메뉴 건너뛰기




Volumn 7, Issue , 2017, Pages

Cu2ZnSnS4/MoS2-Reduced Graphene Oxide Heterostructure: Nanoscale Interfacial Contact and Enhanced Photocatalytic Hydrogen Generation

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85008330517     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep39411     Document Type: Article
Times cited : (65)

References (55)
  • 1
    • 78449288259 scopus 로고    scopus 로고
    • Semiconductor-based Photocatalytic Hydrogen Generation
    • Chen, X., Shen, S., Guo, L. & Mao, S. S. Semiconductor-based Photocatalytic Hydrogen Generation. Chem. Rev. 110, 6503-6570 (2010).
    • (2010) Chem. Rev. , vol.110 , pp. 6503-6570
    • Chen, X.1    Shen, S.2    Guo, L.3    Mao, S.S.4
  • 2
    • 84899943870 scopus 로고    scopus 로고
    • Semiconductor composites: Strategies for enhancing charge carrier separation to improve photocatalytic activity
    • Marschall, R. Semiconductor Composites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity. Adv. Funct. Mater. 24, 2421-2440 (2013).
    • (2013) Adv. Funct. Mater. , vol.24 , pp. 2421-2440
    • Marschall, R.1
  • 3
    • 84957592578 scopus 로고    scopus 로고
    • Efficient visible light photocatalytic CO2 reforming of CH4
    • Han, B., Wei, W., Chang, L., Cheng, P. & Hu, Y. H. Efficient Visible Light Photocatalytic CO2 Reforming of CH4. ACS Catal. 6, 494-497 (2016).
    • (2016) ACS Catal. , vol.6 , pp. 494-497
    • Han, B.1    Wei, W.2    Chang, L.3    Cheng, P.4    Hu, Y.H.5
  • 4
    • 84939825576 scopus 로고    scopus 로고
    • Highly efficient temperature-induced visible light photocatalytic hydrogen production from water
    • Han, B. & Hu, Y. H. Highly Efficient Temperature-Induced Visible Light Photocatalytic Hydrogen Production from Water. J. Phys. Chem. C 119, 18927-18934 (2015).
    • (2015) J. Phys. Chem. C , vol.119 , pp. 18927-18934
    • Han, B.1    Hu, Y.H.2
  • 5
    • 75649118191 scopus 로고    scopus 로고
    • Prospects of colloidal nanocrystals for electronic and optoelectronic applications
    • Talapin, D. V., Lee, J.-S., Kovalenko, M. V. & Shevchenko, E. V. Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications. Chem. Rev. 110, 389-458 (2009).
    • (2009) Chem. Rev. , vol.110 , pp. 389-458
    • Talapin, D.V.1    Lee, J.-S.2    Kovalenko, M.V.3    Shevchenko, E.V.4
  • 6
    • 67649413034 scopus 로고    scopus 로고
    • Solar cells from colloidal nanocrystals: Fundamentals, materials, devices, and economics
    • Hillhouse, H. W. & Beard, M. C. Solar cells from colloidal nanocrystals: Fundamentals, materials, devices, and economics. Curr. Opin. Colloid Interface Sci. 14, 245-259 (2009).
    • (2009) Curr. Opin. Colloid Interface Sci. , vol.14 , pp. 245-259
    • Hillhouse, H.W.1    Beard, M.C.2
  • 7
    • 84871961525 scopus 로고    scopus 로고
    • Emergence of colloidal quantum-dot light-emitting technologies
    • Shirasaki, Y., Supran, G. J., Bawendi, M. G. & Bulovic, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photon 7, 13-23 (2013).
    • (2013) Nat. Photon , vol.7 , pp. 13-23
    • Shirasaki, Y.1    Supran, G.J.2    Bawendi, M.G.3    Bulovic, V.4
  • 8
    • 35348875044 scopus 로고
    • Electrochemical photolysis of water at a semiconductor electrode
    • Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37-38 (1972).
