-
1
-
-
33750843236
-
Treatment of Plague: Promising Alternatives to Antibiotics
-
Anisimov, A. P.; Amoako, K. K. Treatment of Plague: Promising Alternatives to Antibiotics J. Med. Microbiol. 2006, 55, 1461-1475 10.1099/jmm.0.46697-0
-
(2006)
J. Med. Microbiol.
, vol.55
, pp. 1461-1475
-
-
Anisimov, A.P.1
Amoako, K.K.2
-
2
-
-
77957219812
-
Mode of Action of Hydrogen Peroxide and Other Oxidizing Agents: Differences between Liquid and Gas Forms
-
Finnegan, M.; Linley, E.; Denyer, S. P.; McDonnell, G.; Simons, C.; Maillard, J.-Y. Mode of Action of Hydrogen Peroxide and Other Oxidizing Agents: Differences Between Liquid and Gas Forms J. Antimicrob. Chemother. 2010, 65, 2108-2115 10.1093/jac/dkq308
-
(2010)
J. Antimicrob. Chemother.
, vol.65
, pp. 2108-2115
-
-
Finnegan, M.1
Linley, E.2
Denyer, S.P.3
McDonnell, G.4
Simons, C.5
Maillard, J.-Y.6
-
3
-
-
26944434828
-
Antimicrobial Activity of Flavonoids
-
Cushnie, T. P. T.; Lamb, A. J. Antimicrobial Activity of Flavonoids Int. J. Antimicrob. Agents 2005, 26, 343-356 10.1016/j.ijantimicag.2005.09.002
-
(2005)
Int. J. Antimicrob. Agents
, vol.26
, pp. 343-356
-
-
Cushnie, T.P.T.1
Lamb, A.J.2
-
4
-
-
0035884571
-
Novel Refreshable N-Halamine Polymeric Biocides Containing Imidazolidin-4-One Derivatives
-
Sun, Y.; Chen, T.-Y.; Worley, S. D.; Sun, G. Novel Refreshable N-Halamine Polymeric Biocides Containing Imidazolidin-4-One Derivatives J. Polym. Sci., Part A: Polym. Chem. 2001, 39, 3073-3084 10.1002/pola.1288
-
(2001)
J. Polym. Sci., Part A: Polym. Chem.
, vol.39
, pp. 3073-3084
-
-
Sun, Y.1
Chen, T.-Y.2
Worley, S.D.3
Sun, G.4
-
5
-
-
0026705492
-
Epidemiology of Drug Resistance: Implications for a Post-Antimicrobial Era
-
Cohen, M. L. Epidemiology of Drug Resistance: Implications for a Post-Antimicrobial Era Science 1992, 257, 1050-1055 10.1126/science.257.5073.1050
-
(1992)
Science
, vol.257
, pp. 1050-1055
-
-
Cohen, M.L.1
-
6
-
-
84962588946
-
Targeting Antibiotic Resistance
-
Chellat, M. F.; Raguz, L.; Riedl, R. Targeting Antibiotic Resistance Angew. Chem., Int. Ed. 2016, 55, 6600-6626 10.1002/anie.201506818
-
(2016)
Angew. Chem., Int. Ed.
