2753607.Zbl 1229.35204. http://dx.doi.org/10.4007/annals.2011.173.1.10.
-
(2011)
Ann. of Math
, vol.173
, pp. 477-542
-
-
Córdoba, A.1
Córdoba, D.2
Gancedo, F.3
-
14
-
-
0032264533
-
Nonexistence of simple hyperbolic blow-up for the quasigeostrophic equation
-
MR 1670077. Zbl 0920.35109
-
D. Cordoba, Nonexistence of simple hyperbolic blow-up for the quasigeostrophic equation, Ann. of Math. 148 (1998), 1135-1152. MR 1670077. Zbl 0920.35109. http://dx.doi.org/10.2307/121037.
-
(1998)
Ann. of Math
, vol.148
, pp. 1135-1152
-
-
Cordoba, D.1
-
15
-
-
0036016138
-
Growth of solutions for QG and 2D Euler equations
-
MR 1896236. Zbl 1013. 76011
-
D. Cordoba and C. Fefferman, Growth of solutions for QG and 2D Euler equations, J. Amer. Math. Soc. 15 (2002), 665-670. MR 1896236. Zbl 1013. 76011. http://dx.doi.org/10.1090/S0894-0347-02-00394-6.
-
(2002)
J. Amer. Math. Soc
, vol.15
, pp. 665-670
-
-
Cordoba, D.1
Fefferman, C.2
-
16
-
-
17844380780
-
Evidence of singularities for a family of contour dynamics equations
-
MR 2141918. Zbl 1135.76315
-
D. Córdoba, M. A. Fontelos, A. M. Mancho, and J. L. Rodrigo, Evidence of singularities for a family of contour dynamics equations, Proc. Natl. Acad. Sci. USA 102 (2005), 5949-5952. MR 2141918. Zbl 1135.76315. http://dx.doi.org/10.1073/pnas.0501977102.
-
(2005)
Proc. Natl. Acad. Sci. USA
, vol.102
, pp. 5949-5952
-
-
Córdoba, D.1
Fontelos, M.A.2
Mancho, A.M.3
Rodrigo, J.L.4
-
17
-
-
84900425142
-
Global wellposedness of slightly supercritical active scalar equations
-
MR 3219499. Zbl 1294.35092
-
M. Dabkowski, A. Kiselev, L. Silvestre, and V. Vicol, Global wellposedness of slightly supercritical active scalar equations, Anal. PDE 7 (2014), 43-72. MR 3219499. Zbl 1294.35092. http://dx.doi.org/10.2140/apde.2014.7.43.
-
(2014)
Anal. PDE
, vol.7
, pp. 43-72
-
-
Dabkowski, M.1
Kiselev, A.2
Silvestre, L.3
Vicol, V.4
-
18
-
-
63049089051
-
Infinite superlinear growth of the gradient for the twodimensional Euler equation
-
MR 2461825. Zbl 1156.76009
-
S. A. Denisov, Infinite superlinear growth of the gradient for the twodimensional Euler equation, Discrete Contin. Dyn. Syst. 23 (2009), 755-764. MR 2461825. Zbl 1156.76009. http://dx.doi.org/10.3934/dcds.2009.23.755.
-
(2009)
Discrete Contin. Dyn. Syst
, vol.23
, pp. 755-764
-
-
Denisov, S.A.1
-
19
-
-
84920055068
-
Double exponential growth of the vorticity gradient for the two-dimensional Euler equation
-
MR 3293735. Zbl 1315.35150
-
S. A. Denisov, Double exponential growth of the vorticity gradient for the two-dimensional Euler equation, Proc. Amer. Math. Soc. 143 (2015), 1199-1210. MR 3293735. Zbl 1315.35150. http://dx.doi.org/10.1090/S0002-9939-2014-12286-6.