    • (1972) Nature , vol.238 , pp. 37-38
    • Fujishima, A.1    Honda, K.2
  • 9
    • 61649119228 scopus 로고    scopus 로고
    • Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting
    • Cesar, I., Sivula, K., Kay, A., Zboril, R. & Grätzel, M. Influence of Feature Size, Film Thickness, and Silicon Doping on the Performance of Nanostructured Hematite Photoanodes for Solar Water Splitting. J. Phys. Chem. C 113, 772-782 (2008).
    • (2008) J. Phys. Chem. C , vol.113 , pp. 772-782
    • Cesar, I.1    Sivula, K.2    Kay, A.3    Zboril, R.4    Grätzel, M.5
  • 10
    • 84879909795 scopus 로고    scopus 로고
    • Mesoporous coupled ZnO/TiO2 photocatalyst nanocomposites for hydrogen generation
    • Hussein, A. M. et al. Mesoporous coupled ZnO/TiO2 photocatalyst nanocomposites for hydrogen generation. J. Renwe. Sustain. Ener. 5, 033118 (2013).
    • (2013) J. Renwe. Sustain. Ener. , vol.5 , pp. 033118
    • Hussein, A.M.1
  • 11
    • 84870621164 scopus 로고    scopus 로고
    • A highly efficient photocatalyst-hydrogenated black tio2 for the photocatalytic splitting of water
    • Hu, Y. H. A Highly Efficient Photocatalyst-Hydrogenated Black TiO2 for the Photocatalytic Splitting of Water. Angew. Chem. Int. Ed. 51, 12410-12412 (2012).
    • (2012) Angew. Chem. Int. Ed. , vol.51 , pp. 12410-12412
    • Hu, Y.H.1
  • 12
    • 84958050981 scopus 로고    scopus 로고
    • An order/disorder/water junction system for highly efficient co-catalyst-free photocatalytic hydrogen generation
    • Zhang, K. et al. An order/disorder/water junction system for highly efficient co-catalyst-free photocatalytic hydrogen generation. Energy Environ. Sci. 9, 499-503 (2016).
    • (2016) Energy Environ. Sci. , vol.9 , pp. 499-503
    • Zhang, K.1
  • 13
    • 39149118910 scopus 로고    scopus 로고
    • Self-templated synthesis of nanoporous cds nanostructures for highly efficient photocatalytic hydrogen production under visible light
    • Bao, N., Shen, L., Takata, T. & Domen, K. Self-Templated Synthesis of Nanoporous CdS Nanostructures for Highly Efficient Photocatalytic Hydrogen Production under Visible Light. Chem. Mater. 20, 110-117 (2007).
    • (2007) Chem. Mater. , vol.20 , pp. 110-117
    • Bao, N.1    Shen, L.2    Takata, T.3    Domen, K.4
  • 14
    • 84880610608 scopus 로고    scopus 로고
    • Metal sulphide semiconductors for photocatalytic hydrogen production
    • Zhang, K. & Guo, L. Metal sulphide semiconductors for photocatalytic hydrogen production. Catal. Sci. Technol. 3, 1672-1690 (2013).
    • (2013) Catal. Sci. Technol. , vol.3 , pp. 1672-1690
    • Zhang, K.1    Guo, L.2
  • 15
    • 77954045863 scopus 로고    scopus 로고
    • Photocatalytic hydrogen evolution from water using copper gallium sulfide under visible-light irradiation
    • Tabata, M. et al. Photocatalytic Hydrogen Evolution from Water Using Copper Gallium Sulfide under Visible-Light Irradiation. J. Phys. Chem. C 114, 11215-11220 (2010).
    • (2010) J. Phys. Chem. C , vol.114 , pp. 11215-11220
    • Tabata, M.1
  • 16
    • 69049098119 scopus 로고    scopus 로고
    • Synthesis of cu2znsns4 nanocrystal ink and its use for solar cells
    • Guo, Q., Hillhouse, H. W. & Agrawal, R. Synthesis of Cu2ZnSnS4 Nanocrystal Ink and Its Use for Solar Cells. J. Am. Chem. Soc. 131, 11672-11673 (2009).
