-
1
-
-
84914148154
-
Big data
-
Sep
-
Big data. Nature, Sep 2008.
-
(2008)
Nature
-
-
-
2
-
-
80051803315
-
Data, data everywhere
-
Feb
-
Data, data everywhere. The Economist, Feb 2010.
-
(2010)
The Economist
-
-
-
3
-
-
84900341614
-
Drowning in numbers - Digital data will flood the planet - And help us understand it better
-
Nov
-
Drowning in numbers - digital data will flood the planet - And help us understand it better. The Economist, Nov 2011.
-
(2011)
The Economist
-
-
-
4
-
-
84897479211
-
Challenges and opportunities with big data
-
Mar
-
D. Agrawal, P. Bernstein, E. Bertino, S. Davidson, U. Dayal, M. Franklin, J. Gehrke, L. Haas, A. Halevy, J. Han, H. V. Jagadish, A. Labrinidis, S. Madden, Y. Papakonstantinou, J. M. Patel, R. Ramakrishnan, K. Ross, C. Shahabi, D. Suciu, S. Vaithyanathan, and J. Widom. Challenges and opportunities with big data. A community white paper developed by leading researchers across the United States. Mar 2012.
-
(2012)
A Community White Paper Developed by Leading Researchers across the United States
-
-
Agrawal, D.1
Bernstein, P.2
Bertino, E.3
Davidson, S.4
Dayal, U.5
Franklin, M.6
Gehrke, J.7
Haas, L.8
Halevy, A.9
Han, J.10
Jagadish, H.V.11
Labrinidis, A.12
Madden, S.13
Papakonstantinou, Y.14
Patel, J.M.15
Ramakrishnan, R.16
Ross, K.17
Shahabi, C.18
Suciu, D.19
Vaithyanathan, S.20
Widom, J.21
more..
-
5
-
-
70049096782
-
Online short-term solar power forecasting
-
Peder Bacher, Henrik Madsen, and Henrik Aalborg Nielsen. Online short-term solar power forecasting. Solar Energy, 83(10):1772 - 1783, 2009.
-
(2009)
Solar Energy
, vol.83
, Issue.10
, pp. 1772-1783
-
-
Bacher, P.1
Madsen, H.2
Nielsen, H.A.3
-
6
-
-
34648852323
-
Locally recurrent neural networks for wind speed prediction using spatial correlation
-
December
-
T. G. Barbounis and J. B. Theocharis. Locally recurrent neural networks for wind speed prediction using spatial correlation. Inf. Sci., 177(24):5775-5797, December 2007.
-
(2007)
Inf. Sci.
, vol.177
, Issue.24
, pp. 5775-5797
-
-
Barbounis, T.G.1
Theocharis, J.B.2
-
7
-
-
70350707612
-
Entropy and correntropy against minimum square error in offline and online three-day ahead wind power forecasting
-
Nov
-
R.J. Bessa, V. Miranda, and J. Gama. Entropy and correntropy against minimum square error in offline and online three-day ahead wind power forecasting. Power Systems, IEEE Transactions on, 24(4):1657-1666, Nov 2009.
-
(2009)
Power Systems, IEEE Transactions on
, vol.24
, Issue.4
, pp. 1657-1666
-
-
Bessa, R.J.1
Miranda, V.2
Gama, J.3
-
9
-
-
4444374541
-
Dissecting the spatial structure of ecological data at multiple scales
-
July
-
Daniel Borcard, Pierre Legendre, Carol Avois-Jacquet, and Hanna Tuomisto. Dissecting the spatial structure of ecological data at multiple scales. Ecology, 85(7):1826-1832, July 2004.
-
(2004)
Ecology
, vol.85
, Issue.7
, pp. 1826-1832
-
-
Borcard, D.1
Legendre, P.2
Avois-Jacquet, C.3
Tuomisto, H.4
-
10
-
-
84914112042
-
-
Jörg Hoffmann and Bart Selman, editors, AAAI. AAAI Press
-
Prithwish Chakraborty, Manish Marwah, Martin F. Arlitt, and Naren Ramakrishnan. Finegrained photovoltaic output prediction using a bayesian ensemble. In Jörg Hoffmann and Bart Selman, editors, AAAI. AAAI Press, 2012.
-
(2012)
Finegrained Photovoltaic Output Prediction Using a Bayesian Ensemble
-
-
Chakraborty, P.1
Marwah, M.2
Arlitt, M.F.3
Ramakrishnan, N.4
-
11
-
-
43049128559
-
A review on the young history of the wind power short-term prediction
-
Alexandre Costa, Antonio Crespo, Jorge Navarro, Gil Lizcano, Henrik Madsen, and Everaldo Feitosa. A review on the young history of the wind power short-term prediction. Renewable and Sustainable Energy Reviews, 12(6):1725 - 1744, 2008.
-
(2008)
Renewable and Sustainable Energy Reviews
, vol.12
, Issue.6
, pp. 1725-1744
-
-
Costa, A.1
Crespo, A.2
Navarro, J.3
Lizcano, G.4
Madsen, H.5
Feitosa, E.6
-
13
-
-
24344498330
-
Mining data streams: A review
-
June
-
Mohamed Medhat Gaber, Arkady Zaslavsky, and Shonali Krishnaswamy. Mining data streams: A review. SIGMOD Rec., 34(2):18-26, June 2005.
-
(2005)
SIGMOD Rec.