, vol.55
, pp. 6600-6626
-
-
Chellat, M.F.1
Raguz, L.2
Riedl, R.3
-
7
-
-
84919343709
-
Aspartame-Stabilized Gold-Silver Bimetallic Biocompatible Nanostructures with Plasmonic Photothermal Properties, Antibacterial Activity, and Long-Term Stability
-
Fasciani, C.; Silvero, M. J.; Anghel, M. A.; Argüello, G. A.; Becerra, M. C.; Scaiano, J. C. Aspartame-Stabilized Gold-Silver Bimetallic Biocompatible Nanostructures with Plasmonic Photothermal Properties, Antibacterial Activity, and Long-Term Stability J. Am. Chem. Soc. 2014, 136, 17394-17397 10.1021/ja510435u
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 17394-17397
-
-
Fasciani, C.1
Silvero, M.J.2
Anghel, M.A.3
Argüello, G.A.4
Becerra, M.C.5
Scaiano, J.C.6
-
8
-
-
78649617736
-
Controlled Release of Biologically Active Silver from Nanosilver Surfaces
-
Liu, J.; Sonshine, D. A.; Shervani, S.; Hurt, R. H. Controlled Release of Biologically Active Silver from Nanosilver Surfaces ACS Nano 2010, 4, 6903-6913 10.1021/nn102272n
-
(2010)
ACS Nano
, vol.4
, pp. 6903-6913
-
-
Liu, J.1
Sonshine, D.A.2
Shervani, S.3
Hurt, R.H.4
-
9
-
-
84893466921
-
Toxicity Mechanisms in Escherichia coli Vary for Silver Nanoparticles and Differ from Ionic Silver
-
Ivask, A.; ElBadawy, A.; Kaweeteerawat, C.; Boren, D.; Fischer, H.; Ji, Z.; Chang, C. H.; Liu, R.; Tolaymat, T.; Telesca, D.; Zink, J. I.; Cohen, Y.; Holden, P. A.; Godwin, H. A. Toxicity Mechanisms in Escherichia coli Vary for Silver Nanoparticles and Differ from Ionic Silver ACS Nano 2014, 8, 374-386 10.1021/nn4044047
-
(2014)
ACS Nano
, vol.8
, pp. 374-386
-
-
Ivask, A.1
ElBadawy, A.2
Kaweeteerawat, C.3
Boren, D.4
Fischer, H.5
Ji, Z.6
Chang, C.H.7
Liu, R.8
Tolaymat, T.9
Telesca, D.10
Zink, J.I.11
Cohen, Y.12
Holden, P.A.13
Godwin, H.A.14
-
10
-
-
84926641022
-
Synthesis of Ultrastable Copper Sulfide Nanoclusters via Trapping the Reaction Intermediate: Potential Anticancer and Antibacterial Applications
-
Wang, H.-Y.; Hua, X.-W.; Wu, F.-G.; Li, B.; Liu, P.; Gu, N.; Wang, Z.; Chen, Z. Synthesis of Ultrastable Copper Sulfide Nanoclusters via Trapping the Reaction Intermediate: Potential Anticancer and Antibacterial Applications ACS Appl. Mater. Interfaces 2015, 7, 7082-7092 10.1021/acsami.5b01214
-
(2015)
ACS Appl. Mater. Interfaces
, vol.7
, pp. 7082-7092
-
-
Wang, H.-Y.1
Hua, X.-W.2
Wu, F.-G.3
Li, B.4
Liu, P.5
Gu, N.6
Wang, Z.7
Chen, Z.8
-
11
-
-
84864867869
-
Vanadium Pentoxide Nanoparticles Mimic Vanadium Haloperoxidases and Thwart Biofilm Formation
-
Natalio, F.; Andre, R.; Hartog, A. F.; Stoll, B.; Jochum, K. P.; Wever, R.; Tremel, W. Vanadium Pentoxide Nanoparticles Mimic Vanadium Haloperoxidases and Thwart Biofilm Formation Nat. Nanotechnol. 2012, 7, 530-535 10.1038/nnano.2012.91
-
(2012)
Nat. Nanotechnol.
, vol.7
, pp. 530-535
-
-
Natalio, F.1
Andre, R.2
Hartog, A.F.3
Stoll, B.4
Jochum, K.P.5
Wever, R.6
Tremel, W.7
-
12
-
-
34548460337
-
Intrinsic Peroxidase-like Activity of Ferromagnetic Nanoparticles
-
Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; Yan, X. Intrinsic Peroxidase-like Activity of Ferromagnetic Nanoparticles Nat. Nanotechnol. 2007, 2, 577-583 10.1038/nnano.2007.260
-
(2007)
Nat. Nanotechnol.
, vol.2
, pp. 577-583
-
-
Gao, L.1
Zhuang, J.2
Nie, L.3
Zhang, J.4
Zhang, Y.5
Gu, N.6
Wang, T.7
Feng, J.8
Yang, D.9
Perrett, S.10
Yan, X.11
-
13
-
-
84912140288
-
Conjugated-Polymer-Based Energy-Transfer Systems for Antimicrobial and Anticancer Applications
-
Yuan, H. X.; Wang, B.; Lv, F. T.; Liu, L. B.; Wang, S. Conjugated-Polymer-Based Energy-Transfer Systems for Antimicrobial and Anticancer Applications Adv. Mater. 2014, 26, 6978-6982 10.1002/adma.201400379
-
(2014)
Adv. Mater.
