-
1
-
-
0031237594
-
IEEE 802.11 wireless local area networks
-
Sep.
-
B. P. Crow, I. Widjaja, J. G. Kim, and P. T. Sakai, “IEEE 802.11 wireless local area networks,” IEEE Commun. Mag., vol. 35, no. 9, pp. 116–126, Sep. 1998.
-
(1998)
IEEE Commun. Mag.
, vol.35
, Issue.9
, pp. 116-126
-
-
Crow, B.P.1
Widjaja, I.2
Kim, J.G.3
Sakai, P.T.4
-
2
-
-
0033749075
-
Performance analysis of the IEEE 802.11 distributed coordination function
-
Mar.
-
G. Bianchi, “Performance analysis of the IEEE 802.11 distributed coordination function,” IEEE J. Sel. Areas Commun., vol. 18, pp. 535–547, Mar. 2000.
-
(2000)
IEEE J. Sel. Areas Commun.
, vol.18
, pp. 535-547
-
-
Bianchi, G.1
-
3
-
-
0041438376
-
Kalman fitler estimation of the number of competing termnals in an IEEE 802.11 network
-
San Francisco, CA, Mar.
-
G. Bianchi and I. Tinnirello, “Kalman fitler estimation of the number of competing termnals in an IEEE 802.11 network,” in Proc. Infocom 2003, San Francisco, CA, Mar. 2003, vol. 2, pp. 844–852.
-
(2003)
Proc. Infocom
, vol.2
, pp. 844-852
-
-
Bianchi, G.1
Tinnirello, I.2
-
4
-
-
0003860037
-
Markov Chain Monte Carlo in Practice
-
London, U.K.: Chapman and Hall
-
W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, Markov Chain Monte Carlo in Practice. London, U.K.: Chapman and Hall, 1996.
-
(1996)
-
-
Gilks, W.R.1
Richardson, S.2
Spiegelhalter, D.J.3
-
5
-
-
0003665481
-
Sequential Monte Carlo Methods in Practice
-
New York: Springer-Verlag
-
A. Doucet, N. de Freitas, and N. Gordon, Eds., Sequential Monte Carlo Methods in Practice. New York: Springer-Verlag, 2001.
-
(2001)
-
-
Doucet, A.1
de Freitas, N.2
Gordon, N.3
-
6
-
-
0032359151
-
Sequential Monte Carlo methods for dynamic systems
-
J. S. Liu and R. Chen, “Sequential Monte Carlo methods for dynamic systems,” J. Amer. Statist. Assoc., vol. 93, no. 443, pp. 1032–1044, 1998.
-
(1998)
J. Amer. Statist. Assoc.
, vol.93
, Issue.443
, pp. 1032-1044
-
-
Liu, J.S.1
Chen, R.2
-
7
-
-
0036125627
-
Monte Carlo signal processing for wireless communications
-
Jan./Mar.
-
X. Wang, R. Chen, and J. S. Liu, “Monte Carlo signal processing for wireless communications,” J. VLSI Signal Process., vol. 30, no. 1–3, pp. 89–105, Jan./Mar. 2002.
-
(2002)
J. VLSI Signal Process.
, vol.30
, pp. 1-3
-
-
Wang, X.1
Chen, R.2
Liu, J.S.3
-
8
-
-
0036475891
-
Particle filters for state-space models with the presence of unknown static parameters
-
Feb.
-
G. Storvik, “Particle filters for state-space models with the presence of unknown static parameters,” IEEE Trans. Signal Process., vol. 50, pp. 281–289, Feb. 2002.
-
(2002)
IEEE Trans. Signal Process.
, vol.50
, pp. 281-289
-
-
Storvik, G.1
-
9
-
-
11844249571
-
Sequential Monte Carlo methods for digital communications
-
Ph. D, Univ. Cambridge, Cambridge, U.K.
-
E. Punskaya, “Sequential Monte Carlo methods for digital communications,” Ph.D, Univ. Cambridge, Cambridge, U.K., 2003.
-
(2003)
-
-
Punskaya, E.1
-
10
-
-
0024610919
-
A tutorial on hidden Markov models and selected application in speech recognition
-
Feb.
-
L. R. Rabiner, “A tutorial on hidden Markov models and selected application in speech recognition,” Proc. IEEE, vol. 77, pp. 257–285, Feb. 1989.
