메뉴 건너뛰기




Volumn 9, Issue 3, 2016, Pages

Genomic prediction of genotype × environment interaction kernel regression models

Author keywords

[No Author keywords available]

Indexed keywords

BAYES THEOREM; BIOLOGICAL MODEL; GENETICS; GENOTYPE; GENOTYPE ENVIRONMENT INTERACTION; PLANT GENOME; WHEAT;

EID: 84990955014     PISSN: None     EISSN: 19403372     Source Type: Journal    
DOI: 10.3835/plantgenome2016.03.0024     Document Type: Article
Times cited : (117)

References (28)
  • 1
    • 0002464001 scopus 로고    scopus 로고
    • Integrated likelihood methods for eliminating nuisance parameters
    • Berger, J.O., B. Liseo, and R.L. Wolpert. 1999. Integrated likelihood methods for eliminating nuisance parameters. Stat. Sci. 14:1-28. doi:10.1214/ss/1009211803.
    • (1999) Stat. Sci , vol.14 , pp. 1-28
    • Berger, J.O.1    Liseo, B.2    Wolpert, R.L.3
  • 2
    • 84856866301 scopus 로고    scopus 로고
    • Genomic prediction of breeding values when modeling genotype × environment interaction using pedigree and dense molecular markers
    • Burgueño, J., G. de los Campos, K. Weigel, and J. Crossa. 2012. Genomic prediction of breeding values when modeling genotype × environment interaction using pedigree and dense molecular markers. Crop Sci. 52:707-719. doi:10.2135/cropsci2011.06.0299.
    • (2012) Crop Sci , vol.52 , pp. 707-719
    • Burgueño, J.1    De Los Campos, G.2    Weigel, K.3    Crossa, J.4
  • 4
    • 84984824772 scopus 로고    scopus 로고
    • Extending the marker × environment interaction model for genomic-enabled prediction and genome-wise association analyses in durum wheat
    • Crossa, J., G. de los Campos, M. Maccaferri, R. Tuberosa, J. Burgueño, and P. Pérez-Rodríguez. 2015. Extending the marker × environment interaction model for genomic-enabled prediction and genome-wise association analyses in durum wheat. Crop Sci. doi:10.2135/cropsci2015.04.0260.
    • (2015) Crop Sci
    • Crossa, J.1    De Los Campos, G.2    Maccaferri, M.3    Tuberosa, R.4    Burgueño, J.5    Pérez-Rodríguez, P.6
  • 5
    • 78649325488 scopus 로고    scopus 로고
    • Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers
    • Crossa, J., G. de los Campos, P. Pérez-Rodríguez, D. Gianola, J. Burgueño, J.L. Arauset, et al. 2010. Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics 186:713-724. doi:10.1534/genetics.110.118521.
    • (2010) Genetics , vol.186 , pp. 713-724
    • Crossa, J.1    De Los Campos, G.2    Pérez-Rodríguez, P.3    Gianola, D.4    Burgueño, J.5    Arauset, J.L.6
  • 7
    • 78951477718 scopus 로고    scopus 로고
    • Semi-parametric genomic-enabled prediction of genetic values using reproducing kernel Hilbert spaces methods
    • de los Campos, G., D. Gianola, G.J.M. Rosa, K. Weigel, and J. Crossa. 2010. Semi-parametric genomic-enabled prediction of genetic values using reproducing kernel Hilbert spaces methods. Genet. Res. 92:295-308. doi:10.1017/S0016672310000285
    • (2010) Genet. Res , vol.92 , pp. 295-308
    • De Los Campos, G.1    Gianola, D.2    Rosa, G.J.M.3    Weigel, K.4    Crossa, J.5
  • 8
    • 84876390765 scopus 로고    scopus 로고
    • Whole-genome regression and prediction methods applied to plant and animal breeding
    • de los Campos, G., J.M. Hickey, R. Pong-Wong, H.D. Daetwyler, and M.P.L. Calus. 2012. Whole-genome regression and prediction methods applied to plant and animal breeding. Genetics 193:327-345. doi:10.1534/genetics.112.143313
    • (2012) Genetics , vol.193 , pp. 327-345
    • De Los Campos, G.1    Hickey, J.M.2    Pong-Wong, R.3    Daetwyler, H.D.4    Calus, M.P.L.5
  • 9
    • 67849130524 scopus 로고    scopus 로고
    • Predicting quantitative traits with regression models for dense molecular markers and pedigree