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 11672-11673
    • Guo, Q.1    Hillhouse, H.W.2    Agrawal, R.3
  • 17
    • 69849089757 scopus 로고    scopus 로고
    • Synthesis of cu2znsns4 nanocrystals for use in low-cost photovoltaics
    • Steinhagen, C. et al. Synthesis of Cu2ZnSnS4 Nanocrystals for Use in Low-Cost Photovoltaics. J. Am. Chem. Soc. 131, 12554-12555 (2009).
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 12554-12555
    • Steinhagen, C.1
  • 18
    • 84863393558 scopus 로고    scopus 로고
    • Colloidal synthesis of wurtzite cu2znsns4 nanorods and their perpendicular assembly
    • Singh, A., Geaney, H., Laffir, F. & Ryan, K. M. Colloidal Synthesis of Wurtzite Cu2ZnSnS4 Nanorods and Their Perpendicular Assembly. J. Am. Chem. Soc. 134, 2910-2913 (2012).
    • (2012) J. Am. Chem. Soc. , vol.134 , pp. 2910-2913
    • Singh, A.1    Geaney, H.2    Laffir, F.3    Ryan, K.M.4
  • 19
    • 84863358817 scopus 로고    scopus 로고
    • A simple template-free synthesis of ultrathin Cu2ZnSnS4 nanosheets for highly stable photocatalytic H2 evolution
    • Wang, L., Wang, W. & Sun, S. A simple template-free synthesis of ultrathin Cu2ZnSnS4 nanosheets for highly stable photocatalytic H2 evolution. J. Mater. Chem. 22, 6553-6555 (2012).
    • (2012) J. Mater. Chem. , vol.22 , pp. 6553-6555
    • Wang, L.1    Wang, W.2    Sun, S.3
  • 20
    • 84901937898 scopus 로고    scopus 로고
    • Significant enhancement in photocatalytic reduction of water to hydrogen by au/cu2znsns4 nanostructure
    • Ha, E. et al. Significant Enhancement in Photocatalytic Reduction of Water to Hydrogen by Au/Cu2ZnSnS4 Nanostructure. Adv. Mater. 26, 3496-3500 (2014).
    • (2014) Adv. Mater. , vol.26 , pp. 3496-3500
    • Ha, E.1
  • 21
    • 84928902482 scopus 로고    scopus 로고
    • Morphology-controlled synthesis of au/cu2fesns4 core-shell nanostructures for plasmon-enhanced photocatalytic hydrogen generation
    • Ha, E., Lee, L. Y. S., Man, H.-W., Tsang, S. C. E. & Wong, K.-Y. Morphology-Controlled Synthesis of Au/Cu2FeSnS4 Core-Shell Nanostructures for Plasmon-Enhanced Photocatalytic Hydrogen Generation. Appl. Mater. Interfaces 7, 9072-9077 (2015).
    • (2015) Appl. Mater. Interfaces , vol.7 , pp. 9072-9077
    • Ha, E.1    Lee, L.Y.S.2    Man, H.-W.3    Tsang, S.C.E.4    Wong, K.-Y.5
  • 22
    • 84903747890 scopus 로고    scopus 로고
    • Cu2ZnSnS4-Pt and Cu2ZnSnS4-Au heterostructured nanoparticles for photocatalytic water splitting and pollutant degradation
    • Yu, X. et al. Cu2ZnSnS4-Pt and Cu2ZnSnS4-Au Heterostructured Nanoparticles for Photocatalytic Water Splitting and Pollutant Degradation. J. Am. Chem. Soc. 136, 9236-9239 (2014).
    • (2014) J. Am. Chem. Soc. , vol.136 , pp. 9236-9239
    • Yu, X.1
  • 23
    • 84911907454 scopus 로고    scopus 로고
    • Interfacial charge transfer and enhanced photocatalytic performance for the heterojunction WO3/BiOCl: Firstprinciples study
    • Yang, W. et al. Interfacial charge transfer and enhanced photocatalytic performance for the heterojunction WO3/BiOCl: firstprinciples study. J. Mater. Chem. A 2, 20770-20775 (2014).