-
(1989)
Proc. IEEE
, vol.77
, pp. 257-285
-
-
Rabiner, L.R.1
-
11
-
-
0036489069
-
Bayesian methods for hidden Markov models: Recursive computing in the 21st century
-
S. L. Scott, “Bayesian methods for hidden Markov models: Recursive computing in the 21st century,” J. Amer. Statist. Assoc., vol. 97, no. 457, pp. 337–351, 2002.
-
(2002)
J. Amer. Statist. Assoc.
, vol.97
, Issue.457
, pp. 337-351
-
-
Scott, S.L.1
-
12
-
-
0027797470
-
Online estimation of hidden Markov model parameters based on the Kullback-Leibler information measure
-
Aug.
-
V. Krishnamurthy and J. B. Moore, “Online estimation of hidden Markov model parameters based on the Kullback-Leibler information measure,” IEEE Trans. Signal Process., vol. 41, pp. 2557–2573, Aug. 1993.
-
(1993)
IEEE Trans. Signal Process.
, vol.41
, pp. 2557-2573
-
-
Krishnamurthy, V.1
Moore, J.B.2
-
13
-
-
0036477062
-
Recursive algorithms for estimation of hidden Markov models and autoregressive models with Markov regime
-
Feb.
-
V. Krishnamurthy and G. G. Yin, “Recursive algorithms for estimation of hidden Markov models and autoregressive models with Markov regime,” IEEE Trans. Inf. Theory, vol. 48, pp. 458–476, Feb. 2002.
-
(2002)
IEEE Trans. Inf. Theory
, vol.48
, pp. 458-476
-
-
Krishnamurthy, V.1
Yin, G.G.2
-
14
-
-
0032075655
-
Adaptive estimation of HMM transition probabilities
-
May
-
J. J. Ford and J. B. Moore, “Adaptive estimation of HMM transition probabilities,” IEEE Trans. Signal Process., vol. 46, pp. 1374–1385, May 1998.
-
(1998)
IEEE Trans. Signal Process.
, vol.46
, pp. 1374-1385
-
-
Ford, J.J.1
Moore, J.B.2
-
16
-
-
0031065861
-
On recursive estimation for hidden Markov models
-
T. Ryden, “On recursive estimation for hidden Markov models,” Stoch. Proc. Applicat., vol. 66, pp. 79–96, 1997.
-
(1997)
Stoch. Proc. Applicat.
, vol.66
, pp. 79-96
-
-
Ryden, T.1
-
17
-
-
0021518209
-
Stochastic relaxation, Gibbs distribution and the Beyesian restoration of images
-
Nov.
-
S. Geman and D. Geman, “Stochastic relaxation, Gibbs distribution and the Beyesian restoration of images,” IEEE Trans. Pattern Anal. Mach. lntell, vol. 6, pp. 721–741, Nov. 1984.
-
(1984)
IEEE Trans. Pattern Anal. Mach. lntell
, vol.6
, pp. 721-741
-
-
Geman, S.1
Geman, D.2
-
18
-
-
21144460710
-
Asymptotic behavior of the Gibbs sampler
-
K. S. Chan, “Asymptotic behavior of the Gibbs sampler,” J. Amer. Statist. Assoc., vol. 88, pp. 320–326, 1993.
-
(1993)
J. Amer. Statist. Assoc.
, vol.88
, pp. 320-326
-
-
Chan, K.S.1
-
19
-
-
0000854270
-
Covariance structure and convergence rate of the Gibbs sampler with various scan
-
J. S. Liu, W. H. Wong, and A. Hong, “Covariance structure and convergence rate of the Gibbs sampler with various scan,” J. R. Statist. Soc. (B), vol. 57, pp. 157–169, 1995.
-
(1995)
J. R. Statist. Soc. (B)
, vol.57
, pp. 157-169
-
-
Liu, J.S.1
Wong, W.H.2
Hong, A.3
-
20
-
-
0003919677
-
Monte Carlo Statistical Methods
-
New York: Springer-Verlag
-
C. P. Robert and G. Casella, Monte Carlo Statistical Methods. New York: Springer-Verlag, 1999.
-
(1999)
-
-
Robert, C.P.1
Casella, G.2
-
21
-
-
84981748011
-
Bayesian Theory
-
New York: Wiley
-
J. M. Bernardo and A. F. M. Smith, Bayesian Theory. New York: Wiley, 1994.
-
(1994)
-
-
Bernardo, J.M.1
Smith, A.F.M.2
-
22
-
-
0003924729
-
Convergenge of sequential Monte Carlo methods
-
Tech. Rep. 381
-
D. Crisan and A. Doucet, “Convergenge of sequential Monte Carlo methods,” CUED-F-INFENG, 2000, Tech. Rep. 381.
-
(2000)
CUED-F-INFENG
-
-
Crisan, D.1
Doucet, A.2
-
23
-
-
0036475447
-
A tutorial on particle filters for on-line non-linear/non-Gaussian Bayesian tracking
-
Feb.