    • de los Campos, G., H. Naya, D. Gianola, J. Crossa, A. Legarra, E. Manfredi, et al. 2009. Predicting quantitative traits with regression models for dense molecular markers and pedigree. Genetics 182:375-385. doi:10.1534/genetics.109.101501
    • (2009) Genetics , vol.182 , pp. 375-385
    • De Los Campos, G.1    Naya, H.2    Gianola, D.3    Crossa, J.4    Legarra, A.5    Manfredi, E.6
  • 11
    • 85136354327 scopus 로고    scopus 로고
    • Ridge regression and other kernels for genomic selection with R package rrBLUP
    • Endelman, J.B. 2011. Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome 4:250-255. doi:10.3835/plantgenome2011.08.0024.
    • (2011) Plant Genome , vol.4 , pp. 250-255
    • Endelman, J.B.1
  • 12
    • 33746424900 scopus 로고    scopus 로고
    • Genomic-assisted prediction of genetic value with a semi-parametric procedure
    • Gianola, D., R. Fernando, and A. Stella. 2006. Genomic-assisted prediction of genetic value with a semi-parametric procedure. Genetics 173:1761-1776. doi:10.1534/genetics.105.049510.
    • (2006) Genetics , vol.173 , pp. 1761-1776
    • Gianola, D.1    Fernando, R.2    Stella, A.3
  • 13
    • 84990989400 scopus 로고    scopus 로고
    • Genome-enabled prediction of complex traits with kernel methods: What have we learned? Proc. 10th World Congress of Genetics Applied to Livestock Production
    • Vancouver, BC, Canada. 17-22. Aug. 2014, Champaign, IL
    • Gianola, D., G. Morota, and J. Crossa. 2014. Genome-enabled prediction of complex traits with kernel methods: What have we learned? Proc. 10th World Congress of Genetics Applied to Livestock Production., Vancouver, BC, Canada. 17-22. Aug. 2014. Amer. Soc. Animal Sci., Champaign, IL.
    • (2014) Amer. Soc. Animal Sci
    • Gianola, D.1    Morota, G.2    Crossa, J.3
  • 14
    • 45849117254 scopus 로고    scopus 로고
    • Reproducing kernel Hilbert space regression methods for genomic-assisted prediction of quantitative traits
    • Gianola, D., and J.B.C.H.M. van Kaam. 2008. Reproducing kernel Hilbert space regression methods for genomic-assisted prediction of quantitative traits. Genetics 178:2289-2303. doi:10.1534/genetics.107.084285.
    • (2008) Genetics , vol.178 , pp. 2289-2303
    • Gianola, D.1    Van Kaam, J.2
  • 15
    • 84906911933 scopus 로고    scopus 로고
    • Integrating environmental covariates and crop modeling into the genomic selection framework to predict genotype by environment interactions
    • Heslot, N., D. Akdemir, M.E. Sorrells, and J.L. Jannink. 2014. Integrating environmental covariates and crop modeling into the genomic selection framework to predict genotype by environment interactions. Theor. Appl. Genet. 127:463-480. doi:10.1007/s00122-013-2231-5.
    • (2014) Theor. Appl. Genet , vol.127 , pp. 463-480
    • Heslot, N.1    Akdemir, D.2    Sorrells, M.E.3    Jannink, J.L.4
  • 16
    • 82955176938 scopus 로고    scopus 로고
    • Genomic selection in plant breeding: A comparison of models
    • Heslot, N., H.P. Yang, M.E. Sorrells, and J.L. Jannink. 2012. Genomic selection in plant breeding: A comparison of models. Crop Sci. 52:146-160. doi:10.2135/cropsci2011.06.0297.
    • (2012) Crop Sci , vol.52 , pp. 146-160
    • Heslot, N.1    Yang, H.P.2    Sorrells, M.E.3    Jannink, J.L.4
  • 17
    • 84905591226 scopus 로고    scopus 로고
    • A reaction norm model for genomic selection using highdimensional genomic and environmental data
    • Jarquín, D., J. Crossa, X. Lacaze, P.D. Cheyron, J. Daucourt, J. Lorgeou, et al. 2014. A reaction norm model for genomic selection using highdimensional genomic and environmental data. Theor. Appl. Genet. 127:595-607. doi:10.1007/s00122-013-2243-1.
    • (2014) Theor. Appl. Genet , vol.127 , pp. 595-607
    • Jarquín, D.1    Crossa, J.2    Lacaze, X.3    Cheyron, P.D.4    Daucourt, J.5    Lorgeou, J.6
  • 18
    • 84928999042 scopus 로고    scopus 로고
