메뉴 건너뛰기




Volumn , Issue , 2016, Pages 3087-3093

Gated neural networks for targeted sentiment analysis

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; DATA MINING; SEMANTICS;

EID: 85007163161     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (288)

References (35)
  • 1
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Bengio, Y.; Simard, P.; and Frasconi, P. 1994. Learning long-term dependencies with gradient descent is difficult. Neural Networks, IEEE Transactions on 5(2):157-166.
    • (1994) Neural Networks, IEEE Transactions on , vol.5 , Issue.2 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 3
    • 84961291190 scopus 로고    scopus 로고
    • Learning phrase representations using rnn encoder-decoder for statistical machine translation
    • Cho, K.; van Merrienboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; and Bengio, Y. 2014b. Learning phrase representations using rnn encoder-decoder for statistical machine translation. In EMNLP, 1724-1734.
    • (2014) EMNLP , pp. 1724-1734
    • Cho, K.1    Van Merrienboer, B.2    Gulcehre, C.3    Bahdanau, D.4    Bougares, F.5    Schwenk, H.6    Bengio, Y.7
  • 5
    • 84906925853 scopus 로고    scopus 로고
    • Adaptive recursive neural network for targetdependent twitter sentiment classification
    • Dong, L.; Wei, F.; Tan, C.; Tang, D.; Zhou, M.; and Xu, K. 2014. Adaptive recursive neural network for targetdependent twitter sentiment classification. In ACL, 49-54.
    • (2014) ACL , pp. 49-54
    • Dong, L.1    Wei, F.2    Tan, C.3    Tang, D.4    Zhou, M.5    Xu, K.6
  • 6
    • 84932166511 scopus 로고    scopus 로고
    • Deep convolutional neural networks for sentiment analysis of short texts
    • dos Santos, C., and Gatti, M. 2014. Deep convolutional neural networks for sentiment analysis of short texts. In Proceedings of COLING 2014, 69-78.
    • (2014) Proceedings of COLING 2014 , pp. 69-78
    • Dos Santos, C.1    Gatti, M.2
  • 7
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization
    • Duchi, J.; Hazan, E.; and Singer, Y. 2011. Adaptive subgradient methods for online learning and stochastic optimization. JMLR 12:2121-2159.
    • (2011) JMLR , vol.12 , pp. 2121-2159
    • Duchi, J.1    Hazan, E.2    Singer, Y.3
  • 8
    • 78650122641 scopus 로고    scopus 로고
    • Twitter sentiment classification using distant supervision
    • Go, A.; Bhayani, R.; and Huang, L. 2009. Twitter sentiment classification using distant supervision. CS224N Project Report, Stanford 1:12.
    • (2009) CS224N Project Report, Stanford , vol.1 , pp. 12
    • Go, A.1    Bhayani, R.2    Huang, L.3
  • 12
    • 12244305149 scopus 로고    scopus 로고
    • Mining and summarizing customer reviews
    • Hu, M., and Liu, B. 2004. Mining and summarizing customer reviews. In SIGKDD, 168-177.
    • (2004) SIGKDD , pp. 168-177
    • Hu, M.1    Liu, B.2
  • 13
    • 85007206820 scopus 로고    scopus 로고
    • Bidirectional recursive neural networks for token-level labeling with structure
    • abs/1312.0493
    • Irsoy, O., and Cardie, C. 2013. Bidirectional recursive neural networks for token-level labeling with structure. CoRR abs/1312.0493.
    • (2013) CoRR
    • Irsoy, O.1    Cardie, C.2
  • 15
    • 71149114015 scopus 로고    scopus 로고
    • A novel lexicalized hmm-based learning framework for web opinion mining
    • Jin, W.; Ho, H. H.; and Srihari, R. K. 2009. A novel lexicalized hmm-based learning framework for web opinion mining. In Proceedings of the 26th ICML, 465-472.
    • (2009) Proceedings of the 26th ICML , pp. 465-472
    • Jin, W.1    Ho, H.H.2    Srihari, R.K.3
  • 16
    • 84906922163 scopus 로고    scopus 로고
    • A convolutional neural network for modelling sentences
    • Kalchbrenner, N.; Grefenstette, E.; and Blunsom, P. 2014. A convolutional neural network for modelling sentences. In ACL, 655-665.
    • (2014) ACL , pp. 655-665
    • Kalchbrenner, N.1    Grefenstette, E.2    Blunsom, P.3
  • 21
    • 85008667877 scopus 로고    scopus 로고
    • Nrccanada: Building the state-of-the-art in sentiment analysis of tweets
    • Mohammad, S. M.; Kiritchenko, S.; and Zhu, X. 2013. Nrccanada: Building the state-of-the-art in sentiment analysis of tweets. In Semeval 2013, volume 2, 321-327.
