-
1
-
-
21844481531
-
Equations de transport relatives á des champs de vecteurs non-lipschitziens et mécanique des fluides
-
MR 1288809. Zbl 0821.76012
-
H. Bahouri and J.-Y. Chemin, Equations de transport relatives á des champs de vecteurs non-lipschitziens et mécanique des fluides, Arch. Rational Mech. Anal. 127 (1994), 159-181. MR 1288809. Zbl 0821.76012. http://dx.doi.org/10.1007/BF00377659.
-
(1994)
Arch. Rational Mech. Anal
, vol.127
, pp. 159-181
-
-
Bahouri, H.1
Chemin, J.-Y.2
-
2
-
-
34250136481
-
Remarks on the breakdown of smooth solutions for the 3-D Euler equations
-
MR 0763762. Zbl 0573.76029
-
J. T. Beale, T. Kato, and A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Comm. Math. Phys. 94 (1984), 61-66. MR 0763762. Zbl 0573.76029. http://dx.doi.org/10.1007/BF01212349.
-
(1984)
Comm. Math. Phys
, vol.94
, pp. 61-66
-
-
Beale, J.T.1
Kato, T.2
Majda, A.3
-
3
-
-
0004277187
-
-
The Clarendon Press, Oxford University Press, New York, , MR 1688875. Zbl 0927.76002
-
J.-Y. Chemin, Perfect Incompressible Fluids, Oxford Lecture Ser. Math. Appl. 14, The Clarendon Press, Oxford University Press, New York, 1998. MR 1688875. Zbl 0927.76002.
-
(1998)
Perfect Incompressible Fluids, Oxford Lecture Ser. Math. Appl
, vol.14
-
-
Chemin, J.-Y.1
-
4
-
-
63049089051
-
Infinite superlinear growth of the gradient for the twodimensional Euler equation
-
MR 2461825. Zbl 1156.76009
-
S. A. Denisov, Infinite superlinear growth of the gradient for the twodimensional Euler equation, Discrete Contin. Dyn. Syst. 23 (2009), 755-764. MR 2461825. Zbl 1156.76009. http://dx.doi.org/10.3934/dcds.2009.23.755.
-
(2009)
Discrete Contin. Dyn. Syst
, vol.23
, pp. 755-764
-
-
Denisov, S.A.1
-
5
-
-
84904884564
-
Double exponential growth of the vorticity gradient for the twodimensional Euler equation, to appear
-
arXiv 1201. 1771
-
S. A. Denisov, Double exponential growth of the vorticity gradient for the twodimensional Euler equation, to appear in Proc. Amer. Math. Soc. arXiv 1201. 1771.
-
Proc. Amer. Math. Soc.
-
-
Denisov, S.A.1
-
6
-
-
84904900014
-
The sharp corner formation in 2D Euler dynamics of patches: infinite double exponential rate of merging
-
arXiv 1201.2210
-
S. A. Denisov, The sharp corner formation in 2D Euler dynamics of patches: infinite double exponential rate of merging. arXiv 1201.2210.
-
-
-
Denisov, S.A.1
-
7
-
-
0003228130
-
Partial Differential Equations, Grad. Stud. Math
-
MR 1625845. Zbl 0902.35002
-
L. C. Evans, Partial Differential Equations, Grad. Stud. Math. 19, Amer. Math. Soc., 1998. MR 1625845. Zbl 0902.35002.
-
(1998)
Amer. Math. Soc
, vol.19
-
-
Evans, L.C.1
-
8
-
-
0041625080
-
Elliptic Partial Differential Equations of Second Order
-
Springer-Verlag, New York, MR 1814364. Zbl 1042.35002
-
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Math., Springer-Verlag, New York, 2001. MR 1814364. Zbl 1042.35002.
-
(2001)
Classics in Math
-
-
Gilbarg, D.1
Trudinger, N.S.2
-
9
-
-
0000333210
-
Über die unbeschränkte Fortsetzbarkeit einer stetigen ebenen Bewegung in einer unbegrenzten inkompressiblen Flüssigkeit
-
MR 1545431. Zbl 0008.06902
-
E. Hölder, Über die unbeschränkte Fortsetzbarkeit einer stetigen ebenen Bewegung in einer unbegrenzten inkompressiblen Flüssigkeit, Math. Z. 37 (1933), 727-738. MR 1545431. Zbl 0008.06902. http://dx.doi.org/10.1007/BF01474611.