-
(2015)
Proc. Amer. Math. Soc
, vol.143
, pp. 1199-1210
-
-
Denisov, S.A.1
-
20
-
-
0033548802
-
Poche de tourbillon pour Euler 2D dans un ouvert à bord
-
MR 1687165. Zbl 0927.76014
-
N. Depauw, Poche de tourbillon pour Euler 2D dans un ouvert à bord, J. Math. Pures Appl. 78 (1999), 313-351. MR 1687165. Zbl 0927.76014. http://dx.doi. org/10.1016/S0021-7824(98)00003-8.
-
(1999)
J. Math. Pures Appl
, vol.78
, pp. 313-351
-
-
Depauw, N.1
-
21
-
-
36549101254
-
Does contour dynamics go singular?
-
MR 1050012
-
D. G. Dritschel and M. E. McIntyre, Does contour dynamics go singular?, Phys. Fluids A 2 (1990), 748-753. MR 1050012. http://dx.doi.org/10.1063/1. 857728.
-
(1990)
Phys. Fluids A
, vol.2
, pp. 748-753
-
-
Dritschel, D.G.1
McIntyre, M.E.2
-
22
-
-
28144449330
-
A new, but flawed, numerical method for vortex patch evolution in two dimensions
-
MR 1104362. Zbl 0726.76029
-
D. G. Dritschel and N. J. Zabusky, A new, but flawed, numerical method for vortex patch evolution in two dimensions, J. Comput. Phys. 93 (1991), 481-484. MR 1104362. Zbl 0726.76029. http://dx.doi.org/10.1016/0021-9991(91)90197-S.
-
(1991)
J. Comput. Phys
, vol.93
, pp. 481-484
-
-
Dritschel, D.G.1
Zabusky, N.J.2
-
23
-
-
0141484598
-
On 3-D vortex patches in bounded domains
-
MR 1998937. Zbl 1030.76011
-
A. Dutrifoy, On 3-D vortex patches in bounded domains, Comm. Partial Differential Equations 28 (2003), 1237-1263. MR 1998937. Zbl 1030.76011. http://dx.doi.org/10.1081/PDE-120024362.
-
(2003)
Comm. Partial Differential Equations
, vol.28
, pp. 1237-1263
-
-
Dutrifoy, A.1
-
24
-
-
84915592989
-
Asymptotic behavior and uniquenes of plane subsonic flows
-
MR 0086556. Zbl 0077.18801
-
R. Finn and D. Gilbarg, Asymptotic behavior and uniquenes of plane subsonic flows, Comm. Pure Appl. Math. 10 (1957), 23-63. MR 0086556. Zbl 0077.18801. http://dx.doi.org/10.1002/cpa.3160100102.
-
(1957)
Comm. Pure Appl. Math
, vol.10
, pp. 23-63
-
-
Finn, R.1
Gilbarg, D.2
-
25
-
-
39749086442
-
Existence for the α-patch model and the QG sharp front in Sobolev spaces
-
MR 2397460. Zbl 1148.35099
-
F. Gancedo, Existence for the α-patch model and the QG sharp front in Sobolev spaces, Adv. Math. 217 (2008), 2569-2598. MR 2397460. Zbl 1148.35099. http: //dx.doi.org/10.1016/j.aim.2007.10.010.
-
(2008)
Adv. Math
, vol.217
, pp. 2569-2598
-
-
Gancedo, F.1
-
26
-
-
84892577446
-
Absence of splash singularities for surface quasigeostrophic sharp fronts and the Muskat problem
-
MR 3181769
-
F. Gancedo and R. M. Strain, Absence of splash singularities for surface quasigeostrophic sharp fronts and the Muskat problem, Proc. Natl. Acad. Sci. USA 111 (2014), 635-639. MR 3181769. http://dx.doi.org/10.1073/pnas.1320554111.
-
(2014)
Proc. Natl. Acad. Sci. USA
, vol.111
, pp. 635-639
-
-
Gancedo, F.1
Strain, R.M.2
-
27
-
-
0003549967
-
-
Springer-Verlag, New York, MR 1814364. Zbl 1042.35002
-
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, New York, 2001. MR 1814364. Zbl 1042.35002.