, vol.26
, pp. 6978-6982
-
-
Yuan, H.X.1
Wang, B.2
Lv, F.T.3
Liu, L.B.4
Wang, S.5
-
14
-
-
84945472408
-
A Supramolecular Antibiotic Switch for Antibacterial Regulation
-
Bai, H.; Yuan, H.; Nie, C.; Wang, B.; Lv, F.; Liu, L.; Wang, S. A Supramolecular Antibiotic Switch for Antibacterial Regulation Angew. Chem., Int. Ed. 2015, 54, 13208-13213 10.1002/anie.201504566
-
(2015)
Angew. Chem., Int. Ed.
, vol.54
, pp. 13208-13213
-
-
Bai, H.1
Yuan, H.2
Nie, C.3
Wang, B.4
Lv, F.5
Liu, L.6
Wang, S.7
-
15
-
-
73849098305
-
Sharper and Faster “Nano Darts” Kill More Bacteria: A Study of Antibacterial Activity of Individually Dispersed Pristine Single-Walled Carbon Nanotube
-
Liu, S.; Wei, L.; Hao, L.; Fang, N.; Chang, M. W.; Xu, R.; Yang, Y.; Chen, Y. Sharper and Faster “Nano Darts” Kill More Bacteria: A Study of Antibacterial Activity of Individually Dispersed Pristine Single-Walled Carbon Nanotube ACS Nano 2009, 3, 3891-3902 10.1021/nn901252r
-
(2009)
ACS Nano
, vol.3
, pp. 3891-3902
-
-
Liu, S.1
Wei, L.2
Hao, L.3
Fang, N.4
Chang, M.W.5
Xu, R.6
Yang, Y.7
Chen, Y.8
-
16
-
-
84902438459
-
Graphene-Based Nanocomposite as an Effective, Multifunctional, and Recyclable Antibacterial Agent
-
Tian, T.; Shi, X.; Cheng, L.; Luo, Y.; Dong, Z.; Gong, H.; Xu, L.; Zhong, Z.; Peng, R.; Liu, Z. Graphene-Based Nanocomposite as an Effective, Multifunctional, and Recyclable Antibacterial Agent ACS Appl. Mater. Interfaces 2014, 6, 8542-8548 10.1021/am5022914
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 8542-8548
-
-
Tian, T.1
Shi, X.2
Cheng, L.3
Luo, Y.4
Dong, Z.5
Gong, H.6
Xu, L.7
Zhong, Z.8
Peng, R.9
Liu, Z.10
-
17
-
-
84906273839
-
Multifunctional Upconverting Nanoparticles for Near-Infrared Triggered and Synergistic Antibacterial Resistance Therapy
-
Yin, M.; Li, Z.; Ju, E.; Wang, Z.; Dong, K.; Ren, J.; Qu, X. Multifunctional Upconverting Nanoparticles for Near-Infrared Triggered and Synergistic Antibacterial Resistance Therapy Chem. Commun. 2014, 50, 10488-10490 10.1039/C4CC04584J
-
(2014)
Chem. Commun.
, vol.50
, pp. 10488-10490
-
-
Yin, M.1
Li, Z.2
Ju, E.3
Wang, Z.4
Dong, K.5
Ren, J.6
Qu, X.7
-
18
-
-
84874422553
-
Graphene-Based Photothermal Agent for Rapid and Effective Killing of Bacteria
-
Wu, M.-C.; Deokar, A. R.; Liao, J.-H.; Shih, P.-Y.; Ling, Y.-C. Graphene-Based Photothermal Agent for Rapid and Effective Killing of Bacteria ACS Nano 2013, 7, 1281-1290 10.1021/nn304782d
-
(2013)
ACS Nano
, vol.7
, pp. 1281-1290
-
-
Wu, M.-C.1
Deokar, A.R.2
Liao, J.-H.3
Shih, P.-Y.4
Ling, Y.-C.5
-
19
-
-
84895927858
-
Reduced Graphene Oxide Functionalized with a Luminescent Rare-Earth Complex for the Tracking and Photothermal Killing of Drug-Resistant Bacteria
-
Yang, X.; Li, Z.; Ju, E.; Ren, J.; Qu, X. Reduced Graphene Oxide Functionalized with a Luminescent Rare-Earth Complex for the Tracking and Photothermal Killing of Drug-Resistant Bacteria Chem.-Eur. J. 2014, 20, 394-398 10.1002/chem.201303964
-
(2014)
Chem. - Eur. J.
