-
1
-
-
85007462985
-
Big data
-
September
-
Big data. Nature, September 2008.
-
(2008)
Nature
-
-
-
2
-
-
80051803315
-
Data, data everywhere
-
Feb
-
Data, data everywhere. The Economist, Feb 2010.
-
(2010)
The Economist
-
-
-
3
-
-
84900341614
-
Drowning in numbers - Digital data will flood the planet - and help us understand it better
-
Nov
-
Drowning in numbers - digital data will flood the planet - and help us understand it better. The Economist, Nov 2011.
-
(2011)
The Economist
-
-
-
6
-
-
70049096782
-
Online short-term solar power forecasting
-
Peder Bacher, Henrik Madsen, and Henrik Aalborg Nielsen. Online short-term solar power forecasting. Solar Energy, 83(10):1772-1783, 2009.
-
(2009)
Solar Energy
, vol.83
, Issue.10
, pp. 1772-1783
-
-
Bacher, P.1
Madsen, H.2
Nielsen, H.A.3
-
7
-
-
36849072723
-
-
The MIT Press
-
Gökhan H. Bakir, Thomas Hofmann, Bernhard Schölkopf, Alexander J. Smola, Ben Taskar, and S. V. N. Vishwanathan, editors. Predicting structured data. The MIT Press, 2007.
-
(2007)
Predicting Structured Data
-
-
Bakir, G.H.1
Hofmann, T.2
Schölkopf, B.3
Smola, A.J.4
Taskar, B.5
Vishwanathan, S.V.N.6
-
8
-
-
34648852323
-
Locally recurrent neural networks for wind speed prediction using spatial correlation
-
December
-
T. G. Barbounis and J. B. Theocharis. Locally recurrent neural networks for wind speed prediction using spatial correlation. Inf. Sci., 177(24):5775-5797, December 2007.
-
(2007)
Inf. Sci.
, vol.177
, Issue.24
, pp. 5775-5797
-
-
Barbounis, T.G.1
Theocharis, J.B.2
-
9
-
-
70350707612
-
Entropy and correntropy against minimum square error in offline and online three-day ahead wind power forecasting
-
R.J. Bessa, V. Miranda, and J. Gama. Entropy and correntropy against minimum square error in offline and online three-day ahead wind power forecasting. Power Systems, IEEE Transactions on, 24(4):1657-1666, 2009.
-
(2009)
Power Systems, IEEE Transactions on
, vol.24
, Issue.4
, pp. 1657-1666
-
-
Bessa, R.J.1
Miranda, V.2
Gama, J.3
-
10
-
-
84880348421
-
Solar electricity forecast - Approaches and first results
-
S. Bofinger and G. Heilscher. Solar electricity forecast - approaches and first results. In 20th Europ. PV conf., 2006.
-
(2006)
20th Europ. PV Conf.
-
-
Bofinger, S.1
Heilscher, G.2
-
11
-
-
0034592897
-
Characteristics of scalability and their impact on performance
-
New York, NY, USA, ACM
-
A. B. Bondi. Characteristics of scalability and their impact on performance. In Proceedings of the 2Nd International Workshop on Software and Performance, WOSP '00, pages 195-203, New York, NY, USA, 2000. ACM.
-
(2000)
Proceedings of the 2Nd International Workshop on Software and Performance, WOSP '00
, pp. 195-203
-
-
Bondi, A.B.1
-
12
-
-
84906807388
-
Innovative power operating center management exploiting big data techniques
-
M. Ceci, N. Cassavia, R. Corizzo, P. Dicosta, D. Malerba, G. Maria, E. Masciari, and C. Pastura. Innovative power operating center management exploiting big data techniques. In 18th International Database Engineering & Applications Symposium, IDEAS 2014, Porto, Portugal, July 7-9, 2014, pages 326-329, 2014.
-
(2014)
18th International Database Engineering & Applications Symposium, IDEAS 2014, Porto, Portugal, July 7-9, 2014
, pp. 326-329
-
-
Ceci, M.1
Cassavia, N.2
Corizzo, R.3
Dicosta, P.4
Malerba, D.5
Maria, G.6
Masciari, E.7
Pastura, C.8
-
13
-
-
84914125295
-
Big data techniques for renewable energy market
-
Sergio Greco and Antonio Picariello, editors
-
Michelangelo Ceci, Nunziato Cassavia, Roberto Corizzo, Pietro Dicosta, Donato Malerba, Gaspare Maria, Elio Masciari, and Camillo Pastura. Big data techniques for renewable energy market. In Sergio Greco and Antonio Picariello, editors, 22nd Italian Symposium on Advanced Database Systems, SEBD 2014, Sorrento Coast, Italy, June 16-18, 2014., pages 369-377, 2014.