-
(2001)
Elliptic Partial Differential Equations of Second Order, Classics in Mathematics
-
-
Gilbarg, D.1
Trudinger, N.S.2
-
28
-
-
0001752645
-
Boundary regularity and embedded solutions for the oriented Plateau problem
-
MR 0554379. Zbl 0457.49029
-
R. Hardt and L. Simon, Boundary regularity and embedded solutions for the oriented Plateau problem, Ann. of Math. 110 (1979), 439-486. MR 0554379. Zbl 0457.49029. http://dx.doi.org/10.2307/1971233.
-
(1979)
Ann. of Math
, vol.110
, pp. 439-486
-
-
Hardt, R.1
Simon, L.2
-
29
-
-
0000333210
-
Über die unbeschränkte Fortsetzbarkeit einer stetigen ebenen Bewegung in einer unbegrenzten inkompressiblen Flüssigkeit
-
MR 1545431. Zbl 0008.06902
-
E. Hölder, Über die unbeschränkte Fortsetzbarkeit einer stetigen ebenen Bewegung in einer unbegrenzten inkompressiblen Flüssigkeit, Math. Z. 37 (1933), 727-738. MR 1545431. Zbl 0008.06902. http://dx.doi.org/10.1007/BF01474611.
-
(1933)
Math. Z.
, vol.37
, pp. 727-738
-
-
Hölder, E.1
-
30
-
-
11144329539
-
Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equations in the Sobolev space
-
MR 2100059. Zbl 1106.35061
-
N. Ju, Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equations in the Sobolev space, Comm. Math. Phys. 251 (2004), 365-376. MR 2100059. Zbl 1106.35061. http://dx.doi.org/10.1007/s00220-004-1062-2.
-
(2004)
Comm. Math. Phys
, vol.251
, pp. 365-376
-
-
Ju, N.1
-
31
-
-
0001751564
-
Non-stationary flows of an ideal incompressible fluid
-
MR 0158189
-
V. I. Judovič, Non-stationary flows of an ideal incompressible fluid, Ž. Vyčisl. Mat. i Mat. Fiz. 3 (1963), 1032-1066. MR 0158189. http://dx.doi.org/10.1016/0041-5553(63)90247-7.
-
(1963)
Ž. Vyčisl. Mat. i Mat. Fiz
, vol.3
, pp. 1032-1066
-
-
Judovič, V.I.1
-
32
-
-
0002716749
-
The loss of smoothness of the solutions of Euler equations with time
-
121. MR 0454419
-
V. I. Judovič, The loss of smoothness of the solutions of Euler equations with time, Dinamika Splošn. Sredy (1974), 71-78, 121. MR 0454419.
-
(1974)
Dinamika Splošn. Sredy
, pp. 71-78
-
-
Judovič, V.I.1
-
33
-
-
0345801447
-
On the loss of smoothness of the solutions of the Euler equations and the inherent instability of flows of an ideal fluid
-
MR 1791984. Zbl 0982.76014
-
V. I. Judovič, On the loss of smoothness of the solutions of the Euler equations and the inherent instability of flows of an ideal fluid, Chaos 10 (2000), 705-719. MR 1791984. Zbl 0982.76014. http://dx.doi.org/10.1063/1.1287066.
-
(2000)
Chaos
, vol.10
, pp. 705-719
-
-
Judovič, V.I.1
-
34
-
-
79956352191
-
A variation on a theme of Caffarelli and Vasseur
-
220. MR 2749211. Zbl 1288.35393
-
A. Kiselev and F. Nazarov, A variation on a theme of Caffarelli and Vasseur, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 370 (2009), 58-72, 220. MR 2749211. Zbl 1288.35393. http://dx.doi.org/10.1007/s10958-010-9842-z.
