메뉴 건너뛰기




Volumn 5, Issue 1, 2014, Pages 521-526

Hybrid forecasting model for very-short term wind power forecasting based on grey relational analysis and wind speed distribution features

Author keywords

Grey relational analysis; hybrid model; very short term wind power forecasting; wind speed distribution features

Indexed keywords

ELECTRIC GRIDS; FORECASTING MODELING; GREY RELATIONAL ANALYSIS; HYBRID FORECASTING; HYBRID MODEL; INDEPENDENT MODEL; WIND POWER FORECASTING; WIND SPEED DISTRIBUTION;

EID: 84892588054     PISSN: 19493053     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSG.2013.2283269     Document Type: Article
Times cited : (185)

References (19)
  • 5
    • 84892621664 scopus 로고    scopus 로고
    • Status quo and prospect on control technique for large-scale synchronization of wind power
    • May
    • D. Yu, C. Yonghua, L. Xueming, and Q. Feng, "Status quo and prospect on control technique for large-scale synchronization of wind power," Guangdong Electric Power, vol. 24,May 2011.
    • (2011) Guangdong Electric Power , vol.24
    • Yu, D.1    Yonghua, C.2    Xueming, L.3    Feng, Q.4
  • 7
    • 84892610445 scopus 로고    scopus 로고
    • Key area wind power integration monitoring report
    • China
    • "Key area wind power integration monitoring report," State Electricity Regulation Commission, China, 2012.
    • (2012) State Electricity Regulation Commission
  • 8
    • 35248829580 scopus 로고    scopus 로고
    • Study on combined prediction of three hours in advance for wind power generation
    • S. Han, Y. Q. Liu, and Y. P. Yang, "Study on combined prediction of three hours in advance for wind power generation," ACTA ENERGIAE SOLARIS SINICA, vol. 28, p. 5, 2007.
    • (2007) Acta energiae solaris sinica , vol.28 , pp. 5
    • Han, S.1    Liu, Y.Q.2    Yang, Y.P.3
  • 9
    • 0034286972 scopus 로고    scopus 로고
    • A comparison of various forecasting techniques applied to mean hourly wind speed time series
    • DOI 10.1016/S0960-1481(99)00125-1, PII S0960148199001251
    • A. Sfetsos, "A comparison of various forecasting techniques applied to mean hourly wind speed time series," Renewable Energy, vol. 21, no. 1, pp. 23-35, 2000. (Pubitemid 30306417)
    • (2000) Renewable Energy , vol.21 , Issue.1 , pp. 23-35
    • Sfetsos, A.1
  • 10
    • 0029294334 scopus 로고
    • Use of time-series analysis to model and forecast wind speed
    • Z. Huang and Z. S. Chalabi, "Use of time-series analysis to model and forecast wind speed," J. Wind Eng. Ind. Aerodyn., vol. 56, p. 12, 1995.
    • (1995) J. Wind Eng. Ind. Aerodyn. , vol.56 , pp. 12
    • Huang, Z.1    Chalabi, Z.S.2
  • 11
    • 4544381358 scopus 로고    scopus 로고
    • Nonlinear model identification of wind turbine with a neural network
    • S. Kelouwani and K. Agbossou, "Nonlinear model identification of wind turbine with a neural network," IEEE Trans. Energy Convers., vol. 19, p. 6, 2004.
    • (2004) IEEE Trans. Energy Convers. , vol.19 , pp. 6
    • Kelouwani, S.1    Agbossou, K.2
  • 13
    • 77958138916 scopus 로고    scopus 로고
    • The research and application of wavelet-support vector machine on short-term wind power prediction
    • Jul. 7-9
    • J. Shi,Y.Q.Liu, andY. P. Yang et al., "The research and application of wavelet-support vector machine on short-term wind power prediction," in Proc. 8th World Congr. Intell. Control Autom. (WCICA), Jul. 7-9, 2010, pp. 4927-4931.
    • (2010) Proc. 8th World Congr. Intell. Control Autom. (WCICA) , pp. 4927-4931
    • Shi, J.1    Liu, Y.Q.2    Yang, Y.P.3
  • 14
    • 78349298729 scopus 로고    scopus 로고
    • Combining simulate anneal algorithm with support vector regression to forecast wind speed
    • Aug. 28-31
    • H. Tang and D. X. Niu, "Combining simulate anneal algorithm with support vector regression to forecast wind speed," in Proc. 2010 2nd IITA Int. Conf. Geosci. Remote Sensing (IITA-GRS), Aug. 28-31, 2010, pp. 92-94.
    • (2010) Proc. 2010 2nd IITA Int. Conf. Geosci. Remote Sensing (IITA-GRS) , pp. 92-94
    • Tang, H.1    Niu, D.X.2
  • 15
    • 77958144053 scopus 로고    scopus 로고
    • Genetic algorithm-piecewise support vector machine model for short term wind power prediction
    • Jul. 7-9
    • J. Shi, Y. Q. Liu, and Y. P. Yang et al., "Genetic algorithm-piecewise support vector machine model for short term wind power prediction," in Proc. 8th World Congr. Intell. Control Autom. (WCICA), Jul. 7-9, 2010, pp. 2254-2258.
    • (2010) Proc. 8th World Congr. Intell. Control Autom. (WCICA) , pp. 2254-2258
    • Shi, J.1    Liu, Y.Q.2    Yang Et Al., Y.P.3
  • 17
    • 84870603013 scopus 로고    scopus 로고
    • Research of variable weighted combined forecasting based on grey correlation degree and neural network
    • Tianjin, China
    • W. Z. Dai and J. F. Li, "Research of variable weighted combined forecasting based on grey correlation degree and neural network," in Proc. Chinese Control Decision Conf., Tianjin, China, 2006, p. 5.
    • (2006) Proc. Chinese Control Decision Conf. , pp. 5
    • Dai, W.Z.1    Li, J.F.2
  • 18
    • 77958124770 scopus 로고    scopus 로고
    • Piecewise support vector machine model for short term wind power prediction. 2009
    • Y. P. Liu, J. Shi, and Y. P. Yang et al., "Piecewise support vector machine model for short term wind power prediction. 2009," Int. J. Green Energy, vol. 6, no. 5, pp. 479-489, 2009.
    • (2009) Int. J. Green Energy , vol.6 , Issue.5 , pp. 479-489
    • Liu, Y.P.1    Shi, J.2    Yang Et Al., Y.P.3
  • 19
    • 62949097085 scopus 로고    scopus 로고
    • Grey correlation in the combined weights of power load forecasting application[J]
    • Y. S. Huang and H. J. Zhang, "Grey correlation in the combined weights of power load forecasting application[J]," in Proc. Int. Conf. Inf. Manage., Innov. Manage., Ind. Eng., 2008, vol. 1, pp. 292-295.
    • (2008) Proc. Int. Conf. Inf. Manage., Innov. Manage., Ind. Eng. , vol.1 , pp. 292-295
    • Huang, Y.S.1    Zhang, H.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.