메뉴 건너뛰기




Volumn 7, Issue 1, 2017, Pages 41-53

Bayesian genomic prediction with genotype × environment interaction kernel models

Author keywords

Gaussian kernel; Genomic selection; GenPred; Kernel GBLUP; Marker environment interaction; Multienvironment; Shared data resource

Indexed keywords

COVARIANCE; GENETIC CORRELATION; GENETIC MARKER; GENETIC MODEL; GENOTYPE ENVIRONMENT INTERACTION; KERNEL METHOD; MAIZE; NONHUMAN; PREDICTION; WHEAT; BAYES THEOREM; BIOLOGICAL MODEL; GENETIC SELECTION; GENETICS; GENOMICS; GENOTYPE; PLANT BREEDING; PLANT GENOME; SINGLE NUCLEOTIDE POLYMORPHISM; STATISTICS AND NUMERICAL DATA;

EID: 85008517817     PISSN: None     EISSN: 21601836     Source Type: Journal    
DOI: 10.1534/g3.116.035584     Document Type: Article
Times cited : (122)

References (28)
  • 2
    • 49149089736 scopus 로고    scopus 로고
    • Using factor analytic models for joining environments and genotypes without crossover genotype · environment interactions
    • Burgueño, J., J. Crossa, P. L. Cornelius, and R. C. Yang, 2008 Using factor analytic models for joining environments and genotypes without crossover genotype · environment interactions. Crop Sci. 48(4): 1291.
    • (2008) Crop Sci , vol.48 , Issue.4 , pp. 1291
    • Burgueño, J.1    Crossa, J.2    Cornelius, P.L.3    Yang, R.C.4
  • 3
    • 79955538191 scopus 로고    scopus 로고
    • Prediction assessment of linear mixed models for multivariate trials
    • Burgueño, J., J. Crossa, J. M. Cotes, F. San Vicente, and B. Das, 2011 Prediction assessment of linear mixed models for multivariate trials. Crop Sci. 51: 944-954.
    • (2011) Crop Sci , vol.51 , pp. 944-954
    • Burgueño, J.1    Crossa, J.2    Cotes, J.M.3    San Vicente, F.4    Das, B.5
  • 4
    • 84856866301 scopus 로고    scopus 로고
    • Genomic prediction of breeding values when modeling genotype · environment interaction using pedigree and dense molecular markers
    • Burgueño, J., G. de los Campos, K. Weigel, and J. Crossa, 2012 Genomic prediction of breeding values when modeling genotype · environment interaction using pedigree and dense molecular markers. Crop Sci. 52: 707-719.
    • (2012) Crop Sci , vol.52 , pp. 707-719
    • Burgueño, J.1    de los Campos, G.2    Weigel, K.3    Crossa, J.4
  • 5
    • 0009684592 scopus 로고    scopus 로고
    • Statistical test and estimators of multiplicative models for genotype-by-environment interaction
    • edited by Gauch, H. G., and M. Kang. CRC Press, Boca Raton, FL
    • Cornelius, P., J. Crossa, and M. Seyedsadr, 1996 Statistical test and estimators of multiplicative models for genotype-by-environment interaction, pp. 199-234 in Genotype-by-Environment Interaction, edited by Gauch, H. G., and M. Kang. CRC Press, Boca Raton, FL.
    • (1996) Genotype-by-Environment Interaction , pp. 199-234
    • Cornelius, P.1    Crossa, J.2    Seyedsadr, M.3
  • 6
    • 33646039536 scopus 로고    scopus 로고
    • Studying crossover genotype · environment interaction using linear-bilinear models and mixed models
    • Crossa, J., R. C. Yang, and P. L. Cornelius, 2004 Studying crossover genotype · environment interaction using linear-bilinear models and mixed models. J. Agric. Biol. Environ. Stat. 9(3): 362-380.
    • (2004) J. Agric. Biol. Environ. Stat , vol.9 , Issue.3 , pp. 362-380
    • Crossa, J.1    Yang, R.C.2    Cornelius, P.L.3
  • 7
    • 33746061693 scopus 로고    scopus 로고
    • Modeling genotype · environment interaction using additive genetic covariances of relatives for predicting breeding values of wheat genotypes
    • Crossa, J., J. Burgueño, P. L. Cornelius, G. McLaren, R. Trethowan et al., 2006 Modeling genotype · environment interaction using additive genetic covariances of relatives for predicting breeding values of wheat genotypes. Crop Sci. 46(4): 1722.
    • (2006) Crop Sci , vol.46 , Issue.4 , pp. 1722
    • Crossa, J.1    Burgueño, J.2    Cornelius, P.L.3    McLaren, G.4    Trethowan, R.5
  • 8
    • 78649325488 scopus 로고    scopus 로고
    • Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers
    • Crossa, J., G. de los Campos, P. Pérez-Rodríguez, D. Gianola, J. Burgueño et al., 2010 Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics 186: 713-724.
    • (2010) Genetics , vol.186 , pp. 713-724
    • Crossa, J.1    de los Campos, G.2    Pérez-Rodríguez, P.3    Gianola, D.4    Burgueño, J.5
  • 9
    • 84889073191 scopus 로고    scopus 로고
    • Genomic prediction in maize breeding populations with genotyping-by-sequencing
    • Crossa, J., Y. Beyene, S. Kassa, P. Pérez-Rodríguez, J. M. Hickey et al., 2013 Genomic prediction in maize breeding populations with genotyping-by-sequencing. G3 (Bethesda) 3: 1903-1926.
    • (2013) G3 (Bethesda) , vol.3 , pp. 1903-1926
    • Crossa, J.1    Beyene, Y.2    Kassa, S.3    Pérez-Rodríguez, P.4    Hickey, J.M.5
  • 10
    • 85008474719 scopus 로고    scopus 로고
    • Extending the marker · environment interaction model for genomic-enabled prediction and genome-wide association analyses in durum wheat
    • Crossa, J., M. Maccaferri, R. Tuberosa, J. Burgueño, and P. Pérez-Rodríguez, 2016 Extending the marker · environment interaction model for genomic-enabled prediction and genome-wide association analyses in durum wheat. Crop Sci. 56: 1-17.
    • (2016) Crop Sci , vol.56 , pp. 1-17
    • Crossa, J.1    Maccaferri, M.2    Tuberosa, R.3    Burgueño, J.4    Pérez-Rodríguez, P.5
  • 14
    • 78951477718 scopus 로고    scopus 로고
    • Semi-parametric genomic-enabled prediction of genetic values using reproducing kernel Hilbert spaces methods
    • de los Campos, G., D. Gianola, G. J. M. Rosa, K. Weigel, and J. Crossa, 2010 Semi-parametric genomic-enabled prediction of genetic values using reproducing kernel Hilbert spaces methods. Genet. Res. 92: 295-308.
    • (2010) Genet. Res , vol.92 , pp. 295-308
    • de los Campos, G.1    Gianola, D.2    Rosa, G.J.M.3    Weigel, K.4    Crossa, J.5
  • 15
    • 54049110614 scopus 로고
    • Studies in crop variation II. The manurial response of different potato varieties
    • Fisher, R. A., and W. A. Mackensie, 1923 Studies in crop variation II. The manurial response of different potato varieties. J. Agric. Sci. 13(03): 311-320.10.1017/S0021859600003592.
    • (1923) J. Agric. Sci , vol.13 , Issue.3 , pp. 311-320
    • Fisher, R.A.1    Mackensie, W.A.2
  • 16
    • 84905591226 scopus 로고    scopus 로고
    • A reaction norm model for genomic selection using high-dimensional genomic and environmental data
    • Jarquín, D., J. Crossa, X. Lacaze, P. D. Cheyron, J. Daucourt et al., 2014 A reaction norm model for genomic selection using high-dimensional genomic and environmental data. Theor. Appl. Genet. 127: 595-607.
    • (2014) Theor. Appl. Genet , vol.127 , pp. 595-607
    • Jarquín, D.1    Crossa, J.2    Lacaze, X.3    Cheyron, P.D.4    Daucourt, J.5
  • 17
    • 33646705049 scopus 로고    scopus 로고
    • Linear and generalized linear mixed models and their applications
    • Springer-Verlag, New York
    • Jiang, J., 2007 Linear and generalized linear mixed models and their applications, pp. 7. Springer Series in Statistics. Springer-Verlag, New York.
    • (2007) Springer Series in Statistics , pp. 7
    • Jiang, J.1
  • 18
    • 84928999042 scopus 로고    scopus 로고
    • Increased prediction accuracy in wheat breeding trials using a marker · environment interaction genomic selection model
    • López-Cruz, M. A., J. Crossa, D. Bonnet, S. Dreisigacker, J. Poland et al., 2015 Increased prediction accuracy in wheat breeding trials using a marker · environment interaction genomic selection model. G3. (Bethesda) 5(4):569-582.
    • (2015) G3. (Bethesda) , vol.5 , Issue.4 , pp. 569-582
    • López-Cruz, M.A.1    Crossa, J.2    Bonnet, D.3    Dreisigacker, S.4    Poland, J.5
  • 19
    • 0035045051 scopus 로고    scopus 로고
    • Prediction of total genetic value using genome-wide dense marker maps
    • Meuwissen, T. H. E., B. J. Hayes, and M. E. Goddard, 2001 Prediction of total genetic value using genome-wide dense marker maps. Genetics 157: 1819-1829.
