메뉴 건너뛰기




Volumn 0, Issue CONFCODENUMBER, 2015, Pages 62-71

Big data techniques for supporting accurate predictions of energy production from renewable sources

Author keywords

[No Author keywords available]

Indexed keywords

BIG DATA; INFORMATION MANAGEMENT; LEARNING ALGORITHMS; MACHINE LEARNING; NEURAL NETWORKS;

EID: 85007505126     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2790755.2790762     Document Type: Conference Paper
Times cited : (27)

References (38)
  • 1
    • 85007462985 scopus 로고    scopus 로고
    • Big data
    • September
    • Big data. Nature, September 2008.
    • (2008) Nature
  • 2
    • 80051803315 scopus 로고    scopus 로고
    • Data, data everywhere
    • Feb
    • Data, data everywhere. The Economist, Feb 2010.
    • (2010) The Economist
  • 3
    • 84900341614 scopus 로고    scopus 로고
    • Drowning in numbers - Digital data will flood the planet - and help us understand it better
    • Nov
    • Drowning in numbers - digital data will flood the planet - and help us understand it better. The Economist, Nov 2011.
    • (2011) The Economist
  • 6
    • 70049096782 scopus 로고    scopus 로고
    • Online short-term solar power forecasting
    • Peder Bacher, Henrik Madsen, and Henrik Aalborg Nielsen. Online short-term solar power forecasting. Solar Energy, 83(10):1772-1783, 2009.
    • (2009) Solar Energy , vol.83 , Issue.10 , pp. 1772-1783
    • Bacher, P.1    Madsen, H.2    Nielsen, H.A.3
  • 8
    • 34648852323 scopus 로고    scopus 로고
    • Locally recurrent neural networks for wind speed prediction using spatial correlation
    • December
    • T. G. Barbounis and J. B. Theocharis. Locally recurrent neural networks for wind speed prediction using spatial correlation. Inf. Sci., 177(24):5775-5797, December 2007.
    • (2007) Inf. Sci. , vol.177 , Issue.24 , pp. 5775-5797
    • Barbounis, T.G.1    Theocharis, J.B.2
  • 9
    • 70350707612 scopus 로고    scopus 로고
    • Entropy and correntropy against minimum square error in offline and online three-day ahead wind power forecasting
    • R.J. Bessa, V. Miranda, and J. Gama. Entropy and correntropy against minimum square error in offline and online three-day ahead wind power forecasting. Power Systems, IEEE Transactions on, 24(4):1657-1666, 2009.
    • (2009) Power Systems, IEEE Transactions on , vol.24 , Issue.4 , pp. 1657-1666
    • Bessa, R.J.1    Miranda, V.2    Gama, J.3
  • 10
    • 84880348421 scopus 로고    scopus 로고
    • Solar electricity forecast - Approaches and first results
    • S. Bofinger and G. Heilscher. Solar electricity forecast - approaches and first results. In 20th Europ. PV conf., 2006.
    • (2006) 20th Europ. PV Conf.
    • Bofinger, S.1    Heilscher, G.2
  • 14
    • 84906808643 scopus 로고    scopus 로고
    • Fine-grained photovoltaic output prediction using a bayesian ensemble
    • Prithwish Chakraborty, Manish Marwah, Martin F. Arlitt, and Naren Ramakrishnan. Fine-grained photovoltaic output prediction using a bayesian ensemble. In AAAI, 2012.
    • (2012) AAAI
    • Chakraborty, P.1    Marwah, M.2    Arlitt, M.F.3    Ramakrishnan, N.4
  • 15
    • 84964952939 scopus 로고    scopus 로고
    • June
    • EPIA European Photovoltaic Industry Association. Global Market Outlook for Photovoltaics 2014-2018. http://www.epia.org/news/publications/global-market-outlook-for-photovoltaics-2014-2018, June 2014.
    • (2014) Global Market Outlook for Photovoltaics 2014-2018
  • 17
    • 85007434374 scopus 로고    scopus 로고
    • Article: New design principles for effective knowledge discovery from big data
    • June Full text available
    • Anjana Gosain and Nikita Chugh. Article: New design principles for effective knowledge discovery from big data. International Journal of Computer Applications, 96(17):19-23, June 2014. Full text available.
    • (2014) International Journal of Computer Applications , vol.96 , Issue.17 , pp. 19-23
    • Gosain, A.1    Chugh, N.2
  • 19
    • 80053500227 scopus 로고    scopus 로고
    • Starfish: A self-tuning system for big data analytics
