-
1
-
-
33749016240
-
Current status of clinical breath analysis
-
T. H. Risby and S. F. Solga, “Current status of clinical breath analysis,” Appl. Phys. B, vol. 85, pp. 421–426, 2006.
-
(2006)
Appl. Phys. B
, vol.85
, pp. 421-426
-
-
Risby, T.H.1
Solga, S.F.2
-
2
-
-
40749152350
-
Olfactory systems for medical applications
-
Mar.
-
A. D'Amico, C. Di Natale, R. Paolesse, A. Macagnano, E. Martinelli, G. Pennazza, A. Santonico, M. Bernabei, C. Roscioni, G. Galluccio, R. Bono, E. F. Agro, and S. Rullo, “Olfactory systems for medical applications,” Sens. Actuators B, vol. 130, pp. 458–465, Mar. 2008.
-
(2008)
Sens. Actuators B
, vol.130
, pp. 458-465
-
-
D'Amico, A.1
Di Natale, C.2
Paolesse, R.3
Macagnano, A.4
Martinelli, E.5
Pennazza, G.6
Santonico, A.7
Bernabei, M.8
Roscioni, C.9
Galluccio, G.10
Bono, R.11
Agro, E.F.12
Rullo, S.13
-
3
-
-
3543013754
-
Don't waste your breath
-
R. Mukhopadhyay, “Don't waste your breath,” Anal. Chem., vol. 76, pp. 273A–276A, 2004.
-
(2004)
Anal. Chem.
, vol.76
, pp. 273A-276A
-
-
Mukhopadhyay, R.1
-
4
-
-
67649221883
-
Nanotube-based sensor arrays for clinical breath analysis
-
A. Gelperin and A. T. C. Johnson, “Nanotube-based sensor arrays for clinical breath analysis,” J. Breath Res., vol. 2, 2008, 037015.
-
(2008)
J. Breath Res.
, vol.2
, pp. 037015
-
-
Gelperin, A.1
Johnson, A.T.C.2
-
5
-
-
84883603045
-
A sensor system for monitoring the simple gases hydrogen, carbon monoxide, hydrogen sulfide, ammonia and ethanol in exhaled breath
-
B. P. J. de Lacy Costello, R. J. Ewen, and N. M. Ratcliffe, “A sensor system for monitoring the simple gases hydrogen, carbon monoxide, hydrogen sulfide, ammonia and ethanol in exhaled breath,” J. Breath Res., vol. 2, 2008, 037011.
-
(2008)
J. Breath Res.
, vol.2
, pp. 037011
-
-
de Lacy Costello, B.P.J.1
Ewen, R.J.2
Ratcliffe, N.M.3
-
6
-
-
85008013425
-
Breath ammonia sensor based on conducting polymer nano-junctions
-
Mar.
-
A. D. Aguilar, E. S. Forzani, L. A. Nagahara, I. Amlani, R. Tsui, and N. J. Tao, “Breath ammonia sensor based on conducting polymer nano-junctions,” IEEE Sens. J., vol. 8, no. 3, pp. 269–273, Mar. 2008.
-
(2008)
IEEE Sens. J.
, vol.8
, Issue.3
, pp. 269-273
-
-
Aguilar, A.D.1
Forzani, E.S.2
Nagahara, L.A.3
Amlani, I.4
Tsui, R.5
Tao, N.J.6
-
7
-
-
19744377703
-
Analysis of diabetic patient's breath with conducting polymer sensor array
-
Jul.
-
J. B. Yu, H. G. Byun, M. S. So, and J. S. Huh, “Analysis of diabetic patient's breath with conducting polymer sensor array,” Sens. Actuators B, vol. 108, pp. 305–308, Jul. 2005.
-
(2005)
Sens. Actuators B
, vol.108
, pp. 305-308
-
-
Yu, J.B.1
Byun, H.G.2
So, M.S.3
Huh, J.S.4
-
8
-
-
0035368902
-
Detection and quantification of nitric oxide in human breath using a semiconducting oxide based chemiresistive microsensor
-
B. Fruhberger, N. Stirling, F. G. Grillo, S. Ma, D. Ruthven, R. J. Lad, and B. G. Frederick, “Detection and quantification of nitric oxide in human breath using a semiconducting oxide based chemiresistive microsensor,” Sens. Actuators B, vol. 76, pp. 226–234, 2001.