-
(2009)
Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI)
, vol.370
, pp. 58-72
-
-
Kiselev, A.1
Nazarov, F.2
-
35
-
-
75149114116
-
Global regularity for the critical dispersive dissipative surface quasi-geostrophic equation
-
MR 2586369. Zbl 1185.35190
-
A. Kiselev and F. Nazarov, Global regularity for the critical dispersive dissipative surface quasi-geostrophic equation, Nonlinearity 23 (2010), 549-554. MR 2586369. Zbl 1185.35190. http://dx.doi.org/10.1088/0951-7715/23/3/006.
-
(2010)
Nonlinearity
, vol.23
, pp. 549-554
-
-
Kiselev, A.1
Nazarov, F.2
-
36
-
-
33846785446
-
Global well-posedness for the critical 2D dissipative quasi-geostrophic equation
-
MR 2276260. Zbl 1121.35115
-
A. Kiselev, F. Nazarov, and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math. 167 (2007), 445-453. MR 2276260. Zbl 1121.35115. http://dx.doi.org/10.1007/s00222-006-0020-3.
-
(2007)
Invent. Math
, vol.167
, pp. 445-453
-
-
Kiselev, A.1
Nazarov, F.2
Volberg, A.3
-
37
-
-
84904908721
-
Small scale creation for solutions of the incompressible two-dimensional Euler equation
-
MR 3245016. Zbl 1304.35521
-
A. Kiselev and V. Šverák, Small scale creation for solutions of the incompressible two-dimensional Euler equation, Ann. of Math. 180 (2014), 1205-1220. MR 3245016. Zbl 1304.35521. http://dx.doi.org/10.4007/annals.2014.180.3.9.
-
(2014)
Ann. of Math
, vol.180
, pp. 1205-1220
-
-
Kiselev, A.1
Šverák, V.2
-
38
-
-
85061723061
-
Local regularity for the modified SQG patch equation
-
preprint
-
A. Kiselev, Y. Yao, and A. Zlatoš, Local regularity for the modified SQG patch equation, preprint.
-
-
-
Kiselev, A.1
Yao, Y.2
Zlatoš, A.3
-
39
-
-
84906990880
-
Potentially singular solutions of the 3D axisymmetric Euler equations
-
G. Luo and T. Y. Hou, Potentially singular solutions of the 3D axisymmetric Euler equations, Proc. Nat. Acad. Sci. USA 111 (2014), 12968-12973. http://dx.doi.org/10.1073/pnas.1405238111.
-
(2014)
Proc. Nat. Acad. Sci. USA
, vol.111
, pp. 12968-12973
-
-
Luo, G.1
Hou, T.Y.2
-
40
-
-
84919953855
-
Toward the finite-time blowup of the 3D axisymmetric Euler equations: a numerical investigation
-
MR 3278833. Zbl 1316.35235
-
G. Luo and T. Y. Hou, Toward the finite-time blowup of the 3D axisymmetric Euler equations: a numerical investigation, Multiscale Model. Simul. 12 (2014), 1722-1776. MR 3278833. Zbl 1316.35235. http://dx.doi.org/10.1137/140966411.
-
(2014)
Multiscale Model. Simul
, vol.12
, pp. 1722-1776
-
-
Luo, G.1
Hou, T.Y.2
-
41
-
-
84990619174
-
Vorticity and the mathematical theory of incompressible fluid flow
-
MR 0861488. Zbl 0595.76021
-
A. Majda, Vorticity and the mathematical theory of incompressible fluid flow, Comm. Pure Appl. Math. 39 (1986), S187-S220. MR 0861488. Zbl 0595.76021. http://dx.doi.org/10.1002/cpa.3160390711.
-
(1986)
Comm. Pure Appl. Math
, vol.39
, pp. S187-S220
-
-
Majda, A.1
-
42
-
-
0242618501
-
Vorticity and Incompressible Flow
-
Cambridge Univ. Press, Cambridge, MR 1867882. Zbl 0983.76001
-
A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge Texts Appl. Math. 27, Cambridge Univ. Press, Cambridge, 2001. MR 1867882. Zbl 0983.76001. http://dx.doi.org/10.1017/CBO9780511613203.
