-
1
-
-
34447257464
-
Occurrence and non-appearance of shocks in fractal Burgers equations
-
MR 2008i:35198 Zbl 1144.35038
-
N. Alibaud, J. Droniou, and J. Vovelle, "Occurrence and non-appearance of shocks in fractal Burgers equations", J. Hyperbolic Differ. Equ. 4:3 (2007), 479-499. MR 2008i:35198 Zbl 1144.35038
-
(2007)
J. Hyperbolic Differ. Equ
, vol.4
, Issue.3
, pp. 479-499
-
-
Alibaud, N.1
Droniou, J.2
Vovelle, J.3
-
2
-
-
77950869887
-
Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation
-
(2)MR 2011m:35281 Zbl 1204.35063
-
L. A. Caffarelli and A. Vasseur, "Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation", Ann. of Math. (2)171:3 (2010), 1903-1930. MR 2011m:35281 Zbl 1204.35063
-
(2010)
Ann. of Math
, vol.171
, Issue.3
, pp. 1903-1930
-
-
Caffarelli, L.A.1
Vasseur, A.2
-
3
-
-
84862091225
-
Dissipative models generalizing the 2D Navier-Stokes and the SQG equations
-
preprint, To appear in arXiv 1011.0171v1
-
D. Chae, P. Constantin, and J. Wu, "Dissipative models generalizing the 2D Navier-Stokes and the SQG equations", preprint, 2010. To appear in Indiana Univ. Math. J. arXiv 1011.0171v1
-
(2010)
Indiana Univ. Math. J
-
-
Chae, D.1
Constantin, P.2
Wu, J.3
-
4
-
-
80052418503
-
Inviscid models generalizing the two-dimensional Euler and the surface quasi-geostrophic equations
-
MR 2012j:76017 Zbl 06101950
-
D. Chae, P. Constantin, and J. Wu, "Inviscid models generalizing the two-dimensional Euler and the surface quasi-geostrophic equations", Arch. Ration. Mech. Anal. 202:1 (2011), 35-62. MR 2012j:76017 Zbl 06101950
-
(2011)
Arch. Ration. Mech. Anal
, vol.202
, Issue.1
, pp. 35-62
-
-
Chae, D.1
Constantin, P.2
Wu, J.3
-
5
-
-
84868156364
-
Nonlinear maximum principles for dissipative linear nonlocal operators and applications
-
MR 2989434 Zbl 1256.35078
-
P. Constantin and V. Vicol, "Nonlinear maximum principles for dissipative linear nonlocal operators and applications", Geom. Funct. Anal. 22:5 (2012), 1289-1321. MR 2989434 Zbl 1256.35078
-
(2012)
Geom. Funct. Anal
, vol.22
, Issue.5
, pp. 1289-1321
-
-
Constantin, P.1
Vicol, V.2
-
6
-
-
54549116855
-
Regularity of Hölder continuous solutions of the supercritical quasigeostrophic equation
-
MR 2009h:35328 Zbl 1149.76052
-
P. Constantin and J. Wu, "Regularity of Hölder continuous solutions of the supercritical quasigeostrophic equation", Ann. Inst. H. Poincaré Anal. Non Linéaire 25:6 (2008), 1103-1110. MR 2009h:35328 Zbl 1149.76052
-
(2008)
Ann. Inst. H. Poincaré Anal. Non Linéaire
, vol.25
, Issue.6
, pp. 1103-1110
-
-
Constantin, P.1
Wu, J.2
-
7
-
-
0043172071
-
Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar
-
MR 95i:76107 Zbl 0809.35057
-
P. Constantin, A. J. Majda, and E. Tabak, "Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar", Nonlinearity 7:6 (1994), 1495-1533. MR 95i:76107 Zbl 0809.35057
-
(1994)
Nonlinearity
, vol.7
, Issue.6
, pp. 1495-1533
-
-
Constantin, P.1
Majda, A.J.2
Tabak, E.3
-
8
-
-
4544377751
-
A maximum principle applied to quasi-geostrophic equations
-
MR 2005f:76011 Zbl 02158321
-
A. Córdoba and D. Córdoba, "A maximum principle applied to quasi-geostrophic equations", Comm. Math. Phys. 249:3 (2004), 511-528. MR 2005f:76011 Zbl 02158321
-
(2004)
Comm. Math. Phys
, vol.249
, Issue.3
, pp. 511-528
-
-
Córdoba, A.1
Córdoba, D.2
-
9
-
-