    • (2014) J. Mater. Chem. A , vol.2 , pp. 20770-20775
    • Yang, W.1
  • 24
    • 77649148242 scopus 로고    scopus 로고
    • Hydrothermal synthesis, structural characteristics, and enhanced photocatalysis of sno2/?-fe2o3 semiconductor nanoheterostructures
    • Niu, M. et al. Hydrothermal Synthesis, Structural Characteristics, and Enhanced Photocatalysis of SnO2/?-Fe2O3 Semiconductor Nanoheterostructures. ACS Nano 4, 681-688 (2010).
    • (2010) ACS Nano , vol.4 , pp. 681-688
    • Niu, M.1
  • 25
    • 84925252075 scopus 로고    scopus 로고
    • Metal semiconductor heterostructures for photocatalytic conversion of light energy
    • Dutta, S. K., Mehetor, S. K. & Pradhan, N. Metal Semiconductor Heterostructures for Photocatalytic Conversion of Light Energy. J. Phys. Chem. Lett. 6, 936-944 (2015).
    • (2015) J. Phys. Chem. Lett. , vol.6 , pp. 936-944
    • Dutta, S.K.1    Mehetor, S.K.2    Pradhan, N.3
  • 26
    • 84890174605 scopus 로고    scopus 로고
    • Photocatalysts with internal electric fields
    • Li, L., Salvador, P. A. & Rohrer, G. S. Photocatalysts with internal electric fields. Nanoscale 6, 24-42 (2014).
    • (2014) Nanoscale , vol.6 , pp. 24-42
    • Li, L.1    Salvador, P.A.2    Rohrer, G.S.3
  • 27
    • 84994506043 scopus 로고    scopus 로고
    • In situ fabrication of Bi2WO6/MoS2/RGO heterojunction with nanosized interfacial contact via confined space effect towards enhanced photocatalytic properties
    • Zhang, C. et al. In situ fabrication of Bi2WO6/MoS2/RGO heterojunction with nanosized interfacial contact via confined space effect towards enhanced photocatalytic properties. ACS Sustain. Chem. & Eng doi: 10.1021/acssuschemeng.6b00640 (2016).
    • (2016) ACS Sustain. Chem. & Eng
    • Zhang, C.1
  • 28
    • 84908032590 scopus 로고    scopus 로고
    • Engineering nanointerfaces for nanocatalysis
    • Zhang, Z.-c., Xu, B. & Wang, X. Engineering nanointerfaces for nanocatalysis. Chem. Soc. Rev. 43, 7870-7886 (2014).
    • (2014) Chem. Soc. Rev. , vol.43 , pp. 7870-7886
    • Zhang, Z.-C.1    Xu, B.2    Wang, X.3
  • 29
    • 84942941273 scopus 로고    scopus 로고
    • Epitaxial growth of hetero-nanostructures based on ultrathin two-dimensional nanosheets
    • Tan, C. & Zhang, H. Epitaxial Growth of Hetero-Nanostructures Based on Ultrathin Two-Dimensional Nanosheets. J. Am. Chem. Soc. 137, 12162-12174 (2015).
    • (2015) J. Am. Chem. Soc. , vol.137 , pp. 12162-12174
    • Tan, C.1    Zhang, H.2
  • 30
    • 84949294368 scopus 로고    scopus 로고
    • Synchronous etching-epitaxial growth fabrication of facet-coupling NaTaO3/Ta2O5 heterostructured nanofibers for enhanced photocatalytic hydrogen production
    • Xu, L. et al. Synchronous etching-epitaxial growth fabrication of facet-coupling NaTaO3/Ta2O5 heterostructured nanofibers for enhanced photocatalytic hydrogen production. Appl. Catal., B 184, 309-319 (2016).