, vol.20
, pp. 394-398
-
-
Yang, X.1
Li, Z.2
Ju, E.3
Ren, J.4
Qu, X.5
-
20
-
-
84903457280
-
Graphene Quantum Dots-Band-AIDS Used for Wound Disinfection
-
Sun, H.; Gao, N.; Dong, K.; Ren, J.; Qu, X. Graphene Quantum Dots-Band-Aids Used for Wound Disinfection ACS Nano 2014, 8, 6202-6210 10.1021/nn501640q
-
(2014)
ACS Nano
, vol.8
, pp. 6202-6210
-
-
Sun, H.1
Gao, N.2
Dong, K.3
Ren, J.4
Qu, X.5
-
21
-
-
36749021305
-
Reaction Kinetics of Bacteria Disinfection Employing Hydrogen Peroxide
-
Labas, M. D.; Zalazar, C. S.; Brandi, R. J.; Cassano, A. E. Reaction Kinetics of Bacteria Disinfection Employing Hydrogen Peroxide Biochem. Eng. J. 2008, 38, 78-87 10.1016/j.bej.2007.06.008
-
(2008)
Biochem. Eng. J.
, vol.38
, pp. 78-87
-
-
Labas, M.D.1
Zalazar, C.S.2
Brandi, R.J.3
Cassano, A.E.4
-
22
-
-
84894672003
-
Ferromagnetic Nanoparticles with Peroxidase-Like Activity Enhance the Cleavage of Biological Macromolecules for Biofilm Elimination
-
Gao, L.; Giglio, K. M.; Nelson, J. L.; Sondermann, H.; Travis, A. J. Ferromagnetic Nanoparticles with Peroxidase-Like Activity Enhance the Cleavage of Biological Macromolecules for Biofilm Elimination Nanoscale 2014, 6, 2588-2593 10.1039/c3nr05422e
-
(2014)
Nanoscale
, vol.6
, pp. 2588-2593
-
-
Gao, L.1
Giglio, K.M.2
Nelson, J.L.3
Sondermann, H.4
Travis, A.J.5
-
23
-
-
84884984102
-
Antimicrobial Strategies Centered Around Reactive Oxygen Species - Bactericidal Antibiotics, Photodynamic Therapy, and Beyond
-
Vatansever, F.; de Melo, W. C. M. A.; Avci, P.; Vecchio, D.; Sadasivam, M.; Gupta, A.; Chandran, R.; Karimi, M.; Parizotto, N. A.; Yin, R.; Tegos, G. P.; Hamblin, M. R. Antimicrobial Strategies Centered Around Reactive Oxygen Species - Bactericidal Antibiotics, Photodynamic Therapy, and Beyond FEMS Microbiol. Rev. 2013, 37, 955-989 10.1111/1574-6976.12026
-
(2013)
FEMS Microbiol. Rev.
, vol.37
, pp. 955-989
-
-
Vatansever, F.1
De Melo, W.C.M.A.2
Avci, P.3
Vecchio, D.4
Sadasivam, M.5
Gupta, A.6
Chandran, R.7
Karimi, M.8
Parizotto, N.A.9
Yin, R.10
Tegos, G.P.11
Hamblin, M.R.12
-
24
-
-
84884224916
-
Nanomaterials with Enzyme-Like Characteristics (Nanozymes): Next-Generation Artificial Enzymes
-
Wei, H.; Wang, E. Nanomaterials with Enzyme-Like Characteristics (Nanozymes): Next-Generation Artificial Enzymes Chem. Soc. Rev. 2013, 42, 6060-6093 10.1039/c3cs35486e
-
(2013)
Chem. Soc. Rev.