79751532095
-
Eventual regularity of the solutions to the supercritical dissipative quasi-geostrophic equation
-
MR 2012e:35190 Zbl 1210.35185
-
M. Dabkowski, "Eventual regularity of the solutions to the supercritical dissipative quasi-geostrophic equation", Geom. Funct. Anal. 21:1 (2011), 1-13. MR 2012e:35190 Zbl 1210.35185
-
(2011)
Geom. Funct. Anal
, vol.21
, Issue.1
, pp. 1-13
-
-
Dabkowski, M.1
-
10
-
-
84862095067
-
Global well-posedness for a slightly supercritical surface quasi-geostrophic equation
-
MR 2921019 Zbl 1239.35121
-
M. Dabkowski, A. Kiselev, and V. Vicol, "Global well-posedness for a slightly supercritical surface quasi-geostrophic equation", Nonlinearity 25:5 (2012), 1525-1535. MR 2921019 Zbl 1239.35121
-
(2012)
Nonlinearity
, vol.25
, Issue.5
, pp. 1525-1535
-
-
Dabkowski, M.1
Kiselev, A.2
Vicol, V.3
-
11
-
-
84900426843
-
On a 1D transport equation with nonlocal velocity and supercritical dissipation
-
preprint, arXiv 1304. 4296
-
T. Do, "On a 1D transport equation with nonlocal velocity and supercritical dissipation", preprint, 2013. arXiv 1304. 4296
-
(2013)
-
-
Do, T.1
-
12
-
-
77950223071
-
Dissipative quasi-geostrophic equations in critical Sobolev spaces: Smoothing effect and global well-posedness
-
MR 2011c:35443 Zbl 1186.35158
-
H. Dong, "Dissipative quasi-geostrophic equations in critical Sobolev spaces: Smoothing effect and global well-posedness", Discrete Contin. Dyn. Syst. 26:4 (2010), 1197-1211. MR 2011c:35443 Zbl 1186.35158
-
(2010)
Discrete Contin. Dyn. Syst
, vol.26
, Issue.4
, pp. 1197-1211
-
-
Dong, H.1
-
13
-
-
50249090960
-
Global well-posedness and a decay estimate for the critical dissipative quasigeostrophic equation in the whole space
-
MR 2009b:76175 Zbl 1141.35436
-
H. Dong and D. Du, "Global well-posedness and a decay estimate for the critical dissipative quasigeostrophic equation in the whole space", Discrete Contin. Dyn. Syst. 21:4 (2008), 1095-1101. MR 2009b:76175 Zbl 1141.35436
-
(2008)
Discrete Contin. Dyn. Syst
, vol.21
, Issue.4
, pp. 1095-1101
-
-
Dong, H.1
Du, D.2
-
14
-
-
70349918312
-
Regularity criteria for the dissipative quasi-geostrophic equations in Hölder spaces
-
MR 2010k:35053 Zbl 1185.35187
-
H. Dong and N. Pavlović, "Regularity criteria for the dissipative quasi-geostrophic equations in Hölder spaces", Comm. Math. Phys. 290:3 (2009), 801-812. MR 2010k:35053 Zbl 1185.35187
-
(2009)
Comm. Math. Phys
, vol.290
, Issue.3
, pp. 801-812
-
-
Dong, H.1
Pavlović, N.2
-
15
-
-
67249097393
-
Finite time singularities and global well-posedness for fractal Burgers equations
-
MR 2010i:35320 Zbl 1166.35030
-
H. Dong, D. Du, and D. Li, "Finite time singularities and global well-posedness for fractal Burgers equations", Indiana Univ. Math. J. 58:2 (2009), 807-821. MR 2010i:35320 Zbl 1166.35030
-
(2009)
Indiana Univ. Math. J
, vol.58
, Issue.2
, pp. 807-821
-
-
Dong, H.1
Du, D.2
Li, D.3
-
16
-
-
84895910423
-
Osgood's lemma and some results for the slightly supercritical 2D Euler equations for incompressible flow
-
MR 3158812
-
T. M. Elgindi, "Osgood's lemma and some results for the slightly supercritical 2D Euler equations for incompressible flow", Archive for Rational Mechanics and Analysis 211:3 (2014), 965-990. MR 3158812
-
(2014)
Archive for Rational Mechanics and Analysis
, vol.211
, Issue.3