    • (2016) Appl. Catal., B , vol.184 , pp. 309-319
    • Xu, L.1
  • 31
    • 84894417409 scopus 로고    scopus 로고
    • A 1D/2D helical cds/znin2s4 nano-heterostructure
    • Xu, B. et al. A 1D/2D Helical CdS/ZnIn2S4 Nano-Heterostructure. Angew. Chem. Int. Ed. 53, 2339-2343 (2014).
    • (2014) Angew. Chem. Int. Ed. , vol.53 , pp. 2339-2343
    • Xu, B.1
  • 32
    • 84867304039 scopus 로고    scopus 로고
    • A roadmap for graphene
    • Novoselov, K. S. et al. A roadmap for graphene. Nature 490, 192-200 (2012).
    • (2012) Nature , vol.490 , pp. 192-200
    • Novoselov, K.S.1
  • 33
    • 77956449509 scopus 로고    scopus 로고
    • Thinnest two-dimensional nanomaterial-graphene for solar energy
    • Hu, Y. H., Wang, H. & Hu, B. Thinnest Two-Dimensional Nanomaterial-Graphene for Solar Energy. ChemSusChem 3, 782-796 (2010).
    • (2010) ChemSusChem , vol.3 , pp. 782-796
    • Hu, Y.H.1    Wang, H.2    Hu, B.3
  • 34
    • 49449091072 scopus 로고    scopus 로고
    • Approaching ballistic transport in suspended graphene
    • Du, X., Skachko, I., Barker, A. & Andrei, E. Y. Approaching ballistic transport in suspended graphene. Nat. Nano 3, 491-495 (2008).
    • (2008) Nat. Nano , vol.3 , pp. 491-495
    • Du, X.1    Skachko, I.2    Barker, A.3    Andrei, E.Y.4
  • 35
    • 85008421637 scopus 로고    scopus 로고
    • MoS2 as a co-catalyst for photocatalytic hydrogen production from water
    • Han, B. & Hu, Y. H. MoS2 as a co-catalyst for photocatalytic hydrogen production from water. Energy Sci. & Eng. doi: 10.1002/ ese3.128 (2016)
    • (2016) Energy Sci. & Eng. Doi
    • Han, B.1    Hu, Y.H.2
  • 36
    • 34447326950 scopus 로고    scopus 로고
    • Identification of active edge sites for electrochemical h2 evolution from mos2 nanocatalysts
    • Jaramillo, T. F. et al. Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts. Science 317, 100-102 (2007).
    • (2007) Science , vol.317 , pp. 100-102
    • Jaramillo, T.F.1
  • 37
    • 84992295816 scopus 로고    scopus 로고
    • Delocalized electron accumulation at nanorod tips: Origin of efficient h2 generation
    • Zhang, K. et al. Delocalized Electron Accumulation at Nanorod Tips: Origin of Efficient H2 Generation. Adv. Funct. Mater. 26, 4527-4534 (2016).
    • (2016) Adv. Funct. Mater. , vol.26 , pp. 4527-4534
    • Zhang, K.1
  • 38
    • 84960869416 scopus 로고    scopus 로고
    • Few-layered MoS2 nanosheets wrapped ultrafine TiO2 nanobelts with enhanced photocatalytic property
    • Li, H. et al. Few-layered MoS2 nanosheets wrapped ultrafine TiO2 nanobelts with enhanced photocatalytic property. Nanoscale 8, 6101-6109 (2016).
    • (2016) Nanoscale , vol.8 , pp. 6101-6109
    • Li, H.1
  • 39
    • 84862535461 scopus 로고    scopus 로고
    • A cuprous oxide-reduced graphene oxide (Cu2O-rGO) composite photocatalyst for hydrogen generation: Employing rGO as an electron acceptor to enhance the photocatalytic activity and stability of Cu2O
    • Tran, P. D. et al. A cuprous oxide-reduced graphene oxide (Cu2O-rGO) composite photocatalyst for hydrogen generation: employing rGO as an electron acceptor to enhance the photocatalytic activity and stability of Cu2O. Nanoscale 4, 3875-3878 (2012).