-
(2001)
Cambridge Texts Appl. Math
, vol.27
-
-
Majda, A.J.1
Bertozzi, A.L.2
-
43
-
-
84926482127
-
Numerical studies on the self-similar collapse of the α-patches problem
-
MR 3332042
-
A. M. Mancho, Numerical studies on the self-similar collapse of the α-patches problem, Commun. Nonlinear Sci. Numer. Simul. 26 (2015), 152-166. MR 3332042. http://dx.doi.org/10.1016/j.cnsns.2015.02.009.
-
(2015)
Commun. Nonlinear Sci. Numer. Simul
, vol.26
, pp. 152-166
-
-
Mancho, A.M.1
-
44
-
-
0003269966
-
Mathematical Theory of Incompressible Nonviscous Fluids
-
Springer-Verlag, New York, MR 1245492. Zbl 0789.76002
-
C. Marchioro and M. Pulvirenti, Mathematical Theory of Incompressible Nonviscous Fluids, Appl. Math. Sci. 96, Springer-Verlag, New York, 1994. MR 1245492. Zbl 0789.76002. http://dx.doi.org/10.1007/978-1-4612-4284-0.
-
(1994)
Appl. Math. Sci
, vol.96
-
-
Marchioro, C.1
Pulvirenti, M.2
-
45
-
-
0040355045
-
Wandering solutions of the two-dimensional Euler equation
-
MR 1139875. Zbl 0769.35048
-
N. S. Nadirashvili,Wandering solutions of the two-dimensional Euler equation, Funktsional. Anal. i Prilozhen. 25 (1991), 70-71. MR 1139875. Zbl 0769.35048. http://dx.doi.org/10.1007/BF01085491.
-
(1991)
Funktsional. Anal. i Prilozhen
, vol.25
, pp. 70-71
-
-
Nadirashvili, N.S.1
-
46
-
-
0039525821
-
-
Springer-Verlag, New York Zbl 0713.76005
-
J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987. Zbl 0713.76005. http://dx.doi.org/10.1007/978-1-4612-4650-3.
-
(1987)
Geophysical Fluid Dynamics
-
-
Pedlosky, J.1
-
47
-
-
0028442691
-
Spectra of local and nonlocal two-dimensional turbulence, Chaos
-
Zbl 0823.76034
-
R. T. Pierrehumbert, I. M. Held, and K. L. Swanson, Spectra of local and nonlocal two-dimensional turbulence, Chaos, Solitons Fractals 4 (1994), 1111- 1116. Zbl 0823.76034.
-
(1994)
Solitons Fractals
, vol.4
, pp. 1111-1116
-
-
Pierrehumbert, R.T.1
Held, I.M.2
Swanson, K.L.3
-
48
-
-
0026802595
-
Contour dynamics methods
-
Annual Reviews, Palo Alto, CA, MR 1145007. Zbl 0743.76021
-
D. I. Pullin, Contour dynamics methods, in Annual Review of Fluid Mechanics, Vol. 24, Annual Reviews, Palo Alto, CA, 1992, pp. 89-115. MR 1145007. Zbl 0743.76021.
-
(1992)
Annual Review of Fluid Mechanics
, vol.24
, pp. 89-115
-
-
Pullin, D.I.1
-
49
-
-
0003423688
-
Dynamical Problems in Non-linear Advective Partial Differential Equations
-
ProQuest LLC, Ann Arbor, MI, 1995, Thesis (Ph.D.), The University of Chicago. MR 2716577
-
S. G. Resnick, Dynamical Problems in Non-linear Advective Partial Differential Equations, ProQuest LLC, Ann Arbor, MI, 1995, Thesis (Ph.D.), The University of Chicago. MR 2716577. Available at http://gateway.proquest.com/openurl?url ver=Z39.88-2004&rft val fmt=info:ofi/fmt:kev:mtx:dissertation&res dat=xri:pqdiss&rft dat=xri:pqdiss:9542767.