    • Increased prediction accuracy in wheat breeding trials using a markers × environment interaction genomic selection model. G3: Genes, Genomes
    • López-Cruz, M.A., J. Crossa, D. Bonnet, S. Dreisigacker, J. Poland, J. Jannink, R. Singh, E. Autrique, and G. de los Campos. 2015. Increased prediction accuracy in wheat breeding trials using a markers × environment interaction genomic selection model. G3: Genes, Genomes, Genet. 5:569-582. doi:10.1534/g3.114.016097.
    • (2015) Genet , vol.5 , pp. 569-582
    • López-Cruz, M.A.1    Crossa, J.2    Bonnet, D.3    Dreisigacker, S.4    Poland, J.5    Jannink, J.6    Singh, R.7    Autrique, E.8    De Los Campos, G.9
  • 19
    • 0035045051 scopus 로고    scopus 로고
    • Prediction of total genetic value using genome-wide dense marker maps
    • Meuwissen, T.H.E., B.J. Hayes, and M.E. Goddard. 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819-1829.
    • (2001) Genetics , vol.157 , pp. 1819-1829
    • Meuwissen, T.H.E.1    Hayes, B.J.2    Goddard, M.E.3
  • 21
    • 84949115828 scopus 로고    scopus 로고
    • Kernel-based whole-genome prediction of complex traits: A review. Front
    • Morota, G., and D. Gianola. 2014. Kernel-based whole-genome prediction of complex traits: A review. Front. Genet. 5:1-13. doi:10.3389/fgene.2014.00363.
    • (2014) Genet , vol.5 , pp. 1-13
    • Morota, G.1    Gianola, D.2
  • 22
    • 84949084874 scopus 로고    scopus 로고
    • Selection of the bandwidth parameter in a Bayesian kernel regression model for genomic-enabled prediction
    • JABES
    • Pérez-Elizalde, S., J. Cuevas, P. Pérez-Rodríguez, and J. Crossa. 2015. Selection of the bandwidth parameter in a Bayesian kernel regression model for genomic-enabled prediction. J. Agric. Biol. Environ. Stat. 20:512-532 (JABES). doi:10.1007/s13253-015-0229-y
    • (2015) J. Agric. Biol. Environ. Stat , vol.20 , pp. 512-532
    • Pérez-Elizalde, S.1    Cuevas, J.2    Pérez-Rodríguez, P.3    Crossa, J.4
  • 23
    • 84907997062 scopus 로고    scopus 로고
    • Genome-wide regression & prediction with the BGLR statistical package
    • Pérez-Rodríguez, P., and G. de los Campos. 2014. Genome-wide regression & prediction with the BGLR statistical package. Genetics 198:483-495. doi:10.1534/genetics.114.164442.
    • (2014) Genetics , vol.198 , pp. 483-495
    • Pérez-Rodríguez, P.1    De Los Campos, G.2
  • 24
    • 84883167942 scopus 로고    scopus 로고
    • A comparison between linear and non-parametric regression models for genome-enabled prediction in wheat. G3: Genes, Genomes
    • Pérez-Rodríguez, P., D. Gianola, J.M. González-Camacho, J. Crossa, Y. Manes, and S. Dreisigacker. 2012. A comparison between linear and non-parametric regression models for genome-enabled prediction in wheat. G3: Genes, Genomes, Genet. 2:1595-1605.
    • (2012) Genet , vol.2 , pp. 1595-1605
    • Pérez-Rodríguez, P.1    Gianola, D.2    González-Camacho, J.M.3    Crossa, J.4    Manes, Y.5    Dreisigacker, S.6
  • 25
    • 84991007792 scopus 로고    scopus 로고
    • R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
    • R Development Core Team. 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
    • (2015)
  • 26
    • 55849129528 scopus 로고    scopus 로고
    • Genomic measures of relationship and inbreeding
    • VanRaden, P.M. 2007. Genomic measures of relationship and inbreeding. Interbull Bull. 37:33-36.
    • (2007) Interbull Bull , vol.37 , pp. 33-36
    • Vanraden, P.M.1
  • 27
    • 55849133422 scopus 로고    scopus 로고
    • Efficient methods to compute genomic predictions
    • VanRaden, P.M. 2008. Efficient methods to compute genomic predictions. J. Dairy Sci. 91:4414-4423. doi:10.3168/jds.2007-0980.
    • (2008) J. Dairy Sci , vol.91 , pp. 4414-4423
    • Vanraden, P.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.