    • Herodotos Herodotou, Harold Lim, Gang Luo, Nedyalko Borisov, Liang Dong, Fatma Bilgen Cetin, and Shivnath Babu. Starfish: A self-tuning system for big data analytics. In In CIDR, pages 261-272, 2011.
    • (2011) CIDR , pp. 261-272
    • Herodotou, H.1    Lim, H.2    Luo, G.3    Borisov, N.4    Dong, L.5    Cetin, F.B.6    Babu, S.7
  • 20
    • 84911928956 scopus 로고    scopus 로고
    • Predicting impact of natural calamities in era of big data and data science
    • C. K. Joseph and S. Kakad. Predicting impact of natural calamities in era of big data and data science. In 7th Intl. Congress on Env. Modelling and Software, pages 90-98, 2014.
    • (2014) 7th Intl. Congress on Env. Modelling and Software , pp. 90-98
    • Joseph, C.K.1    Kakad, S.2
  • 23
    • 84870255848 scopus 로고    scopus 로고
    • Tree ensembles for predicting structured outputs
    • Dragi Kocev, Celine Vens, Jan Struyf, and Sašo Džeroski. Tree ensembles for predicting structured outputs. Pattern Recognition, 46(3):817-833, 2013.
    • (2013) Pattern Recognition , vol.46 , Issue.3 , pp. 817-833
    • Kocev, D.1    Vens, C.2    Struyf, J.3    Džeroski, S.4
  • 24
    • 84873131659 scopus 로고    scopus 로고
    • Challenges and opportunities with big data
    • A. Labrinidis and H. V. Jagadish. Challenges and opportunities with big data. PVLDB, 5(12):2032-2033, 2012.
    • (2012) PVLDB , vol.5 , Issue.12 , pp. 2032-2033
    • Labrinidis, A.1    Jagadish, H.V.2
  • 28
    • 84873124471 scopus 로고    scopus 로고
    • Following digital breadcrumbs to big data gold
    • Nov
    • Y. Noguchi. Following digital breadcrumbs to big data gold. National Public Radio, Nov 2011.
    • (2011) National Public Radio
    • Noguchi, Y.1
  • 29
    • 84873192128 scopus 로고    scopus 로고
    • The search for analysts to make sense of big data
    • Nov
    • Y. Noguchi. The search for analysts to make sense of big data. National Public Radio, Nov 2011.
    • (2011) National Public Radio
    • Noguchi, Y.1
  • 30
    • 79960806016 scopus 로고    scopus 로고
    • Temporal data mining approaches for sustainable chiller management in data centers
    • July
    • Debprakash Patnaik, Manish Marwah, Ratnesh K. Sharma, and Naren Ramakrishnan. Temporal data mining approaches for sustainable chiller management in data centers. ACM Trans. Intell. Syst. Technol., 2(4):34:1-34:29, July 2011.
    • (2011) ACM Trans. Intell. Syst. Technol. , vol.2 , Issue.4 , pp. 34:1-34:29
    • Patnaik, D.1    Marwah, M.2    Sharma, R.K.3    Ramakrishnan, N.4
  • 32
    • 37449005741 scopus 로고    scopus 로고
    • Local linear regression with adaptive orthogonal fitting for the wind power application
    • March
    • Pierre Pinson, Henrik Aa. Nielsen, Henrik Madsen, and Torben S. Nielsen. Local linear regression with adaptive orthogonal fitting for the wind power application. Statistics and Computing, 18(1):59-71, March 2008.
    • (2008) Statistics and Computing , vol.18 , Issue.1 , pp. 59-71
    • Pinson, P.1    Nielsen, H.Aa.2    Madsen, H.3    Nielsen, T.S.4
  • 33
    • 84855830610 scopus 로고    scopus 로고
    • Predicting solar generation from weather forecasts using machine learning
    • IEEE
    • Navin Sharma, Pranshu Sharma, David E. Irwin, and Prashant J. Shenoy. Predicting solar generation from weather forecasts using machine learning. In SmartGridComm, pages 528-533. IEEE, 2011.
    • (2011) SmartGridComm , pp. 528-533
    • Sharma, N.1    Sharma, P.2    Irwin, D.E.3    Shenoy, P.J.4
  • 34
    • 84870551039 scopus 로고    scopus 로고
    • Dealing with spatial autocorrelation when learning predictive clustering trees
    • Daniela Stojanova, Michelangelo Ceci, Annalisa Appice, Donato Malerba, and Saso Dzeroski. Dealing with spatial autocorrelation when learning predictive clustering trees. Ecological Informatics, 13:22-39, 2013.
    • (2013) Ecological Informatics , vol.13 , pp. 22-39
    • Stojanova, D.1    Ceci, M.2    Appice, A.3    Malerba, D.4    Dzeroski, S.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.