-
(2014)
22nd Italian Symposium on Advanced Database Systems, SEBD 2014, Sorrento Coast, Italy, June 16-18, 2014
, pp. 369-377
-
-
Ceci, M.1
Cassavia, N.2
Corizzo, R.3
Dicosta, P.4
Malerba, D.5
Maria, G.6
Masciari, E.7
Pastura, C.8
-
14
-
-
84906808643
-
Fine-grained photovoltaic output prediction using a bayesian ensemble
-
Prithwish Chakraborty, Manish Marwah, Martin F. Arlitt, and Naren Ramakrishnan. Fine-grained photovoltaic output prediction using a bayesian ensemble. In AAAI, 2012.
-
(2012)
AAAI
-
-
Chakraborty, P.1
Marwah, M.2
Arlitt, M.F.3
Ramakrishnan, N.4
-
15
-
-
84964952939
-
-
June
-
EPIA European Photovoltaic Industry Association. Global Market Outlook for Photovoltaics 2014-2018. http://www.epia.org/news/publications/global-market-outlook-for-photovoltaics-2014-2018, June 2014.
-
(2014)
Global Market Outlook for Photovoltaics 2014-2018
-
-
-
16
-
-
0032681983
-
Harvest, yield, and scalable tolerant systems
-
Washington, DC, USA, IEEE Computer Society
-
A. Fox and E. A. Brewer. Harvest, yield, and scalable tolerant systems. In Proceedings of the The Seventh Workshop on Hot Topics in Operating Systems, HOTOS '99, pages 174-, Washington, DC, USA, 1999. IEEE Computer Society.
-
(1999)
Proceedings of the The Seventh Workshop on Hot Topics in Operating Systems, HOTOS '99
, pp. 174
-
-
Fox, A.1
Brewer, E.A.2
-
17
-
-
85007434374
-
Article: New design principles for effective knowledge discovery from big data
-
June Full text available
-
Anjana Gosain and Nikita Chugh. Article: New design principles for effective knowledge discovery from big data. International Journal of Computer Applications, 96(17):19-23, June 2014. Full text available.
-
(2014)
International Journal of Computer Applications
, vol.96
, Issue.17
, pp. 19-23
-
-
Gosain, A.1
Chugh, N.2
-
19
-
-
80053500227
-
Starfish: A self-tuning system for big data analytics
-
Herodotos Herodotou, Harold Lim, Gang Luo, Nedyalko Borisov, Liang Dong, Fatma Bilgen Cetin, and Shivnath Babu. Starfish: A self-tuning system for big data analytics. In In CIDR, pages 261-272, 2011.
-
(2011)
CIDR
, pp. 261-272
-
-
Herodotou, H.1
Lim, H.2
Luo, G.3
Borisov, N.4
Dong, L.5
Cetin, F.B.6
Babu, S.7
-
23
-
-
84870255848
-
Tree ensembles for predicting structured outputs
-
Dragi Kocev, Celine Vens, Jan Struyf, and Sašo Džeroski. Tree ensembles for predicting structured outputs. Pattern Recognition, 46(3):817-833, 2013.
-
(2013)
Pattern Recognition
, vol.46
, Issue.3
, pp. 817-833
-
-
Kocev, D.1
Vens, C.2
Struyf, J.3
Džeroski, S.4
-
24
-
-
84873131659
-
Challenges and opportunities with big data
-
A. Labrinidis and H. V. Jagadish. Challenges and opportunities with big data. PVLDB, 5(12):2032-2033, 2012.
-
(2012)
PVLDB
, vol.5
, Issue.12
, pp. 2032-2033
-
-
Labrinidis, A.1
Jagadish, H.V.2
-
26
-
-
81055138684
-
-
McKinsey Global Institute, May
-
J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and A. H. Byers. Big data: The next frontier for innovation, competition, and productivity. McKinsey Global Institute, May 2011.
-
(2011)
Big Data: The Next Frontier for Innovation, Competition, and Productivity
-
-
Manyika, J.1
Chui, M.2
Brown, B.3
Bughin, J.4
Dobbs, R.5
Roxburgh, C.6
Byers, A.H.7
-
27
-
-
84875356226
-
Improvement and automation of tools for short term wind power forecasting
-
H. A. Nielsen, P. Pinson, L. E. Christiansen, T. S. Nielsen, H. Madsen, J. Badger, G. Giebel, and H. F. Ravn. Improvement and automation of tools for short term wind power forecasting. In EWEC, 2007.