-
(2001)
Sens. Actuators B
, vol.76
, pp. 226-234
-
-
Fruhberger, B.1
Stirling, N.2
Grillo, F.G.3
Ma, S.4
Ruthven, D.5
Lad, R.J.6
Frederick, B.G.7
-
9
-
-
33846277600
-
The potential for and challenges of detecting chemical hazards with temperature-programmed microsensors
-
D. C. Meier, J. K. Evju, Z. Boger, B. Raman, K. D. Benkstein, C. J. Martinez, C. B. Montgomery, and S. Semancik, “The potential for and challenges of detecting chemical hazards with temperature-programmed microsensors,” Sens. Actuators B, vol. 121, pp. 282–294, 2007.
-
(2007)
Sens. Actuators B
, vol.121
, pp. 282-294
-
-
Meier, D.C.1
Evju, J.K.2
Boger, Z.3
Raman, B.4
Benkstein, K.D.5
Martinez, C.J.6
Montgomery, C.B.7
Semancik, S.8
-
10
-
-
62649139542
-
Designing and optimizing microsensor arrays for recognizing chemical hazards in complex environments
-
Apr.
-
B. Raman, D. C. Meier, J. K. Evju, and S. Semancik, “Designing and optimizing microsensor arrays for recognizing chemical hazards in complex environments,” Sens. Actuators B: Chem., vol. 137, pp. 617–629, Apr. 2009.
-
(2009)
Sens. Actuators B: Chem.
, vol.137
, pp. 617-629
-
-
Raman, B.1
Meier, D.C.2
Evju, J.K.3
Semancik, S.4
-
11
-
-
58149292020
-
An acetone breath analyzer using cavity ringdown spectroscopy: An initial test with human subjects under various situations
-
(10 pgs.), Oct.
-
C. Wang and A. B. Surampudi, “An acetone breath analyzer using cavity ringdown spectroscopy: An initial test with human subjects under various situations,” Meas. Sci. Technol., vol. 19, p. 105604 (10 pgs.), Oct. 2008.
-
(2008)
Meas. Sci. Technol.
, vol.19
, pp. 105604
-
-
Wang, C.1
Surampudi, A.B.2
-
12
-
-
4544255985
-
Determination of acetone in human breath by gas chromatography-mass spectrometry and solid-phase microextraction with on-fiber derivatization
-
Oct.
-
C. H. Deng, J. Zhang, X. F. Yu, W. Zhang, and X. M. Zhang, “Determination of acetone in human breath by gas chromatography-mass spectrometry and solid-phase microextraction with on-fiber derivatization,” J. Chromatogr. B, vol. 810, pp. 269–275, Oct. 2004.
-
(2004)
J. Chromatogr. B
, vol.810
, pp. 269-275
-
-
Deng, C.H.1
Zhang, J.2
Yu, X.F.3
Zhang, W.4
Zhang, X.M.5
-
13
-
-
0043183680
-
-
U.S. patent 5,345,213, Sep. 6
-
S. Semancik, R. E. Cavicchi, M. Gaitan, and J. S. Suehle, “Temperature-controlled micromachined arrays for chemical sensor fabrication and operation,” U.S. patent 5,345,213, Sep. 6, 1994.
-
(1994)
Temperature-controlled micromachined arrays for chemical sensor fabrication and operation
-
-
Semancik, S.1
Cavicchi, R.E.2
Gaitan, M.3
Suehle, J.S.4
-
14
-
-
0001025179
-
Kinetically controlled chemical sensing using micromachined structures
-
S. Semancik and R. E. Cavicchi, “Kinetically controlled chemical sensing using micromachined structures,” Acc. Chem. Res., vol. 31, pp. 279–287, 1998.
-
(1998)
Acc. Chem. Res.
, vol.31
, pp. 279-287
-
-
Semancik, S.1
Cavicchi, R.E.2
-
15
-
-
0035876004
-
Microhotplate platforms for chemical sensor research
-
S. Semancik, R. E. Cavicchi, M. C. Wheeler, J. E. Tiffany, G. E. Poirier, R. M. Walton, J. S. Suehle, B. Panchapakesan, and D. L. DeVoe, “Microhotplate platforms for chemical sensor research,” Sens. Actuators B, vol. 77, pp. 579–591, 2001.