, pp. 965-990
-
-
Elgindi, T.M.1
-
17
-
-
79956367250
-
Nonlocal maximum principles for active scalars
-
MR 2012k: 35414 Zbl 1244.35022
-
A. Kiselev, "Nonlocal maximum principles for active scalars", Adv. Math. 227:5 (2011), 1806-1826. MR 2012k: 35414 Zbl 1244.35022
-
(2011)
Adv. Math
, vol.227
, Issue.5
, pp. 1806-1826
-
-
Kiselev, A.1
-
18
-
-
79956352191
-
A variation on a theme of Caffarelli and Vasseur
-
MR 2012c:35350
-
A. Kiselev and F. Nazarov, "A variation on a theme of Caffarelli and Vasseur", Zap. Nauchn. Sem. (POMI) 370:40 (2009), 58-72. MR 2012c:35350
-
(2009)
Zap. Nauchn. Sem. (POMI)
, vol.370
, Issue.40
, pp. 58-72
-
-
Kiselev, A.1
Nazarov, F.2
-
19
-
-
33846785446
-
Global well-posedness for the critical 2D dissipative quasigeostrophic equation
-
MR 2008f:35308 Zbl 1121.35115
-
A. Kiselev, F. Nazarov, and A. Volberg, "Global well-posedness for the critical 2D dissipative quasigeostrophic equation", Invent. Math. 167:3 (2007), 445-453. MR 2008f:35308 Zbl 1121.35115
-
(2007)
Invent. Math
, vol.167
, Issue.3
, pp. 445-453
-
-
Kiselev, A.1
Nazarov, F.2
Volberg, A.3
-
20
-
-
55349138425
-
Blow up and regularity for fractal Burgers equation
-
MR 2009k:35264 Zbl 1186.35020
-
A. Kiselev, F. Nazarov, and R. Shterenberg, "Blow up and regularity for fractal Burgers equation", Dyn. Partial Differ. Equ. 5:3 (2008), 211-240. MR 2009k:35264 Zbl 1186.35020
-
(2008)
Dyn. Partial Differ. Equ
, vol.5
, Issue.3
, pp. 211-240
-
-
Kiselev, A.1
Nazarov, F.2
Shterenberg, R.3
-
21
-
-
23744452794
-
Anomalous diffusion spreads its wings
-
J. Klafter and I. Sokolov, "Anomalous diffusion spreads its wings", Physics World 18:8 (2005), 29-32.
-
(2005)
Physics World
, vol.18
, Issue.8
, pp. 29-32
-
-
Klafter, J.1
Sokolov, I.2
-
24
-
-
76849110369
-
Eventual regularization for the slightly supercritical quasi-geostrophic equation
-
MR 2011c:35603 Zbl 1187.35186
-
L. Silvestre, "Eventual regularization for the slightly supercritical quasi-geostrophic equation", Ann. Inst. H. Poincaré Anal. Non Linéaire 27:2 (2010), 693-704. MR 2011c:35603 Zbl 1187.35186
-
(2010)
Ann. Inst. H. Poincaré Anal. Non Linéaire
, vol.27
, Issue.2
, pp. 693-704
-
-
Silvestre, L.1
-
25
-
-
84878938662
-
On the differentiability of the solution to an equation with drift and fractional diffusion
-
preprint, To appear in arXiv 1012.2401v2
-
L. Silvestre, "On the differentiability of the solution to an equation with drift and fractional diffusion", preprint, 2011. To appear in Indiana Univ. Math. J. arXiv 1012.2401v2
-
(2011)
Indiana Univ. Math. J
-
-
Silvestre, L.1
-
26
-
-
78650699721
-
Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation
-
[Tao 2009] MR 2011b:35382 Zbl 1190.35177
-
T. Tao, "Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation", Anal. PDE 2:3 (2009), 361-366. MR 2011b:35382 Zbl 1190.35177
-
(2009)
Anal. PDE
, vol.2
, Issue.3
, pp. 361-366
-
-
Tao, T.1
-
27
-
-
84860610382
-
Note on the well-posedness of a slightly supercritical surface quasi-geostrophic equation
-
MR 2921214
-
L. Xue and Z. Zheng, "Note on the well-posedness of a slightly supercritical surface quasi-geostrophic equation", Journal of Differential Equations 253:2 (2012), 795-813. MR 2921214
-
(2012)
Journal of Differential Equations
, vol.253
, Issue.2
, pp. 795-813
-
-
Xue, L.1
Zheng, Z.2
|