-
(2007)
EWEC
-
-
Nielsen, H.A.1
Pinson, P.2
Christiansen, L.E.3
Nielsen, T.S.4
Madsen, H.5
Badger, J.6
Giebel, G.7
Ravn, H.F.8
-
28
-
-
84873124471
-
Following digital breadcrumbs to big data gold
-
Nov
-
Y. Noguchi. Following digital breadcrumbs to big data gold. National Public Radio, Nov 2011.
-
(2011)
National Public Radio
-
-
Noguchi, Y.1
-
29
-
-
84873192128
-
The search for analysts to make sense of big data
-
Nov
-
Y. Noguchi. The search for analysts to make sense of big data. National Public Radio, Nov 2011.
-
(2011)
National Public Radio
-
-
Noguchi, Y.1
-
30
-
-
79960806016
-
Temporal data mining approaches for sustainable chiller management in data centers
-
July
-
Debprakash Patnaik, Manish Marwah, Ratnesh K. Sharma, and Naren Ramakrishnan. Temporal data mining approaches for sustainable chiller management in data centers. ACM Trans. Intell. Syst. Technol., 2(4):34:1-34:29, July 2011.
-
(2011)
ACM Trans. Intell. Syst. Technol.
, vol.2
, Issue.4
, pp. 34:1-34:29
-
-
Patnaik, D.1
Marwah, M.2
Sharma, R.K.3
Ramakrishnan, N.4
-
31
-
-
84973125179
-
-
Technical report, IEA PVPS
-
Sophie Pelland, Jan Remund, Jan Kleissl, Takashi Oozeki, and Karel De Brabandere. Photovoltaic and solar forecasting. Technical report, IEA PVPS, 2013.
-
(2013)
Photovoltaic and Solar Forecasting
-
-
Pelland, S.1
Remund, J.2
Kleissl, J.3
Oozeki, T.4
De Brabandere, K.5
-
32
-
-
37449005741
-
Local linear regression with adaptive orthogonal fitting for the wind power application
-
March
-
Pierre Pinson, Henrik Aa. Nielsen, Henrik Madsen, and Torben S. Nielsen. Local linear regression with adaptive orthogonal fitting for the wind power application. Statistics and Computing, 18(1):59-71, March 2008.
-
(2008)
Statistics and Computing
, vol.18
, Issue.1
, pp. 59-71
-
-
Pinson, P.1
Nielsen, H.Aa.2
Madsen, H.3
Nielsen, T.S.4
-
33
-
-
84855830610
-
Predicting solar generation from weather forecasts using machine learning
-
IEEE
-
Navin Sharma, Pranshu Sharma, David E. Irwin, and Prashant J. Shenoy. Predicting solar generation from weather forecasts using machine learning. In SmartGridComm, pages 528-533. IEEE, 2011.
-
(2011)
SmartGridComm
, pp. 528-533
-
-
Sharma, N.1
Sharma, P.2
Irwin, D.E.3
Shenoy, P.J.4
-
34
-
-
84870551039
-
Dealing with spatial autocorrelation when learning predictive clustering trees
-
Daniela Stojanova, Michelangelo Ceci, Annalisa Appice, Donato Malerba, and Saso Dzeroski. Dealing with spatial autocorrelation when learning predictive clustering trees. Ecological Informatics, 13:22-39, 2013.
-
(2013)
Ecological Informatics
, vol.13
, pp. 22-39
-
-
Stojanova, D.1
Ceci, M.2
Appice, A.3
Malerba, D.4
Dzeroski, S.5
-
36
-
-
85040175609
-
Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing
-
USENIX Association
-
M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M.J. Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation, pages 2-2. USENIX Association, 2012.
-
(2012)
Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation
, pp. 2
-
-
Zaharia, M.1
Chowdhury, M.2
Das, T.3
Dave, A.4
Ma, J.5
McCauley, M.6
Franklin, M.J.7
Shenker, S.8
Stoica, I.9
-
37
-
-
85085251984
-
Spark: Cluster computing with working sets
-
Berkeley, CA, USA, USENIX Association
-
M. Zaharia, M. Chowdhury, M.J Franklin, S. Shenker, and I. Stoica. Spark: Cluster computing with working sets. In Proceedings of the 2Nd USENIX Conference on Hot Topics in Cloud Computing, HotCloud'10, pages 10-10, Berkeley, CA, USA, 2010. USENIX Association.
-
(2010)
Proceedings of the 2Nd USENIX Conference on Hot Topics in Cloud Computing, HotCloud'10
, pp. 10
-
-
Zaharia, M.1
Chowdhury, M.2
Franklin, M.J.3
Shenker, S.4
Stoica, I.5
-
38
-
-
84883750069
-
Survey of mapreduce frame operation in bioinformatics
-
Quan Zou, Xu-Bin Li, Wen-Rui Jiang, Zi-Yu Lin, Gui-Lin Li, and Ke Chen. Survey of mapreduce frame operation in bioinformatics. Briefings in Bioinformatics, 2013.
-
(2013)
Briefings in Bioinformatics
-
-
Zou, Q.1
Li, X.-B.2
Jiang, W.-R.3
Lin, Z.-Y.4
Li, G.-L.5
Chen, K.6
|