    • (2013) Semeval 2013 , vol.2 , pp. 321-327
    • Mohammad, S.M.1    Kiritchenko, S.2    Zhu, X.3
  • 23
    • 85141803251 scopus 로고    scopus 로고
    • Thumbs up?: Sentiment classification using machine learning techniques
    • Pang, B.; Lee, L.; and Vaithyanathan, S. 2002. Thumbs up?: sentiment classification using machine learning techniques. In ACL, 79-86.
    • (2002) ACL , pp. 79-86
    • Pang, B.1    Lee, L.2    Vaithyanathan, S.3
  • 24
    • 84937909554 scopus 로고    scopus 로고
    • Global belief recursive neural networks
    • Paulus, R.; Socher, R.; and Manning, C. D. 2014. Global belief recursive neural networks. In NIPS, 2888-2896.
    • (2014) NIPS , pp. 2888-2896
    • Paulus, R.1    Socher, R.2    Manning, C.D.3
  • 26
    • 84926358845 scopus 로고    scopus 로고
    • Recursive deep models for semantic compositionality over a sentiment treebank
    • Socher, R.; Perelygin, A.; Wu, J. Y.; Chuang, J.; Manning, C. D.; Ng, A. Y.; and Potts, C. 2013. Recursive deep models for semantic compositionality over a sentiment treebank. In EMNLP, 1631-1642.
    • (2013) EMNLP , pp. 1631-1642
    • Socher, R.1    Perelygin, A.2    Wu, J.Y.3    Chuang, J.4    Manning, C.D.5    Ng, A.Y.6    Potts, C.7
  • 28
    • 84906924350 scopus 로고    scopus 로고
    • Learning sentiment-specific word embedding for twitter sentiment classification
    • Tang, D.; Wei, F.; Yang, N.; Zhou, M.; Liu, T.; and Qin, B. 2014. Learning sentiment-specific word embedding for twitter sentiment classification. In ACL, 1555-1565.
    • (2014) ACL , pp. 1555-1565
    • Tang, D.1    Wei, F.2    Yang, N.3    Zhou, M.4    Liu, T.5    Qin, B.6
  • 29
    • 84949748798 scopus 로고    scopus 로고
    • Target-dependent twitter sentiment classification with rich automatic features
    • Vo, D.-T., and Zhang, Y. 2015. Target-dependent twitter sentiment classification with rich automatic features. In Proceedings of the IJCAI, 1347-1353.
    • (2015) Proceedings of the IJCAI , pp. 1347-1353
    • Vo, D.-T.1    Zhang, Y.2
  • 30
    • 83055179484 scopus 로고    scopus 로고
    • Topic sentiment analysis in twitter: A graph-based hashtag sentiment classification approach
    • Wang, X.; Wei, F.; Liu, X.; Zhou, M.; and Zhang, M. 2011. Topic sentiment analysis in twitter: A graph-based hashtag sentiment classification approach. In CIKM, 1031-1040.
    • (2011) CIKM , pp. 1031-1040
    • Wang, X.1    Wei, F.2    Liu, X.3    Zhou, M.4    Zhang, M.5
  • 31
    • 33644632271 scopus 로고    scopus 로고
    • Annotating expressions of opinions and emotions in language
    • Wiebe, J.; Wilson, T.; and Cardie, C. 2005. Annotating expressions of opinions and emotions in language. Language resources and evaluation 39(2-3):165-210.
    • (2005) Language Resources and Evaluation , vol.39 , Issue.2-3 , pp. 165-210
    • Wiebe, J.1    Wilson, T.2    Cardie, C.3
  • 32
    • 84906928296 scopus 로고    scopus 로고
    • Joint inference for finegrained opinion extraction
    • Yang, B., and Cardie, C. 2013. Joint inference for finegrained opinion extraction. In ACL (1), 1640-1649.
    • (2013) ACL , Issue.1 , pp. 1640-1649
    • Yang, B.1    Cardie, C.2
  • 33
    • 29344473560 scopus 로고    scopus 로고
    • Sentiment analyzer: Extracting sentiments about a given topic using natural language processing techniques
    • Yi, J.; Nasukawa, T.; Bunescu, R.; and Niblack, W. 2003.Sentiment analyzer: Extracting sentiments about a given topic using natural language processing techniques. In Proceedings of the ICDM, 427-434.
    • (2003) Proceedings of the ICDM , pp. 427-434
    • Yi, J.1    Nasukawa, T.2    Bunescu, R.3    Niblack, W.4
  • 35
    • 84959912331 scopus 로고    scopus 로고
    • Hybrid deep belief networks for semi-supervised sentiment classification
    • Zhou, S.; Chen, Q.;Wang, X.; and Li, X. 2014. Hybrid deep belief networks for semi-supervised sentiment classification. In Proceedings of COLING 2014, 1341-1349.
    • (2014) Proceedings of COLING 2014 , pp. 1341-1349
    • Zhou, S.1    Chen, Q.2    Wang, X.3    Li, X.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.