, vol.42
, pp. 6060-6093
-
-
Wei, H.1
Wang, E.2
-
25
-
-
84897524051
-
Antimicrobial Metallopolymers and their Bioconjugates with Conventional Antibiotics against Multidrug-Resistant Bacteria
-
Zhang, J.; Chen, Y. P.; Miller, K. P.; Ganewatta, M. S.; Bam, M.; Yan, Y.; Nagarkatti, M.; Decho, A. W.; Tang, C. Antimicrobial Metallopolymers and their Bioconjugates with Conventional Antibiotics against Multidrug-Resistant Bacteria J. Am. Chem. Soc. 2014, 136, 4873-4876 10.1021/ja5011338
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 4873-4876
-
-
Zhang, J.1
Chen, Y.P.2
Miller, K.P.3
Ganewatta, M.S.4
Bam, M.5
Yan, Y.6
Nagarkatti, M.7
Decho, A.W.8
Tang, C.9
-
26
-
-
0020529486
-
Inducible Repair of Oxidative DNA Damage in Escherichia coli
-
Demple, B.; Halbrook, J. Inducible Repair of Oxidative DNA Damage in Escherichia Coli Nature 1983, 304, 466-468 10.1038/304466a0
-
(1983)
Nature
, vol.304
, pp. 466-468
-
-
Demple, B.1
Halbrook, J.2
-
27
-
-
0029858146
-
Hypochlorous Acid Stress in Escherichia coli: Resistance, DNA Damage, and Comparison with Hydrogen Peroxide Stress
-
Dukan, S.; Touati, D. Hypochlorous Acid Stress in Escherichia Coli: Resistance, DNA Damage, and Comparison with Hydrogen Peroxide Stress J. Bacteriol. 1996, 178, 6145-6150 10.1128/jb.178.21.6145-6150.1996
-
(1996)
J. Bacteriol.
, vol.178
, pp. 6145-6150
-
-
Dukan, S.1
Touati, D.2
-
28
-
-
84946606265
-
Sterilization Resistance of Bacterial Spores Explained with Water Chemistry
-
Friedline, A. W.; Zachariah, M. M.; Middaugh, A. N.; Garimella, R.; Vaishampayan, P. A.; Rice, C. V. Sterilization Resistance of Bacterial Spores Explained with Water Chemistry J. Phys. Chem. B 2015, 119, 14033-14044 10.1021/acs.jpcb.5b07437
-
(2015)
J. Phys. Chem. B
, vol.119
, pp. 14033-14044
-
-
Friedline, A.W.1
Zachariah, M.M.2
Middaugh, A.N.3
Garimella, R.4
Vaishampayan, P.A.5
Rice, C.V.6
-
29
-
-
84960157662
-
2 Nanoparticles Reduces Streptococcus pneumoniae and Staphylococcus aureus Biofilm Formation on Cochlear Implants
-
2 Nanoparticles Reduces Streptococcus pneumoniae and Staphylococcus aureus Biofilm Formation on Cochlear Implants Adv. Funct. Mater. 2016, 26, 2473-2481 10.1002/adfm.201504525
-
(2016)
Adv. Funct. Mater.
, vol.26
, pp. 2473-2481
-
-
Natan, M.1
Edin, F.2
Perkas, N.3
Yacobi, G.4
Perelshtein, I.5
Segal, E.6
Homsy, A.7
Laux, E.8
Keppner, H.9
Rask-Andersen, H.10
Gedanken, A.11
Banin, E.12
-
32
-
-
84934269057
-
2 Nanoribbons for Enhanced Colorimetric Sensing of Free Cholesterol
-
2 Nanoribbons for Enhanced Colorimetric Sensing of Free Cholesterol Biosens. Bioelectron. 2015, 74, 207-213 10.1016/j.bios.2015.06.043
-
(2015)
Biosens. Bioelectron.
, vol.74
, pp. 207-213
-
-
Nirala, N.R.1
Pandey, S.2
Bansal, A.3
Singh, V.K.4
Mukherjee, B.5
Saxena, P.S.6
Srivastava, A.7
-
34
-
-
84943585897
-
Differences in the Toxicological Potential of 2D versus Aggregated Molybdenum Disulfide in the Lung
-
Wang, X.; Mansukhani, N. D.; Guiney, L. M.; Ji, Z.; Chang, C. H.; Wang, M.; Liao, Y. P.; Song, T. B.; Sun, B.; Li, R.; Xia, T.; Hersam, M. C.; Nel, A. E. Differences in the Toxicological Potential of 2D versus Aggregated Molybdenum Disulfide in the Lung Small 2015, 11, 5079-5087 10.1002/smll.201500906
-
(2015)
Small
, vol.11
, pp. 5079-5087
-
-
Wang, X.1
Mansukhani, N.D.2
Guiney, L.M.3
Ji, Z.4
Chang, C.H.5
Wang, M.6
Liao, Y.P.7
Song, T.B.8
Sun, B.9
Li, R.10
Xia, T.11
Hersam, M.C.12
Nel, A.E.13
-
35
-
-
84969256039
-
2
-
2 ACS Biomater. Sci. Eng. 2016, 2, 361-367 10.1021/acsbiomaterials.5b00467
-
(2016)
ACS Biomater. Sci. Eng.