    • (2012) Nanoscale , vol.4 , pp. 3875-3878
    • Tran, P.D.1
  • 40
    • 84941729282 scopus 로고    scopus 로고
    • Hierarchical hybrid nanostructures of Sn3O4 on N doped TiO2 nanotubes with enhanced photocatalytic performance
    • Yu, X. et al. Hierarchical hybrid nanostructures of Sn3O4 on N doped TiO2 nanotubes with enhanced photocatalytic performance. J. Mater. Chem. A 3, 19129-19136 (2015).
    • (2015) J. Mater. Chem. A , vol.3 , pp. 19129-19136
    • Yu, X.1
  • 41
    • 79953873657 scopus 로고    scopus 로고
    • From sulfur? Amine solutions to metal sulfide nanocrystals: Peering into the oleylamine? Sulfur black box
    • Thomson, J. W., Nagashima, K., Macdonald, P. M. & Ozin, G. A. From Sulfur? Amine Solutions to Metal Sulfide Nanocrystals: Peering into the Oleylamine? Sulfur Black Box. J. Am. Chem. Soc. 133, 5036-5041 (2011).
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 5036-5041
    • Thomson, J.W.1    Nagashima, K.2    Macdonald, P.M.3    Ozin, G.A.4
  • 42
    • 84873734592 scopus 로고    scopus 로고
    • Hydrogen sulfide adsorption on a defective graphene
    • Borisova, D., Antonov, V. & Proykova, A. Hydrogen sulfide adsorption on a defective graphene. Int. J. Quantum Chem 113, 786-791 (2013).
    • (2013) Int. J. Quantum Chem , vol.113 , pp. 786-791
    • Borisova, D.1    Antonov, V.2    Proykova, A.3
  • 43
    • 84938915889 scopus 로고    scopus 로고
    • Growth and optical properties of Cu2ZnSnS4 decorated reduced graphene oxide nanocomposites
    • Thangaraju, D., Karthikeyan, R., Prakash, N., Moorthy Babu, S. & Hayakawa, Y. Growth and optical properties of Cu2ZnSnS4 decorated reduced graphene oxide nanocomposites. Dalton Trans. 44, 15031-15041 (2015).
    • (2015) Dalton Trans. , vol.44 , pp. 15031-15041
    • Thangaraju, D.1    Karthikeyan, R.2    Prakash, N.3    Moorthy Babu, S.4    Hayakawa, Y.5
  • 44
    • 84859945129 scopus 로고    scopus 로고
    • Synergetic effect of mos2 and graphene as cocatalysts for enhanced photocatalytic h2 production activity of tio2 nanoparticles
    • Xiang, Q., Yu, J. & Jaroniec, M. Synergetic Effect of MoS2 and Graphene as Cocatalysts for Enhanced Photocatalytic H2 Production Activity of TiO2 Nanoparticles. J. Am. Chem. Soc. 134, 6575-6578 (2012).
    • (2012) J. Am. Chem. Soc. , vol.134 , pp. 6575-6578
    • Xiang, Q.1    Yu, J.2    Jaroniec, M.3
  • 45
    • 84894420080 scopus 로고    scopus 로고
    • Enhanced photocatalytic H2 evolution on ZnS loaded with graphene and MoS2 nanosheets as cocatalysts
    • Zhu, B. et al. Enhanced photocatalytic H2 evolution on ZnS loaded with graphene and MoS2 nanosheets as cocatalysts. J. Mater. Chem. A 2, 3819-3827 (2014).
    • (2014) J. Mater. Chem. A , vol.2 , pp. 3819-3827
    • Zhu, B.1
  • 46
    • 84891676656 scopus 로고    scopus 로고
    • A graphene dispersed CdS-MoS2 nanocrystal ensemble for cooperative photocatalytic hydrogen production from water
    • Jia, T. et al. A graphene dispersed CdS-MoS2 nanocrystal ensemble for cooperative photocatalytic hydrogen production from water. Chem. Comm. 50, 1185-1188 (2014).
