메뉴 건너뛰기




Volumn 143, Issue 3, 2015, Pages 1199-1210

Double exponential growth of the vorticity gradient for the two-dimensional euler equation

Author keywords

Growth of the vorticity gradient; Two dimensional Euler equation

Indexed keywords


EID: 84920055068     PISSN: 00029939     EISSN: 10886826     Source Type: Journal    
DOI: 10.1090/s0002-9939-2014-12286-6     Document Type: Article
Times cited : (55)

References (14)
  • 1
    • 21844481531 scopus 로고
    • Équations de transport relatives á des champs de vecteurs non-lipschitziens et mécanique des fluides (French, with French summary)
    • H. Bahouri and J.-Y. Chemin, Équations de transport relatives á des champs de vecteurs non-lipschitziens et mécanique des fluides (French, with French summary), Arch. Rational Mech. Anal. 127 (1994), no. 2, 159–181, DOI: 10.1007/BF00377659.
    • (1994) Arch. Rational Mech. Anal , vol.127 , Issue.2 , pp. 159-181
    • Bahouri, H.1    Chemin, J.-Y.2
  • 2
    • 0242618501 scopus 로고    scopus 로고
    • Vorticity and incompressible flow
    • Cambridge University Press, Cambridge
    • Andrew J. Majda and Andrea L. Bertozzi, Vorticity and incompressible flow, Cambridge Texts in Applied Mathematics, vol. 27, Cambridge University Press, Cambridge, 2002.
    • (2002) Cambridge Texts in Applied Mathematics , vol.27
    • Majda, A.J.1    Bertozzi, A.L.2
  • 3
    • 67649360005 scopus 로고    scopus 로고
    • Two-dimensional Euler system and the vortex patches problem
    • North-Holland, Amsterdam
    • Jean-Yves Chemin, Two-dimensional Euler system and the vortex patches problem, Handbook of mathematical fluid dynamics. Vol. III, North-Holland, Amsterdam, 2004, pp. 83–160.
    • (2004) Handbook of mathematical fluid dynamics , vol.3 , pp. 83-160
    • Chemin, J.-Y.1
  • 4
    • 80052418503 scopus 로고    scopus 로고
    • Inviscid models generalizing the twodimensional Euler and the surface quasi-geostrophic equations
    • Dongho Chae, Peter Constantin, and Jiahong Wu, Inviscid models generalizing the twodimensional Euler and the surface quasi-geostrophic equations, Arch. Ration. Mech. Anal. 202 (2011), no. 1, 35–62, DOI: 10.1007/s00205-011-0411-5.
    • (2011) Arch. Ration. Mech. Anal , vol.202 , Issue.1 , pp. 35-62
    • Chae, D.1    Constantin, P.2    Jiahong, W.3
  • 5
    • 63049089051 scopus 로고    scopus 로고
    • Infinite superlinear growth of the gradient for the two-dimensional Euler equation
    • Sergey A. Denisov, Infinite superlinear growth of the gradient for the two-dimensional Euler equation, Discrete Contin. Dyn. Syst. 23 (2009), no. 3, 755–764, DOI: 10.3934/dcds.2009.23.755.
    • (2009) Discrete Contin. Dyn. Syst , vol.23 , Issue.3 , pp. 755-764
    • Denisov, S.A.1
  • 6
    • 0346365501 scopus 로고    scopus 로고
    • Nonlinear instability in two dimensional ideal fluids: The case of a dominant eigenvalue
    • Misha Vishik and Susan Friedlander, Nonlinear instability in two dimensional ideal fluids: the case of a dominant eigenvalue, Comm. Math. Phys. 243 (2003), no. 2, 261–273, DOI: 10.1007/s00220-003-0963-9
    • (2003) Comm. Math. Phys , vol.243 , Issue.2 , pp. 261-273
    • Vishik, M.1    Friedlander, S.2
  • 7
    • 77949656492 scopus 로고    scopus 로고
    • Non-uniform dependence on initial data of solutions to the Euler equations of hydrodynamics
    • A. Alexandrou Himonas and Gerard Misiołek, Non-uniform dependence on initial data of solutions to the Euler equations of hydrodynamics, Comm. Math. Phys. 296 (2010), no. 1, 285–301, DOI: 10.1007/s00220-010-0991-1.
    • (2010) Comm. Math. Phys , vol.296 , Issue.1 , pp. 285-301
    • Alexandrou Himonas, A.1    Misiołek, G.2
  • 10
    • 0003269966 scopus 로고
    • Mathematical theory of incompressible nonviscous fluids
    • Springer-Verlag, New York
    • Carlo Marchioro and Mario Pulvirenti, Mathematical theory of incompressible nonviscous fluids, Applied Mathematical Sciences, vol. 96, Springer-Verlag, New York, 1994.
    • (1994) Applied Mathematical Sciences , vol.96
    • Marchioro, C.1    Pulvirenti, M.2
  • 11
    • 45849116955 scopus 로고    scopus 로고
    • Loss of smoothness and inherent instability of 2D inviscid fluid flows
    • Andrey Morgulis, Alexander Shnirelman, and Victor Yudovich, Loss of smoothness and inherent instability of 2D inviscid fluid flows, Comm. Partial Differential Equations 33 (2008), no. 4-6, 943–968, DOI: 10.1080/03605300802108016.
    • (2008) Comm. Partial Differential Equations , vol.33 , Issue.4-6 , pp. 943-968
    • Morgulis, A.1    Shnirelman, A.2    Yudovich, V.3
  • 12
    • 0040355045 scopus 로고
    • Wandering solutions of the two-dimensional Euler equation (Russian)
    • English transl., Funct. Anal. Appl. 25 (1991), no. 3, 220–221 (1992
    • N. S. Nadirashvili, Wandering solutions of the two-dimensional Euler equation (Russian), Funktsional. Anal. i Prilozhen. 25 (1991), no. 3, 70–71, DOI: 10.1007/BF01085491; English transl., Funct. Anal. Appl. 25 (1991), no. 3, 220–221 (1992).
    • (1991) Funktsional. Anal. i Prilozhen , vol.25 , Issue.3 , pp. 70-71
    • Nadirashvili, N.S.1
  • 13
    • 34250940791 scopus 로고
    • Un theorème sur l’existence du mouvement plan d’un fluide parfait, homogène, incompressible, pendant un temps infiniment long (French)
    • W. Wolibner, Un theorème sur l’existence du mouvement plan d’un fluide parfait, homogène, incompressible, pendant un temps infiniment long (French), Math. Z. 37 (1933), no. 1, 698–726, DOI: 10.1007/BF01474610.
    • (1933) Math. Z , vol.37 , Issue.1 , pp. 698-726
    • Wolibner, W.1
  • 14
    • 0345801447 scopus 로고    scopus 로고
    • On the loss of smoothness of the solutions of the Euler equations and the inherent instability of flows of an ideal fluid
    • V. I. Yudovich, On the loss of smoothness of the solutions of the Euler equations and the inherent instability of flows of an ideal fluid, Chaos 10 (2000), no. 3, 705–719, DOI: 10.1063/1.1287066.
    • (2000) Chaos , vol.10 , Issue.3 , pp. 705-719
    • Yudovich, V.I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.