, vol.34
, Issue.2
, pp. 18-26
-
-
Gaber, M.M.1
Zaslavsky, A.2
Krishnaswamy, S.3
-
16
-
-
84873131659
-
Challenges and opportunities with big data
-
A. Labrinidis and H. V. Jagadish. Challenges and opportunities with big data. PVLDB, 5(12):2032-2033, 2012.
-
(2012)
PVLDB
, vol.5
, Issue.12
, pp. 2032-2033
-
-
Labrinidis, A.1
Jagadish, H.V.2
-
17
-
-
0033086885
-
Short term prediction of power production of wind parks
-
L. Landberg. Short term prediction of power production of wind parks. J. Wind Eng. Ind. Aerodynam., 80:207-220, 1999.
-
(1999)
J. Wind Eng. Ind. Aerodynam
, vol.80
, pp. 207-220
-
-
Landberg, L.1
-
18
-
-
84863741148
-
-
Feb
-
S. Lohr. The age of big data. http://www.nytimes.com/2012/02/12/sunday-review/bigdatasimpact-in-the-world.html, Feb 2012.
-
(2012)
The Age of Big Data
-
-
Lohr, S.1
-
19
-
-
81055138684
-
-
McKinsey Global Institute, May
-
J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and A. H. Byers. Big data: The next frontier for innovation, competition, and productivity. McKinsey Global Institute, May 2011.
-
(2011)
Big Data: The Next Frontier for Innovation, Competition, and Productivity
-
-
Manyika, J.1
Chui, M.2
Brown, B.3
Bughin, J.4
Dobbs, R.5
Roxburgh, C.6
Byers, A.H.7
-
20
-
-
84875356226
-
Improvement and automation of tools for short term wind power forecasting
-
Milan, Italy
-
H. A. Nielsen, P. Pinson, L. E. Christiansen, T. S. Nielsen, H. Madsen, J. Badger, G. Giebel, and H. F. Ravn. Improvement and automation of tools for short term wind power forecasting. In EWEC 2007, European Wind Energy Conference - Scientific Track, Milan, Italy, 2007.
-
(2007)
EWEC 2007, European Wind Energy Conference - Scientific Track
-
-
Nielsen, H.A.1
Pinson, P.2
Christiansen, L.E.3
Nielsen, T.S.4
Madsen, H.5
Badger, J.6
Giebel, G.7
Ravn, H.F.8
-
23
-
-
79960806016
-
Temporal data mining approaches for sustainable chiller management in data centers
-
34:1-34:29, July
-
Debprakash Patnaik, Manish Marwah, Ratnesh K. Sharma, and Naren Ramakrishnan. Temporal data mining approaches for sustainable chiller management in data centers. ACM Trans. Intell. Syst. Technol., 2(4):34:1-34:29, July 2011.
-
(2011)
ACM Trans. Intell. Syst. Technol.
, vol.2
, Issue.4
-
-
Patnaik, D.1
Marwah, M.2
Sharma, R.K.3
Ramakrishnan, N.4
-
24
-
-
84906813403
-
Photovoltaic and solar forecasting
-
Sophie Pelland, Jan Remund, Jan Kleissl, Takashi Oozeki, and Karel De Brabandere. Photovoltaic and solar forecasting. Technical report, IEA PVPS, 2013.
-
(2013)
Technical Report, IEA PVPS
-
-
Pelland, S.1
Remund, J.2
Kleissl, J.3
Oozeki, T.4
De Brabandere, K.5
-
25
-
-
37449005741
-
Local linear regression with adaptive orthogonal fitting for the wind power application
-
March
-
Pierre Pinson, Henrik Aa. Nielsen, Henrik Madsen, and Torben S. Nielsen. Local linear regression with adaptive orthogonal fitting for the wind power application. Statistics and Computing, 18(1):59-71, March 2008.
-
(2008)
Statistics and Computing
, vol.18
, Issue.1
, pp. 59-71
-
-
Pinson, P.1
Nielsen H.Aa.2
Madsen, H.3
Nielsen, T.S.4
-
26
-
-
84855830610
-
Predicting solar generation from weather forecasts using machine learning
-
IEEE
-
Navin Sharma, Pranshu Sharma, David E. Irwin, and Prashant J. Shenoy. Predicting solar generation from weather forecasts using machine learning. In SmartGridComm, pages 528- 533. IEEE, 2011.
-
(2011)
SmartGridComm
, pp. 528-533
-
-
Sharma, N.1
Sharma, P.2
Irwin, D.E.3
Shenoy, P.J.4
-
27
-
-
84864558206
-
Network regression with predictive clustering trees
-
Daniela Stojanova, Michelangelo Ceci, Annalisa Appice, and Saso Dzeroski. Network regression with predictive clustering trees. Data Min. Knowl. Discov., 25(2):378-413, 2012.
-
(2012)
Data Min. Knowl. Discov.
, vol.25
, Issue.2
, pp. 378-413
-
-
Stojanova, D.1
Ceci, M.2
Appice, A.3
Dzeroski, S.4
-
28
-
-
84884553372
-
Using PPI network autocorrelation in hierarchical multi-label classification trees for gene function prediction
-
Daniela Stojanova, Michelangelo Ceci, Donato Malerba, and Saso Deroski. Using ppi network autocorrelation in hierarchical multi-label classification trees for gene function prediction. BMC Bioinformatics, 14:285, 2013.
-
(2013)
BMC Bioinformatics
, vol.14
, pp. 285
-
-
Stojanova, D.1
Ceci, M.2
Malerba, D.3
Deroski, S.4
|