-
1
-
-
84959904704
-
Alignment-based compositional semantics for instruction following
-
Andreas, J., and Klein, D. 2015. Alignment-based compositional semantics for instruction following. In EMNLP.
-
(2015)
EMNLP
-
-
Andreas, J.1
Klein, D.2
-
2
-
-
84898906433
-
Weakly supervised learning of semantic parsers for mapping instructions to actions
-
Artzi, Y., and Zettlemoyer, L. 2013. Weakly supervised learning of semantic parsers for mapping instructions to actions. TACL 1:49- 62.
-
(2013)
TACL
, vol.1
, pp. 49-62
-
-
Artzi, Y.1
Zettlemoyer, L.2
-
3
-
-
84926058883
-
Learning compact lexicons for ccg semantic parsing
-
Artzi, Y.; Das, D.; and Petrov, S. 2014. Learning compact lexicons for ccg semantic parsing. In EMNLP.
-
(2014)
EMNLP
-
-
Artzi, Y.1
Das, D.2
Petrov, S.3
-
6
-
-
85112746872
-
Learning to interpret natural language navigation instructions from observations
-
Chen, D. L., and Mooney, R. J. 2011. Learning to interpret natural language navigation instructions from observations. In AAAI.
-
(2011)
AAAI
-
-
Chen, D.L.1
Mooney, R.J.2
-
7
-
-
84957029470
-
Mind's eye: A recurrent visual representation for image caption generation
-
Chen, X., and Zitnick, C. L. 2015. Mind's eye: A recurrent visual representation for image caption generation. In CVPR.
-
(2015)
CVPR
-
-
Chen, X.1
Zitnick, C.L.2
-
8
-
-
84878197621
-
Fast online lexicon learning for grounded language acquisition
-
Chen, D. L. 2012. Fast online lexicon learning for grounded language acquisition. In ACL.
-
(2012)
ACL
-
-
Chen, D.L.1
-
9
-
-
84961291190
-
Learning phrase representations using RNN encoder-decoder for statistical machine translation
-
Cho, K.; van Merrienboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; and Bengio, Y. 2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation. In EMNLP.
-
(2014)
EMNLP
-
-
Cho, K.1
Van Merrienboer, B.2
Gulcehre, C.3
Bahdanau, D.4
Bougares, F.5
Schwenk, H.6
Bengio, Y.7
-
10
-
-
84944046597
-
-
arXiv:1411.4389
-
Donahue, J.; Hendricks, L. A.; Guadarrama, S.; Rohrbach, M.; Venugopalan, S.; Saenko, K.; and Darrell, T. 2014. Long-Term recurrent convolutional networks for visual recognition and description. arXiv:1411.4389.
-
(2014)
Long-Term Recurrent Convolutional Networks for Visual Recognition and Description
-
-
Donahue, J.1
Hendricks, L.A.2
Guadarrama, S.3
Rohrbach, M.4
Venugopalan, S.5
Saenko, K.6
Darrell, T.7
-
11
-
-
84890543083
-
Speech recognition with deep recurrent neural networks
-
Graves, A.; Abdel-rahman, M.; and Hinton, G. 2013. Speech recognition with deep recurrent neural networks. In ICASSP.
-
(2013)
ICASSP
-
-
Graves, A.1
Abdel-Rahman, M.2
Hinton, G.3
-
12
-
-
45149140937
-
The symbol grounding problem
-
Harnad, S. 1990. The symbol grounding problem. Physica D 42:335-346.
-
(1990)
Physica D
, vol.42
, pp. 335-346
-
-
Harnad, S.1
-
13
-
-
84938271968
-
Learning models for following natural language directions in unknown environments
-
Hemachandra, S.; Duvallet, F.; Howard, T. M.; Roy, N.; Stentz, A.; and Walter, M. R. 2015. Learning models for following natural language directions in unknown environments. In ICRA.
-
(2015)
ICRA
-
-
Hemachandra, S.1
Duvallet, F.2
Howard, T.M.3
Roy, N.4
Stentz, A.5
Walter, M.R.6
-
15
-
-
84946734827
-
Deep visual-semantic alignments for generating image descriptions
-
Karpathy, A., and Fei-Fei, L. 2015. Deep visual-semantic alignments for generating image descriptions. In CVPR.
-
(2015)
CVPR
-
-
Karpathy, A.1
Fei-Fei, L.2
-
16
-
-
84883389933
-
Unsupervised PCFG induction for grounded language learning with highly ambiguous supervision
-
Kim, J., and Mooney, R. J. 2012. Unsupervised PCFG induction for grounded language learning with highly ambiguous supervision. In EMNLP, 433-444.
-
(2012)
EMNLP
, pp. 433-444
-
-
Kim, J.1
Mooney, R.J.2
-
17
-
-
84897708731
-
Adapting discriminative reranking to grounded language learning
-
Kim, J., and Mooney, R. J. 2013. Adapting discriminative reranking to grounded language learning. In ACL.