-
(1933)
Math. Z
, vol.37
, pp. 727-738
-
-
Hölder, E.1
-
10
-
-
84904860400
-
Potentially singular solutions of the 3D incompressible Euler equations
-
arXiv 1310.0497
-
T. Hou and G. Luo, Potentially singular solutions of the 3D incompressible Euler equations. arXiv 1310.0497.
-
-
-
Hou, T.1
Luo, G.2
-
11
-
-
0002716749
-
The loss of smoothness of the solutions of Euler equations with time
-
121. MR 0454419
-
V. I. Judovič, The loss of smoothness of the solutions of Euler equations with time, Dinamika Sploshn. Sredy 16 (1974), 71-78, 121. MR 0454419.
-
(1974)
Dinamika Sploshn. Sredy
, vol.16
, pp. 71-78
-
-
Judovič, V.I.1
-
12
-
-
34250521951
-
On classical solutions of the two-dimensional non-stationary Euler equation
-
MR 0211057. Zbl 0166.45302
-
T. Kato, On classical solutions of the two-dimensional non-stationary Euler equation, Arch. Rational Mech. Anal. 25 (1967), 188-200. MR 0211057. Zbl 0166.45302. http://dx.doi.org/10.1007/BF00251588.
-
(1967)
Arch. Rational Mech. Anal
, vol.25
, pp. 188-200
-
-
Kato, T.1
-
13
-
-
0002020586
-
2
-
Amer. Math. Soc., Providence, RI, MR 0843590. Zbl 0598.35093
-
2, in Non-linear Functional Analysis and its Applications, Part 2 (Berkeley, Calif., 1983), Proc. Sympos. Pure Math. 45, Amer. Math. Soc., Providence, RI, 1986, pp. 1-7. MR 0843590. Zbl 0598.35093. http://dx.doi.org/10.1090/pspum/045.2.
-
(1986)
Non-linear Functional Analysis and its Applications, Part 2 (Berkeley, Calif., 1983), Proc. Sympos. Pure Math
, vol.45
, pp. 1-7
-
-
Kato, T.1
-
14
-
-
0036022790
-
Transport and instability for perfect fluids
-
MR 1923695. Zbl 1006.76008
-
H. Koch, Transport and instability for perfect fluids, Math. Ann. 323 (2002), 491-523. MR 1923695. Zbl 1006.76008. http://dx.doi.org/10.1007/s002080200312.
-
(2002)
Math. Ann
, vol.323
, pp. 491-523
-
-
Koch, H.1
-
15
-
-
0004259252
-
-
Cambridge Univ. Press, Cambridge, MR 1867882. Zbl 0983.76001
-
A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge Texts Appl. Math. 27, Cambridge Univ. Press, Cambridge, 2002. MR 1867882. Zbl 0983.76001.
-
(2002)
Vorticity and Incompressible Flow, Cambridge Texts Appl. Math
, vol.27
-
-
Majda, A.J.1
Bertozzi, A.L.2
-
17
-
-
0003269966
-
Mathematical Theory of Incompressible Nonviscous Fluids
-
Springer-Verlag, New York, MR 1245492. Zbl 0789.76002
-
C. Marchioro and M. Pulvirenti, Mathematical Theory of Incompressible Nonviscous Fluids, Appl. Math. Sci. 96, Springer-Verlag, New York, 1994. MR 1245492. Zbl 0789.76002. http://dx.doi.org/10.1007/978-1-4612-4284-0.
-
(1994)
Appl. Math. Sci
, vol.96
-
-
Marchioro, C.1
Pulvirenti, M.2
-
18
-
-
0001605431
-
Statistical mechanics of Euler equations in two dimensions
-
MR 1074119. Zbl 1050.82553
-
J. Miller, Statistical mechanics of Euler equations in two dimensions, Phys. Rev. Lett. 65 (1990), 2137-2140. MR 1074119. Zbl 1050.82553. http://dx.doi. org/10.1103/PhysRevLett.65.2137.