-
(2001)
Sens. Actuators B
, vol.77
, pp. 579-591
-
-
Semancik, S.1
Cavicchi, R.E.2
Wheeler, M.C.3
Tiffany, J.E.4
Poirier, G.E.5
Walton, R.M.6
Suehle, J.S.7
Panchapakesan, B.8
DeVoe, D.L.9
-
16
-
-
0036121438
-
Use of microhotplate arrays as microde-position substrates for materials exploration
-
C. J. Taylor and S. Semancik, “Use of microhotplate arrays as microde-position substrates for materials exploration,” Chem. Mater., vol. 14, pp. 1671–1677, 2002.
-
(2002)
Chem. Mater.
, vol.14
, pp. 1671-1677
-
-
Taylor, C.J.1
Semancik, S.2
-
17
-
-
33751543956
-
Integration of nanostructured materials with MEMS microhotplate platforms to enhance chemical sensor performance
-
K. D. Benkstein, C. J. Martinez, G. Li, D. C. Meier, C. B. Montgomery, and S. Semancik, “Integration of nanostructured materials with MEMS microhotplate platforms to enhance chemical sensor performance,” J. Nanopart. Res., vol. 8, pp. 809–822, 2006.
-
(2006)
J. Nanopart. Res.
, vol.8
, pp. 809-822
-
-
Benkstein, K.D.1
Martinez, C.J.2
Li, G.3
Meier, D.C.4
Montgomery, C.B.5
Semancik, S.6
-
18
-
-
33645241533
-
Porous tin oxide nanostructured microspheres for sensor applications
-
C. J. Martinez, B. Hockey, C. B. Montgomery, and S. Semancik, “Porous tin oxide nanostructured microspheres for sensor applications,” Langmuir, vol. 21, pp. 7937–7944, 2005.
-
(2005)
Langmuir
, vol.21
, pp. 7937-7944
-
-
Martinez, C.J.1
Hockey, B.2
Montgomery, C.B.3
Semancik, S.4
-
19
-
-
29244438799
-
2 thin films for conductometric gas sensing on microhotplate platforms
-
2 thin films for conductometric gas sensing on microhotplate platforms,” Sens. Actuators B, vol. 113, pp. 445–453, 2006.
-
(2006)
Sens. Actuators B
, vol.113
, pp. 445-453
-
-
Benkstein, K.D.1
Semancik, S.2
-
20
-
-
60549107190
-
Inducing analytical orthogonality in tungsten oxide-based microsensors using materials structure and dynamic temperature control
-
Mar.
-
K. D. Benkstein, B. Raman, D. L. Lahr, J. E. Bonevich, and S. Semancik, “Inducing analytical orthogonality in tungsten oxide-based microsensors using materials structure and dynamic temperature control,” Sens. Actuators B., vol. 137, pp. 48–55, Mar. 2009.
-
(2009)
Sens. Actuators B.
, vol.137
, pp. 48-55
-
-
Benkstein, K.D.1
Raman, B.2
Lahr, D.L.3
Bonevich, J.E.4
Semancik, S.5
-
22
-
-
0035731839
-
Conduction model of metal oxide gas sensors
-
N. Barsan and U. Weimar, “Conduction model of metal oxide gas sensors,” J. Electroceram., vol. 7, pp. 143–167, 2002.
-
(2002)
J. Electroceram.
, vol.7
, pp. 143-167
-
-
Barsan, N.1
Weimar, U.2
-
23
-
-
56449117189
-
Bioin-spired methodology for artificial olfaction
-
B. Raman, J. L. Hertz, K. D. Benkstein, and S. Semancik, “Bioin-spired methodology for artificial olfaction,” Anal. Chem., vol. 80, pp. 8364–8371, 2008.
-
(2008)
Anal. Chem.
, vol.80
, pp. 8364-8371
-
-
Raman, B.1
Hertz, J.L.2
Benkstein, K.D.3
Semancik, S.4
-
24
-
-
0037773552
-
Transient response analysis for temperature-modulated chemoresistors
-
R. Gutierrez-Osuna, A. Gutierrez-Galvez, and N. Powar, “Transient response analysis for temperature-modulated chemoresistors,” Sens. Actuators B, vol. 93, pp. 57–66, 2003.
-
(2003)
Sens. Actuators B
, vol.93
, pp. 57-66
-
-
Gutierrez-Osuna, R.1
Gutierrez-Galvez, A.2
Powar, N.3
|