-
(2013)
ACL
-
-
Kim, J.1
Mooney, R.J.2
-
18
-
-
85083951076
-
Adam: A method for stochastic optimization
-
Kingma, D., and Ba, J. 2015. Adam: A method for stochastic optimization. In ICLR.
-
(2015)
ICLR
-
-
Kingma, D.1
Ba, J.2
-
20
-
-
77951550992
-
Toward understanding natural language directions
-
Kollar, T.; Tellex, S.; Roy, D.; and Roy, N. 2010. Toward understanding natural language directions. In HRI.
-
(2010)
HRI
-
-
Kollar, T.1
Tellex, S.2
Roy, D.3
Roy, N.4
-
21
-
-
84911370987
-
What are you talking about? Text-To-image coreference
-
Kong, C.; Lin, D.; Bansal, M.; Urtasun, R.; and Fidler, S. 2014. What are you talking about? text-To-image coreference. In Proceedings of CVPR.
-
(2014)
Proceedings of CVPR
-
-
Kong, C.1
Lin, D.2
Bansal, M.3
Urtasun, R.4
Fidler, S.5
-
22
-
-
70350351020
-
Walk the talk: Connecting language, knowledge, and action in route instructions
-
MacMahon, M.; Stankiewicz, B.; and Kuipers, B. 2006. Walk the talk: Connecting language, knowledge, and action in route instructions. In AAAI.
-
(2006)
AAAI
-
-
MacMahon, M.1
Stankiewicz, B.2
Kuipers, B.3
-
23
-
-
84939821073
-
-
arXiv:1412.6632
-
Mao, J.; Xu, W.; Yang, Y.; Wang, J.; and Yuille, A. 2014. Deep captioning with multimodal recurrent neural networks (m-RNN). arXiv:1412.6632.
-
(2014)
Deep Captioning with Multimodal Recurrent Neural Networks (M-RNN)
-
-
Mao, J.1
Xu, W.2
Yang, Y.3
Wang, J.4
Yuille, A.5
-
24
-
-
77951557171
-
Following directions using statistical machine translation
-
Matuszek, C.; Fox, D.; and Koscher, K. 2010. Following directions using statistical machine translation. In HRI.
-
(2010)
HRI
-
-
Matuszek, C.1
Fox, D.2
Koscher, K.3
-
26
-
-
84889069731
-
Learning to connect language and perception
-
Mooney, R. J. 2008. Learning to connect language and perception. In AAAI.
-
(2008)
AAAI
-
-
Mooney, R.J.1
-
28
-
-
84994162936
-
A neural attention model for abstractive sentence summarization
-
Rush, A. M.; Chopra, S.; and Weston, J. 2015. A neural attention model for abstractive sentence summarization. In EMNLP.
-
(2015)
EMNLP
-
-
Rush, A.M.1
Chopra, S.2
Weston, J.3
-
29
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and Salakhutdinov, R. 2014. Dropout: A simple way to prevent neural networks from overfitting. J. Machine Learning Research 15(1):1929-1958.
-
(2014)
J. Machine Learning Research
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
30
-
-
84928547704
-
Sequence to sequence learning with neural networks
-
Sutskever, I.; Vinyals, O.; and Lee, Q. V. 2014. Sequence to sequence learning with neural networks. In NIPS.
-
(2014)
NIPS
-
-
Sutskever, I.1
Vinyals, O.2
Lee, Q.V.3
-
31
-
-
84862677814
-
Understanding natural language commands for robotic navigation and mobile manipulation
-
Tellex, S.; Kollar, T.; Dickerson, S.;Walter, M. R.; Banerjee, A. G.; Teller, S.; and Roy, N. 2011. Understanding natural language commands for robotic navigation and mobile manipulation. In AAAI.
-
(2011)
AAAI
-
-
Tellex, S.1
Kollar, T.2
Dickerson, S.3
Walter, M.R.4
Banerjee, A.G.5
Teller, S.6
Roy, N.7
-
33
-
-
84959897734
-
Semantically conditioned LSTM-based natural language generation for spoken dialogue systems
-
Wen, T.-H.; Gǎsíc, M.; Mrksíc, N.; Su, P.-H.; Vandyke, D.; and Young, S. 2015. Semantically conditioned LSTM-based natural language generation for spoken dialogue systems. In EMNLP.
-
(2015)
EMNLP
-
-
Wen, T.-H.1
Gǎsíc, M.2
Mrksíc, N.3
Su, P.-H.4
Vandyke, D.5
Young, S.6
-
35
-
-
84970002232
-
Show, attend and tell: Neural image caption generation with visual attention
-
Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.; Salakhutdinov, R.; Zemel, R.; and Bengio, Y. 2015. Show, attend and tell: Neural image caption generation with visual attention. In ICML.
-
(2015)
ICML
-
-
Xu, K.1
Ba, J.2
Kiros, R.3
Cho, K.4
Courville, A.5
Salakhutdinov, R.6
Zemel, R.7
Bengio, Y.8
|