-
-
-
Resnick, S.G.1
-
50
-
-
17844372561
-
On the evolution of sharp fronts for the quasi-geostrophic equation
-
MR 2142632. Zbl 1073. 35006
-
J. L. Rodrigo, On the evolution of sharp fronts for the quasi-geostrophic equation, Comm. Pure Appl. Math. 58 (2005), 821-866. MR 2142632. Zbl 1073. 35006. http://dx.doi.org/10.1002/cpa.20059.
-
(2005)
Comm. Pure Appl. Math
, vol.58
, pp. 821-866
-
-
Rodrigo, J.L.1
-
51
-
-
0037174682
-
Turbulent diffusion in the geostrophic inverse cascade
-
MR 1932826. Zbl 1152.76402
-
K. S. Smith, G. Boccaletti, C. C. Henning, I. Marinov, C. Y. Tam, I. M. Held, and G. K. Vallis, Turbulent diffusion in the geostrophic inverse cascade, J. Fluid Mech. 469 (2002), 13-48. MR 1932826. Zbl 1152.76402. http://dx.doi.org/10.1017/S0022112002001763.
-
(2002)
J. Fluid Mech
, vol.469
, pp. 13-48
-
-
Smith, K.S.1
Boccaletti, G.2
Henning, C.C.3
Marinov, I.4
Tam, C.Y.5
Held, I.M.6
Vallis, G.K.7
-
52
-
-
0003201639
-
Singular Integrals and Differentiability Properties of Functions
-
Princeton Univ. Press, Princeton, N.J., MR 0290095. Zbl 0207.13501
-
E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Math. Ser. 30, Princeton Univ. Press, Princeton, N.J., 1970. MR 0290095. Zbl 0207.13501.
-
(1970)
Princeton Math. Ser.
, vol.30
-
-
Stein, E.M.1
-
53
-
-
34250940791
-
Un theorème sur l'existence du mouvement plan d'un fluide parfait, homogène, incompressible, pendant un temps infiniment long
-
MR 1545430. Zbl 0008.06901
-
W. Wolibner, Un theorème sur l'existence du mouvement plan d'un fluide parfait, homogène, incompressible, pendant un temps infiniment long, Math. Z. 37 (1933), 698-726. MR 1545430. Zbl 0008.06901. http://dx.doi.org/10.1007/BF01474610.
-
(1933)
Math. Z.
, vol.37
, pp. 698-726
-
-
Wolibner, W.1
-
54
-
-
67650433790
-
Almost global wellposedness of the 2-D full water wave problem
-
MR 2507638. Zbl 1181.35205
-
S. Wu, Almost global wellposedness of the 2-D full water wave problem, Invent. Math. 177 (2009), 45-135. MR 2507638. Zbl 1181.35205. http://dx.doi.org/10. 1007/s00222-009-0176-8.
-
(2009)
Invent. Math
, vol.177
, pp. 45-135
-
-
Wu, S.1
-
55
-
-
79952989811
-
Global wellposedness of the 3-D full water wave problem
-
MR 2782254. Zbl 1221.35304
-
S. Wu, Global wellposedness of the 3-D full water wave problem, Invent. Math. 184 (2011), 125-220. MR 2782254. Zbl 1221.35304. http://dx.doi.org/10.1007/ s00222-010-0288-1.
-
(2011)
Invent. Math
, vol.184
, pp. 125-220
-
-
Wu, S.1
-
56
-
-
84908192375
-
Exponential growth of the vorticity gradient for the Euler equation on the torus
-
MR 3276599. Zbl 1308.35194
-
A. Zlatoš, Exponential growth of the vorticity gradient for the Euler equation on the torus, Adv. Math. 268 (2015), 396-403. MR 3276599. Zbl 1308.35194. http://dx.doi.org/10.1016/j.aim.2014.08.012.
-
(2015)
Adv. Math
, vol.268
, pp. 396-403
-
-
Zlatoš, A.1
|