메뉴 건너뛰기




Volumn , Issue , 2014, Pages 369-377

Big data techniques for renewable energy market

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84914125295     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (8)

References (29)
  • 1
    • 84914148154 scopus 로고    scopus 로고
    • Big data
    • Sep
    • Big data. Nature, Sep 2008.
    • (2008) Nature
  • 2
    • 80051803315 scopus 로고    scopus 로고
    • Data, data everywhere
    • Feb
    • Data, data everywhere. The Economist, Feb 2010.
    • (2010) The Economist
  • 3
    • 84900341614 scopus 로고    scopus 로고
    • Drowning in numbers - Digital data will flood the planet - And help us understand it better
    • Nov
    • Drowning in numbers - digital data will flood the planet - And help us understand it better. The Economist, Nov 2011.
    • (2011) The Economist
  • 5
    • 70049096782 scopus 로고    scopus 로고
    • Online short-term solar power forecasting
    • Peder Bacher, Henrik Madsen, and Henrik Aalborg Nielsen. Online short-term solar power forecasting. Solar Energy, 83(10):1772 - 1783, 2009.
    • (2009) Solar Energy , vol.83 , Issue.10 , pp. 1772-1783
    • Bacher, P.1    Madsen, H.2    Nielsen, H.A.3
  • 6
    • 34648852323 scopus 로고    scopus 로고
    • Locally recurrent neural networks for wind speed prediction using spatial correlation
    • December
    • T. G. Barbounis and J. B. Theocharis. Locally recurrent neural networks for wind speed prediction using spatial correlation. Inf. Sci., 177(24):5775-5797, December 2007.
    • (2007) Inf. Sci. , vol.177 , Issue.24 , pp. 5775-5797
    • Barbounis, T.G.1    Theocharis, J.B.2
  • 7
    • 70350707612 scopus 로고    scopus 로고
    • Entropy and correntropy against minimum square error in offline and online three-day ahead wind power forecasting
    • Nov
    • R.J. Bessa, V. Miranda, and J. Gama. Entropy and correntropy against minimum square error in offline and online three-day ahead wind power forecasting. Power Systems, IEEE Transactions on, 24(4):1657-1666, Nov 2009.
    • (2009) Power Systems, IEEE Transactions on , vol.24 , Issue.4 , pp. 1657-1666
    • Bessa, R.J.1    Miranda, V.2    Gama, J.3
  • 9
    • 4444374541 scopus 로고    scopus 로고
    • Dissecting the spatial structure of ecological data at multiple scales
    • July
    • Daniel Borcard, Pierre Legendre, Carol Avois-Jacquet, and Hanna Tuomisto. Dissecting the spatial structure of ecological data at multiple scales. Ecology, 85(7):1826-1832, July 2004.
    • (2004) Ecology , vol.85 , Issue.7 , pp. 1826-1832
    • Borcard, D.1    Legendre, P.2    Avois-Jacquet, C.3    Tuomisto, H.4
  • 13
    • 24344498330 scopus 로고    scopus 로고
    • Mining data streams: A review
    • June
    • Mohamed Medhat Gaber, Arkady Zaslavsky, and Shonali Krishnaswamy. Mining data streams: A review. SIGMOD Rec., 34(2):18-26, June 2005.
    • (2005) SIGMOD Rec. , vol.34 , Issue.2 , pp. 18-26
    • Gaber, M.M.1    Zaslavsky, A.2    Krishnaswamy, S.3
  • 14
  • 16
    • 84873131659 scopus 로고    scopus 로고
    • Challenges and opportunities with big data
    • A. Labrinidis and H. V. Jagadish. Challenges and opportunities with big data. PVLDB, 5(12):2032-2033, 2012.
    • (2012) PVLDB , vol.5 , Issue.12 , pp. 2032-2033
    • Labrinidis, A.1    Jagadish, H.V.2
  • 17
    • 0033086885 scopus 로고    scopus 로고
    • Short term prediction of power production of wind parks
    • L. Landberg. Short term prediction of power production of wind parks. J. Wind Eng. Ind. Aerodynam., 80:207-220, 1999.
    • (1999) J. Wind Eng. Ind. Aerodynam , vol.80 , pp. 207-220
    • Landberg, L.1
  • 18
    • 84863741148 scopus 로고    scopus 로고
    • Feb
    • S. Lohr. The age of big data. http://www.nytimes.com/2012/02/12/sunday-review/bigdatasimpact-in-the-world.html, Feb 2012.
    • (2012) The Age of Big Data
    • Lohr, S.1
  • 23
    • 79960806016 scopus 로고    scopus 로고
    • Temporal data mining approaches for sustainable chiller management in data centers
    • 34:1-34:29, July
    • Debprakash Patnaik, Manish Marwah, Ratnesh K. Sharma, and Naren Ramakrishnan. Temporal data mining approaches for sustainable chiller management in data centers. ACM Trans. Intell. Syst. Technol., 2(4):34:1-34:29, July 2011.
    • (2011) ACM Trans. Intell. Syst. Technol. , vol.2 , Issue.4
    • Patnaik, D.1    Marwah, M.2    Sharma, R.K.3    Ramakrishnan, N.4
  • 25
    • 37449005741 scopus 로고    scopus 로고
    • Local linear regression with adaptive orthogonal fitting for the wind power application
    • March
    • Pierre Pinson, Henrik Aa. Nielsen, Henrik Madsen, and Torben S. Nielsen. Local linear regression with adaptive orthogonal fitting for the wind power application. Statistics and Computing, 18(1):59-71, March 2008.
    • (2008) Statistics and Computing , vol.18 , Issue.1 , pp. 59-71
    • Pinson, P.1    Nielsen H.Aa.2    Madsen, H.3    Nielsen, T.S.4
  • 26
    • 84855830610 scopus 로고    scopus 로고
    • Predicting solar generation from weather forecasts using machine learning
    • IEEE
    • Navin Sharma, Pranshu Sharma, David E. Irwin, and Prashant J. Shenoy. Predicting solar generation from weather forecasts using machine learning. In SmartGridComm, pages 528- 533. IEEE, 2011.
    • (2011) SmartGridComm , pp. 528-533
    • Sharma, N.1    Sharma, P.2    Irwin, D.E.3    Shenoy, P.J.4
  • 27
    • 84864558206 scopus 로고    scopus 로고
    • Network regression with predictive clustering trees
    • Daniela Stojanova, Michelangelo Ceci, Annalisa Appice, and Saso Dzeroski. Network regression with predictive clustering trees. Data Min. Knowl. Discov., 25(2):378-413, 2012.
    • (2012) Data Min. Knowl. Discov. , vol.25 , Issue.2 , pp. 378-413
    • Stojanova, D.1    Ceci, M.2    Appice, A.3    Dzeroski, S.4
  • 28
    • 84884553372 scopus 로고    scopus 로고
    • Using PPI network autocorrelation in hierarchical multi-label classification trees for gene function prediction
    • Daniela Stojanova, Michelangelo Ceci, Donato Malerba, and Saso Deroski. Using ppi network autocorrelation in hierarchical multi-label classification trees for gene function prediction. BMC Bioinformatics, 14:285, 2013.
    • (2013) BMC Bioinformatics , vol.14 , pp. 285
    • Stojanova, D.1    Ceci, M.2    Malerba, D.3    Deroski, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.