-
S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle filters for on-line non-linear/non-Gaussian Bayesian tracking,” IEEE Trans. Signal Process., vol. 50, pp. 174–188, Feb. 2002.
-
(2002)
IEEE Trans. Signal Process.
, vol.50
, pp. 174-188
-
-
Arulampalam, S.1
Maskell, S.2
Gordon, N.3
Clapp, T.4
-
24
-
-
0141854970
-
Online expectation-maximization type algorithms for parameter estimation in general state space models
-
Apr.
-
C. Andrieu and A. Doucet, “Online expectation-maximization type algorithms for parameter estimation in general state space models,” in Proc. Acoust., Speech, Signal Process., ICASSP'03, vol. 6, pp. 69–72, Apr. 2003.
-
(2003)
Proc. Acoust., Speech, Signal Process., ICASSP'03
, vol.6
, pp. 69-72
-
-
Andrieu, C.1
Doucet, A.2
-
25
-
-
0001225908
-
Combined parameter and state estimation in simulation-based filtering
-
Doucet, N. de Freitas, and N. Gordon, Eds. New York: Springer-Verlag
-
J. Liu and M. West, “Combined parameter and state estimation in simulation-based filtering,” in Sequential Monte Carlo Methods in Practice, A. Doucet, N. de Freitas, and N. Gordon, Eds. New York: Springer-Verlag, 2001.
-
(2001)
Sequential Monte Carlo Methods in Practice, A.
-
-
Liu, J.1
West, M.2
-
26
-
-
0035648076
-
Following a moving target - Monte Carlo inference for dynamic Bayesian models
-
W. R. Gilks and C. Berzuini, “Following a moving target - Monte Carlo inference for dynamic Bayesian models,” J. R. Statist. Soc. (B), vol. 63, no. 1, pp. 127–146, 2001.
-
(2001)
J. R. Statist. Soc. (B)
, vol.63
, Issue.1
, pp. 127-146
-
-
Gilks, W.R.1
Berzuini, C.2
-
27
-
-
0036929961
-
MCMC, sufficient statistics and particle filters
-
P. Fearnhead, “MCMC, sufficient statistics and particle filters,” J. Computat. Graph. Statist., vol. 11, pp. 848–862, 2002.
-
(2002)
J. Computat. Graph. Statist.
, vol.11
, pp. 848-862
-
-
Fearnhead, P.1
-
28
-
-
0001460136
-
On sequential Monte Carlo sampling methods for Bayesian filtering
-
A. Doucet, S. J. Godsill, and C. Andrieu, “On sequential Monte Carlo sampling methods for Bayesian filtering,” Statist. Comput., vol. 10, no. 3, pp. 197–208, 2000.
-
(2000)
Statist. Comput.
, vol.10
, Issue.3
, pp. 197-208
-
-
Doucet, A.1
Godsill, S.J.2
Andrieu, C.3
-
29
-
-
1542427941
-
Filtering via simulation: Auxiliary particle filters
-
M. K. Pitt and N. Shephard, “Filtering via simulation: Auxiliary particle filters,” J. Amer. Statist. Assoc., vol. 94, no. 446, pp. 590–599, 1999.
-
(1999)
J. Amer. Statist. Assoc.
, vol.94
, Issue.446
, pp. 590-599
-
-
Pitt, M.K.1
Shephard, N.2
-
30
-
-
0018494990
-
A detection-estimation scheme for state estimation in switching environment
-
J. Tugnait and A. Haddad, “A detection-estimation scheme for state estimation in switching environment,” Automatica, vol. 15, pp. 477–481, 1979.
-
(1979)
Automatica
, vol.15
, pp. 477-481
-
-
Tugnait, J.1
Haddad, A.2
-
32
-
-
0242550819
-
On-line inference for hidden Markov models via particle filters
-
P. Fearnhead and P. Clifford, “On-line inference for hidden Markov models via particle filters,” J. R. Statist. Soc. (B), vol. 65, no. 4, pp. 887–899, 2003.
-
(2003)
J. R. Statist. Soc. (B)
, vol.65
, Issue.4
, pp. 887-899
-
-
Fearnhead, P.1
Clifford, P.2
-
34
-
-
85008570250
-
-
[Online]
-
N. Simulator 2, [Online]
-
N. Simulator
, vol.2
-
-
|