    • (2014) Chem. Comm. , vol.50 , pp. 1185-1188
    • Jia, T.1
  • 47
    • 84859125998 scopus 로고    scopus 로고
    • Dual n-type doped reduced graphene oxide field effect transistors controlled by semiconductor nanocrystals
    • Wang, L. et al. Dual n-type doped reduced graphene oxide field effect transistors controlled by semiconductor nanocrystals. Chem. Comm. 48, 4052-4054 (2012).
    • (2012) Chem. Comm. , vol.48 , pp. 4052-4054
    • Wang, L.1
  • 48
    • 79955891162 scopus 로고    scopus 로고
    • MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction
    • Li, Y. et al. MoS2 Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction. J. Am. Chem. Soc. 133, 7296-7299 (2011).
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 7296-7299
    • Li, Y.1
  • 49
    • 84870423989 scopus 로고    scopus 로고
    • Facile synthesis of MoS2/graphene nanocomposite with high catalytic activity toward triiodide reduction in dyesensitized solar cells
    • Liu, C.-J. et al. Facile synthesis of MoS2/graphene nanocomposite with high catalytic activity toward triiodide reduction in dyesensitized solar cells. J. Mater. Chem. 22, 21057-21064 (2012).
    • (2012) J. Mater. Chem. , vol.22 , pp. 21057-21064
    • Liu, C.-J.1
  • 50
    • 77957204738 scopus 로고    scopus 로고
    • Atomically thin mos2: A new direct-gap semiconductor
    • Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 105, 136805 (2010).
    • (2010) Phys. Rev. Lett. , vol.105 , pp. 136805
    • Mak, K.F.1    Lee, C.2    Hone, J.3    Shan, J.4    Heinz, T.F.5
  • 51
    • 33847690144 scopus 로고    scopus 로고
    • The rise of graphene
    • Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat Mater 6, 183-191 (2007).
    • (2007) Nat Mater , vol.6 , pp. 183-191
    • Geim, A.K.1    Novoselov, K.S.2
  • 52
    • 44949200319 scopus 로고    scopus 로고
    • Enhancement of photocatalytic h2 evolution on cds by loading mos2 as cocatalyst under visible light irradiation
    • Zong, X. et al. Enhancement of Photocatalytic H2 Evolution on CdS by Loading MoS2 as Cocatalyst under Visible Light Irradiation. J. Am. Chem. Soc. 130, 7176-7177 (2008).
    • (2008) J. Am. Chem. Soc. , vol.130 , pp. 7176-7177
    • Zong, X.1
  • 53
    • 84987942214 scopus 로고    scopus 로고
    • An oxygen-vacancy rich 3D novel hierarchical MoS2/BiOI/AgI ternary nanocomposite: Enhanced photocatalytic activity through photogenerated electron shuttling in a Z-scheme manner
    • Jahurul Islam, M. et al. An oxygen-vacancy rich 3D novel hierarchical MoS2/BiOI/AgI ternary nanocomposite: enhanced photocatalytic activity through photogenerated electron shuttling in a Z-scheme manner. Phys. Chem. Chem. Phys. 18, 24984-24993 (2016).
    • (2016) Phys. Chem. Chem. Phys. , vol.18 , pp. 24984-24993
    • Jahurul Islam, M.1
  • 54
    • 84963725482 scopus 로고    scopus 로고
    • Uniformly sized (112) facet co2p on graphene for highly effective photocatalytic hydrogen evolution
    • Tian, B., Li, Z., Zhen, W. & Lu, G. Uniformly Sized (112) Facet Co2P on Graphene for Highly Effective Photocatalytic Hydrogen Evolution. J. Phys. Chem. C 120, 6409-6415 (2016).
    • (2016) J. Phys. Chem. C , vol.120 , pp. 6409-6415
    • Tian, B.1    Li, Z.2    Zhen, W.3    Lu, G.4
  • 55
    • 78650092372 scopus 로고    scopus 로고
    • Improved synthesis of graphene oxide
    • Marcano, D. C. et al. Improved Synthesis of Graphene Oxide. ACS Nano 4, 4806-4814 (2010).
    • (2010) ACS Nano , vol.4 , pp. 4806-4814
    • Marcano, D.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.