    • (2001) Genetics , vol.157 , pp. 1819-1829
    • Meuwissen, T.H.E.1    Hayes, B.J.2    Goddard, M.E.3
  • 20
    • 84949084874 scopus 로고    scopus 로고
    • Selection of the bandwidth parameter in a Bayesian Kernel regression model for genomic-enabled prediction
    • Pérez-Elizalde, S., J. Cuevas, P. Pérez-Rodríguez, and J. Crossa, 2015 Selection of the bandwidth parameter in a Bayesian Kernel regression model for genomic-enabled prediction. J. Agric. Biol. Environ. Stat. 5(4): 512-532.
    • (2015) J. Agric. Biol. Environ. Stat , vol.5 , Issue.4 , pp. 512-532
    • Pérez-Elizalde, S.1    Cuevas, J.2    Pérez-Rodríguez, P.3    Crossa, J.4
  • 21
    • 84883167942 scopus 로고    scopus 로고
    • A comparison between linear and non-parametric regression models for genome-enabled prediction in wheat
    • Pérez-Rodríguez, P., D. Gianola, J. M. González-Camacho, J. Crossa, Y. Manes et al., 2012 A comparison between linear and non-parametric regression models for genome-enabled prediction in wheat. G3. (Bethesda) 2: 1595-1605.
    • (2012) G3. (Bethesda) , vol.2 , pp. 1595-1605
    • Pérez-Rodríguez, P.1    Gianola, D.2    González-Camacho, J.M.3    Crossa, J.4    Manes, Y.5
  • 22
    • 84907997062 scopus 로고    scopus 로고
    • Genome-wide regression and prediction with the BGLR statistical package
    • Pérez-Rodríguez, P., and G. de los Campos, 2014 Genome-wide regression and prediction with the BGLR statistical package. Genetics 198: 483-495.
    • (2014) Genetics , vol.198 , pp. 483-495
    • Pérez-Rodríguez, P.1    de los Campos, G.2
  • 23
    • 0031874045 scopus 로고    scopus 로고
    • Empirical best linear unbiased prediction in cultivar trials using factor analytic variance covariance structure
    • Piepho, H. P., 1998 Empirical best linear unbiased prediction in cultivar trials using factor analytic variance covariance structure. Theor. Appl. Genet. 97: 195-201.
    • (1998) Theor. Appl. Genet , vol.97 , pp. 195-201
    • Piepho, H.P.1
  • 24
    • 1642456033 scopus 로고    scopus 로고
    • Exploring varietyenvironment data using random effects AMMI models with adjustments for spatial field trend: part 1: theory
    • edited by Kang, M. S. CABI Publishing, Wallingford
    • Smith, A. B., B. R. Cullis, and R. Thompson. 2001 Exploring varietyenvironment data using random effects AMMI models with adjustments for spatial field trend: part 1: theory, pp. 323-335 in Quantitative Genetics, Genomics and Plant Breeding, edited by Kang, M. S. CABI Publishing, Wallingford.
    • (2001) Quantitative Genetics, Genomics and Plant Breeding , pp. 323-335
    • Smith, A.B.1    Cullis, B.R.2    Thompson, R.3
  • 25
    • 30444432667 scopus 로고    scopus 로고
    • The analysis of crop cultivar breeding and evaluation trials: an overview of current mixed model approaches
    • Smith, A. B., B. R. Cullis, and R. Thompson, 2005 The analysis of crop cultivar breeding and evaluation trials: an overview of current mixed model approaches. J. Agric. Sci. 143: 449-462.
    • (2005) J. Agric. Sci , vol.143 , pp. 449-462
    • Smith, A.B.1    Cullis, B.R.2    Thompson, R.3
  • 26
    • 55849129528 scopus 로고    scopus 로고
    • Genomic measures of relationship and inbreeding
    • VanRaden, P. M., 2007 Genomic measures of relationship and inbreeding. Interbull Bull 37: 33-36.
    • (2007) Interbull Bull , vol.37 , pp. 33-36
    • VanRaden, P.M.1
  • 27
    • 55849133422 scopus 로고    scopus 로고
    • Efficient methods to compute genomic predictions
    • VanRaden, P. M., 2008 Efficient methods to compute genomic predictions. J. Dairy Sci. 91: 4414-4423.
    • (2008) J. Dairy Sci , vol.91 , pp. 4414-4423
    • VanRaden, P.M.1
  • 28
    • 84906228734 scopus 로고
    • The analysis of groups of experiments
    • Yates, F., and W. G. Cochran, 1938 The analysis of groups of experiments. J. Agric. Sci. 28: 556-580.
    • (1938) J. Agric. Sci , vol.28 , pp. 556-580
    • Yates, F.1    Cochran, W.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.