, vol.2
, pp. 361-367
-
-
Appel, J.H.1
Li, D.O.2
Podlevsky, J.D.3
Debnath, A.4
Green, A.A.5
Wang, Q.H.6
Chae, J.7
-
36
-
-
84908873237
-
2 Exhibits Stronger Toxicity with Increased Exfoliation
-
2 Exhibits Stronger Toxicity with Increased Exfoliation Nanoscale 2014, 6, 14412-14418 10.1039/C4NR04907A
-
(2014)
Nanoscale
, vol.6
, pp. 14412-14418
-
-
Chng, E.L.K.1
Sofer, Z.2
Pumera, M.3
-
37
-
-
84904733959
-
2 Nanosheets as a Near-Infrared Photothermal-Triggered Drug Delivery for Effective Cancer Therapy
-
2 Nanosheets as a Near-Infrared Photothermal-Triggered Drug Delivery for Effective Cancer Therapy ACS Nano 2014, 8, 6922-6933 10.1021/nn501647j
-
(2014)
ACS Nano
, vol.8
, pp. 6922-6933
-
-
Yin, W.1
Yan, L.2
Yu, J.3
Tian, G.4
Zhou, L.5
Zheng, X.6
Zhang, X.7
Yong, Y.8
Li, J.9
Gu, Z.10
Zhao, Y.11
-
38
-
-
84946021190
-
4 Nanotheranostic for Magnetically Targeted Photothermal Therapy Guided by Magnetic Resonance/Photoacoustic Imaging
-
4 Nanotheranostic for Magnetically Targeted Photothermal Therapy Guided by Magnetic Resonance/Photoacoustic Imaging Theranostics 2015, 5, 931-945 10.7150/thno.11802
-
(2015)
Theranostics
, vol.5
, pp. 931-945
-
-
Yu, J.1
Yin, W.2
Zheng, X.3
Tian, G.4
Zhang, X.5
Bao, T.6
Dong, X.7
Wang, Z.8
Gu, Z.9
Ma, X.10
Zhao, Y.11
-
39
-
-
84875719620
-
2 as Near-Infrared Photothermal Agents
-
2 as Near-Infrared Photothermal Agents Angew. Chem., Int. Ed. 2013, 52, 4160-4164 10.1002/anie.201209229
-
(2013)
Angew. Chem., Int. Ed.
, vol.52
, pp. 4160-4164
-
-
Chou, S.S.1
Kaehr, B.2
Kim, J.3
Foley, B.M.4
De, M.5
Hopkins, P.E.6
Huang, J.7
Brinker, C.J.8
Dravid, V.P.9
-
40
-
-
84896056867
-
Photodynamic Antibacterial Effect of Graphene Quantum Dots
-
Ristic, B. Z.; Milenkovic, M. M.; Dakic, I. R.; Todorovic-Markovic, B. M.; Milosavljevic, M. S.; Budimir, M. D.; Paunovic, V. G.; Dramicanin, M. D.; Markovic, Z. M.; Trajkovic, V. S. Photodynamic Antibacterial Effect of Graphene Quantum Dots Biomaterials 2014, 35, 4428-4435 10.1016/j.biomaterials.2014.02.014
-
(2014)
Biomaterials
, vol.35
, pp. 4428-4435
-
-
Ristic, B.Z.1
Milenkovic, M.M.2
Dakic, I.R.3
Todorovic-Markovic, B.M.4
Milosavljevic, M.S.5
Budimir, M.D.6
Paunovic, V.G.7
Dramicanin, M.D.8
Markovic, Z.M.9
Trajkovic, V.S.10
-
42
-
-
0021883276
-
Destruction of the Outer Membrane Permeability Barrier of Escherichia coli by Heat Treatment
-
Tsuchido, T.; Katsui, N.; Takeuchi, A.; Takano, M.; Shibasaki, I. Destruction of the Outer Membrane Permeability Barrier of Escherichia coli by Heat Treatment Appl. Environ. Microbiol. 1985, 50, 298-303
-
(1985)
Appl. Environ. Microbiol.