-
(1990)
Phys. Rev. Lett
, vol.65
, pp. 2137-2140
-
-
Miller, J.1
-
19
-
-
45849116955
-
Loss of smoothness and inherent instability of 2D inviscid fluid flows
-
MR 2424384. Zbl 1141.76012
-
A. Morgulis, A. Shnirelman, and V. Yudovich, Loss of smoothness and inherent instability of 2D inviscid fluid flows, Comm. Partial Differential Equations 33 (2008), 943-968. MR 2424384. Zbl 1141.76012. http://dx.doi.org/10.1080/03605300802108016.
-
(2008)
Comm. Partial Differential Equations
, vol.33
, pp. 943-968
-
-
Morgulis, A.1
Shnirelman, A.2
Yudovich, V.3
-
20
-
-
0040355045
-
Wandering solutions of the two-dimensional Euler equation, Funktsional
-
translation in Funct. Anal. Appl, 220-221. MR 1139875. Zbl 0769.35048
-
N. S. Nadirashvili,Wandering solutions of the two-dimensional Euler equation, Funktsional. Anal. i Prilozhen. 25 (1991), 70-71, translation in Funct. Anal. Appl. 25 (1992), 220-221. MR 1139875. Zbl 0769.35048. http://dx.doi.org/10.1007/BF01085491.
-
(1991)
Anal. i Prilozhen
, vol.25
, pp. 70-71
-
-
Nadirashvili, N.S.1
-
21
-
-
33645540554
-
A maximumentropy principle for two-dimensional perfect fluid dynamics
-
MR 1137423. Zbl 0935.76530
-
R. Robert, A maximumentropy principle for two-dimensional perfect fluid dynamics, J. Statist. Phys. 65 (1991), 531-553. MR 1137423. Zbl 0935.76530. http://dx.doi.org/10.1007/BF01053743.
-
(1991)
J. Statist. Phys
, vol.65
, pp. 531-553
-
-
Robert, R.1
-
22
-
-
0000173731
-
Lattice theory and flows of ideal incompressible fluid
-
MR 1240495. Zbl 0874.35096
-
A. I. Shnirelman, Lattice theory and flows of ideal incompressible fluid, Russian J. Math. Phys. 1 (1993), 105-114. MR 1240495. Zbl 0874.35096.
-
(1993)
Russian J. Math. Phys
, vol.1
, pp. 105-114
-
-
Shnirelman, A.I.1
-
23
-
-
79955651188
-
Why global regularity for Navier-Stokes is hard
-
post by Nets Katz on 20 March, 2007 at 12:21 am and the following thread
-
T. Tao, Why global regularity for Navier-Stokes is hard, post by Nets Katz on 20 March, 2007 at 12:21 am and the following thread. Available at http://terrytao.wordpress.com/2007/03/18/why-global-regularity-for-navier-stokes-is-hard/.
-
-
-
Tao, T.1
-
24
-
-
34250940791
-
Un theorème sur l'existence du mouvement plan d'un fluide parfait, homogène, incompressible, pendant un temps infiniment long
-
MR 1545430. Zbl 0008.06901
-
W. Wolibner, Un theorème sur l'existence du mouvement plan d'un fluide parfait, homogène, incompressible, pendant un temps infiniment long, Math. Z. 37 (1933), 698-726. MR 1545430. Zbl 0008.06901. http://dx.doi.org/10.1007/BF01474610.
-
(1933)
Math. Z.
, vol.37
, pp. 698-726
-
-
Wolibner, W.1
-
25
-
-
0000441467
-
The flow of a perfect, incompressible liquid through a given region
-
MR 0163529. Zbl 0139.20502
-
V. I. Yudovich, The flow of a perfect, incompressible liquid through a given region, Soviet Phys. Dokl. 7 (1962), 789-791. MR 0163529. Zbl 0139.20502.
-
(1962)
Soviet Phys. Dokl
, vol.7
, pp. 789-791
-
-
Yudovich, V.I.1
-
26
-
-
0345801447
-
On the loss of smoothness of the solutions of the Euler equations and the inherent instability of flows of an ideal fluid
-
MR 1791984. Zbl 0982.76014
-
V. I. Yudovich, On the loss of smoothness of the solutions of the Euler equations and the inherent instability of flows of an ideal fluid, Chaos 10 (2000), 705-719. MR 1791984. Zbl 0982.76014. http://dx.doi.org/10.1063/1.1287066.
-
(2000)
Chaos
, vol.10
, pp. 705-719
-
-
Yudovich, V.I.1
|