메뉴 건너뛰기




Volumn , Issue , 2016, Pages 3038-3044

Improving twitter sentiment classification using topic-enriched multi-prototype word embeddings

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE;

EID: 85007154204     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (90)

References (28)
  • 3
    • 84932166511 scopus 로고    scopus 로고
    • Deep convolutional neural networks for sentiment analysis of short texts
    • dos Santos, C. N., and Gatti, M. 2014. Deep convolutional neural networks for sentiment analysis of short texts. In Proceedings of COLING.
    • (2014) Proceedings of COLING
    • Dos Santos, C.N.1    Gatti, M.2
  • 4
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization
    • Duchi, J.; Hazan, E.; and Singer, Y. 2011. Adaptive subgradient methods for online learning and stochastic optimization. The Journal of Machine Learning Research 12:2121- 2159.
    • (2011) The Journal of Machine Learning Research , vol.12 , pp. 2121-2159
    • Duchi, J.1    Hazan, E.2    Singer, Y.3
  • 5
    • 84875706201 scopus 로고    scopus 로고
    • Techniques and applications for sentiment analysis
    • Feldman, R. 2013. Techniques and applications for sentiment analysis. Communications of the ACM 56(4):82-89.
    • (2013) Communications of the ACM , vol.56 , Issue.4 , pp. 82-89
    • Feldman, R.1
  • 7
    • 78650122641 scopus 로고    scopus 로고
    • Twitter sentiment classification using distant supervision
    • Go, A.; Bhayani, R.; and Huang, L. 2009. Twitter sentiment classification using distant supervision. CS224N Project Report, Stanford 1:12.
    • (2009) CS224N Project Report, Stanford , vol.1 , pp. 12
    • Go, A.1    Bhayani, R.2    Huang, L.3
  • 8
    • 12244305149 scopus 로고    scopus 로고
    • Mining and summarizing customer reviews
    • Hu, M., and Liu, B. 2004. Mining and summarizing customer reviews. In Proceedings of KDD, 168-177.
    • (2004) Proceedings of KDD , pp. 168-177
    • Hu, M.1    Liu, B.2
  • 9
    • 84893144737 scopus 로고    scopus 로고
    • Unsupervised sentiment analysis with emotional signals
    • Hu, X.; Tang, J.; Gao, H.; and Liu, H. 2013. Unsupervised sentiment analysis with emotional signals. In WWW, 607-618.
    • (2013) WWW , pp. 607-618
    • Hu, X.1    Tang, J.2    Gao, H.3    Liu, H.4
  • 10
    • 84878180089 scopus 로고    scopus 로고
    • Improving word representations via global context and multiple word prototypes
    • Huang, E. H.; Socher, R.; Manning, C. D.; and Ng, A. Y. 2012. Improving word representations via global context and multiple word prototypes. In Proceedings of ACL, 873- 882.
    • (2012) Proceedings of ACL , pp. 873-882
    • Huang, E.H.1    Socher, R.2    Manning, C.D.3    Ng, A.Y.4
  • 11
    • 83055184650 scopus 로고    scopus 로고
    • Target-dependent twitter sentiment classification
    • Jiang, L.; Yu, M.; Zhou, M.; Liu, X.; and Zhao, T. 2011. Target-dependent twitter sentiment classification. In Proceedings of ACL, 151-160.
    • (2011) Proceedings of ACL , pp. 151-160
    • Jiang, L.1    Yu, M.2    Zhou, M.3    Liu, X.4    Zhao, T.5
  • 19
    • 85141803251 scopus 로고    scopus 로고
    • Thumbs up?: Sentiment classification using machine learning techniques
    • Pang, B.; Lee, L.; and Vaithyanathan, S. 2002. Thumbs up?: sentiment classification using machine learning techniques. In Proceedings of ACL, 79-86.
    • (2002) Proceedings of ACL , pp. 79-86
    • Pang, B.1    Lee, L.2    Vaithyanathan, S.3
  • 21
    • 84906924350 scopus 로고    scopus 로고
    • Learning sentiment-specific word embedding for twitter sentiment classification
    • Tang, D.; Wei, F.; Yang, N.; Zhou, M.; Liu, T.; and Qin, B. 2014. Learning sentiment-specific word embedding for twitter sentiment classification. In Proceedings of ACL, volume 1, 1555-1565.
    • (2014) Proceedings of ACL , vol.1 , pp. 1555-1565
    • Tang, D.1    Wei, F.2    Yang, N.3    Zhou, M.4    Liu, T.5    Qin, B.6
  • 23
    • 80053495924 scopus 로고    scopus 로고
    • Word representations: A simple and general method for semi-supervised learning
    • Turian, J.; Ratinov, L.; and Bengio, Y. 2010. Word representations: A simple and general method for semi-supervised learning. In Proceedings of ACL, 384-394.
    • (2010) Proceedings of ACL , pp. 384-394
    • Turian, J.1    Ratinov, L.2    Bengio, Y.3
  • 24
    • 84937448823 scopus 로고    scopus 로고
    • A context-based model for sentiment analysis in twitter
    • Vanzo, A.; Croce, D.; and Basili, R. 2014. A context-based model for sentiment analysis in twitter. In Proceedings of COLING, 2345-2354.
    • (2014) Proceedings of Coling , pp. 2345-2354
    • Vanzo, A.1    Croce, D.2    Basili, R.3
  • 25
    • 84949748798 scopus 로고    scopus 로고
    • Target-dependent twitter sentiment classification with rich automatic features
    • Vo, D.-T., and Zhang, Y. 2015. Target-dependent twitter sentiment classification with rich automatic features. In IJCAI, 1347-1353.
    • (2015) IJCAI , pp. 1347-1353
    • Vo, D.-T.1    Zhang, Y.2
  • 26
    • 80053247760 scopus 로고    scopus 로고
    • Recognizing contextual polarity in phrase-level sentiment analysis
    • Wilson, T.; Wiebe, J.; and Hoffmann, P. 2005. Recognizing contextual polarity in phrase-level sentiment analysis. In Proceedings of EMNLP, 347-354.
    • (2005) Proceedings of EMNLP , pp. 347-354
    • Wilson, T.1    Wiebe, J.2    Hoffmann, P.3
  • 27
    • 84906922088 scopus 로고    scopus 로고
    • Improving twitter sentiment analysis with topic-based mixture modeling and semisupervised training
    • Xiang, B., and Zhou, L. 2014. Improving twitter sentiment analysis with topic-based mixture modeling and semisupervised training. In Proceedings of ACL, 434-439.
    • (2014) Proceedings of ACL , pp. 434-439
    • Xiang, B.1    Zhou, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.