, vol.50
, pp. 298-303
-
-
Tsuchido, T.1
Katsui, N.2
Takeuchi, A.3
Takano, M.4
Shibasaki, I.5
-
43
-
-
9644266953
-
2 Inorganic Fullerene-like Nanostructures and Nanoflowers
-
2 Inorganic Fullerene-like Nanostructures and Nanoflowers Chem.-Eur. J. 2004, 10, 6163-6171 10.1002/chem.200400451
-
(2004)
Chem. - Eur. J.
, vol.10
, pp. 6163-6171
-
-
Li, X.-L.1
Ge, J.-P.2
Li, Y.-D.3
-
45
-
-
84880372807
-
2 Nanosheets
-
2 Nanosheets J. Am. Chem. Soc. 2013, 135, 10274-10277 10.1021/ja404523s
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 10274-10277
-
-
Lukowski, M.A.1
Daniel, A.S.2
Meng, F.3
Forticaux, A.4
Li, L.5
Jin, S.6
-
46
-
-
84923602155
-
2 Nanosheets
-
2 Nanosheets J. Am. Chem. Soc. 2015, 137, 2622-2627 10.1021/ja5120908
-
(2015)
J. Am. Chem. Soc.
, vol.137
, pp. 2622-2627
-
-
Cai, L.1
He, J.2
Liu, Q.3
Yao, T.4
Chen, L.5
Yan, W.6
Hu, F.7
Jiang, Y.8
Zhao, Y.9
Hu, T.10
Sun, Z.11
Wei, S.12
-
47
-
-
79959971282
-
Nanoparticle PEGylation for Imaging and Therapy
-
London, U. K
-
Jokerst, J. V.; Lobovkina, T.; Zare, R. N.; Gambhir, S. S. Nanoparticle PEGylation for Imaging and Therapy Nanomedicine (London, U. K.) 2011, 6, 715-728 10.2217/nnm.11.19
-
(2011)
Nanomedicine
, vol.6
, pp. 715-728
-
-
Jokerst, J.V.1
Lobovkina, T.2
Zare, R.N.3
Gambhir, S.S.4
-
49
-
-
84863479468
-
4 Magnetic Nanoparticles
-
4 Magnetic Nanoparticles Anal. Chem. 2012, 84, 5753-5758 10.1021/ac300939z
-
(2012)
Anal. Chem.
, vol.84
, pp. 5753-5758
-
-
Su, L.1
Feng, J.2
Zhou, X.3
Ren, C.4
Li, H.5
Chen, X.6
-
50
-
-
84940092765
-
Graphene Induces Formation of Pores that Kill Spherical and Rod-Shaped Bacteria
-
Pham, V. T. H.; Truong, V. K.; Quinn, M. D. J.; Notley, S. M.; Guo, Y.; Baulin, V. A.; Al Kobaisi, M.; Crawford, R. J.; Ivanova, E. P. Graphene Induces Formation of Pores that Kill Spherical and Rod-Shaped Bacteria ACS Nano 2015, 9, 8458-8467 10.1021/acsnano.5b03368
-
(2015)
ACS Nano
, vol.9
, pp. 8458-8467
-
-
Pham, V.T.H.1
Truong, V.K.2
Quinn, M.D.J.3
Notley, S.M.4
Guo, Y.5
Baulin, V.A.6
Al Kobaisi, M.7
Crawford, R.J.8
Ivanova, E.P.9
-
51
-
-
84959422835
-
Mechanisms of the Antimicrobial Activities of Graphene Materials
-
Zou, X.; Zhang, L.; Wang, Z.; Luo, Y. Mechanisms of the Antimicrobial Activities of Graphene Materials J. Am. Chem. Soc. 2016, 138, 2064-2077 10.1021/jacs.5b11411
-
(2016)
J. Am. Chem. Soc.
, vol.138
, pp. 2064-2077
-
-
Zou, X.1
Zhang, L.2
Wang, Z.3
Luo, Y.4
-
52
-
-
84896312410
-
Antibacterial Activity of Large-Area Monolayer Graphene Film Manipulated by Charge Transfer
-
Li, J.; Wang, G.; Zhu, H.; Zhang, M.; Zheng, X.; Di, Z.; Liu, X.; Wang, X. Antibacterial Activity of Large-Area Monolayer Graphene Film Manipulated by Charge Transfer Sci. Rep. 2014, 4, 4359 10.1038/srep04359
-
(2014)
Sci. Rep.
, vol.4
, pp. 4359
-
-
Li, J.1
Wang, G.2
Zhu, H.3
Zhang, M.4
Zheng, X.5
Di, Z.6
Liu, X.7
Wang, X.8
-
53
-
-
70349185896
-
Determination of Glutathione and Glutathione Disulfide in Biological Samples: An in-Depth Review
-
Monostori, P.; Wittmann, G.; Karg, E.; Túri, S. Determination of Glutathione and Glutathione Disulfide in Biological Samples: An in-Depth Review J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2009, 877, 3331-3346 10.1016/j.jchromb.2009.06.016
-
(2009)
J. Chromatogr. B: Anal. Technol. Biomed. Life Sci.
, vol.877
, pp. 3331-3346
-
-
Monostori, P.1
Wittmann, G.2
Karg, E.3
Túri, S.4
-
54
-
-
80053513845
-
Antioxidant Deactivation on Graphenic Nanocarbon Surfaces
-
Liu, X.; Sen, S.; Liu, J.; Kulaots, I.; Geohegan, D.; Kane, A.; Puretzky, A. A.; Rouleau, C. M.; More, K. L.; Palmore, G. T. R.; Hurt, R. H. Antioxidant Deactivation on Graphenic Nanocarbon Surfaces Small 2011, 7, 2775-2785 10.1002/smll.201100651
-
(2011)
Small
, vol.7
, pp. 2775-2785
-
-
Liu, X.1
Sen, S.2
Liu, J.3
Kulaots, I.4
Geohegan, D.5
Kane, A.6
Puretzky, A.A.7
Rouleau, C.M.8
More, K.L.9
Palmore, G.T.R.10
Hurt, R.H.11
-
55
-
-
84979493626
-
2 and Organic Thiols
-
2 and Organic Thiols Angew. Chem., Int. Ed. 2016, 55, 5803-5808 10.1002/anie.201510219
-
(2016)
Angew. Chem., Int. Ed.
, vol.55
, pp. 5803-5808
-
-
Chen, X.1
Berner, N.C.2
Backes, C.3
Duesberg, G.S.4
McDonald, A.R.5
-
56
-
-
84924341288
-
4@MgAl-LDH Composite Grafted with Cobalt Phthalocyanine as an Efficient Heterogeneous Catalyst for the Oxidation of Mercaptans
-
4@MgAl-LDH Composite Grafted with Cobalt Phthalocyanine as an Efficient Heterogeneous Catalyst for the Oxidation of Mercaptans J. Mol. Catal. A: Chem. 2015, 401, 48-54 10.1016/j.molcata.2015.03.001
-
(2015)
J. Mol. Catal. A: Chem.
, vol.401
, pp. 48-54
-
-
Kumar, P.1
Gill, K.2
Kumar, S.3
Ganguly, S.K.4
Jain, S.L.5
-
57
-
-
84905842530
-
2 Sheets
-
2 Sheets Nanoscale 2014, 6, 10126-10133 10.1039/C4NR01965B
-
(2014)
Nanoscale
, vol.6
, pp. 10126-10133
-
-
Yang, X.1
Li, J.2
Liang, T.3
Ma, C.4
Zhang, Y.5
Chen, H.6
Hanagata, N.7
Su, H.8
Xu, M.9
-
58
-
-
80053318851
-
Antibacterial Activity of Graphite, Graphite Oxide, Graphene Oxide, and Reduced Graphene Oxide: Membrane and Oxidative Stress
-
Liu, S.; Zeng, T. H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R.; Kong, J.; Chen, Y. Antibacterial Activity of Graphite, Graphite Oxide, Graphene Oxide, and Reduced Graphene Oxide: Membrane and Oxidative Stress ACS Nano 2011, 5, 6971-6980 10.1021/nn202451x
-
(2011)
ACS Nano
, vol.5
, pp. 6971-6980
-
-
Liu, S.1
Zeng, T.H.2
Hofmann, M.3
Burcombe, E.4
Wei, J.5
Jiang, R.6
Kong, J.7
Chen, Y.8
|