-
1
-
-
79960652801
-
Molecular chaperones in protein folding and proteostasis
-
[1] Hartl, F.U., Bracher, A., Hayer-Hartl, M., Molecular chaperones in protein folding and proteostasis. Nature 475 (2011), 324–332.
-
(2011)
Nature
, vol.475
, pp. 324-332
-
-
Hartl, F.U.1
Bracher, A.2
Hayer-Hartl, M.3
-
2
-
-
59249106080
-
Integrating the stress response: lessons for neurodegenerative diseases from C. elegans
-
[2] Prahlad, V., Morimoto, R.I., Integrating the stress response: lessons for neurodegenerative diseases from C. elegans. Trends Cell Biol. 19 (2009), 52–61.
-
(2009)
Trends Cell Biol.
, vol.19
, pp. 52-61
-
-
Prahlad, V.1
Morimoto, R.I.2
-
3
-
-
84874473589
-
Allostery in the Hsp70 chaperone proteins
-
[3] Zuiderweg, E.R., Bertelsen, E.B., Rousaki, A., Mayer, M.P., Gestwicki, J.E., Ahmad, A., Allostery in the Hsp70 chaperone proteins. Top. Curr. Chem. 328 (2013), 99–153.
-
(2013)
Top. Curr. Chem.
, vol.328
, pp. 99-153
-
-
Zuiderweg, E.R.1
Bertelsen, E.B.2
Rousaki, A.3
Mayer, M.P.4
Gestwicki, J.E.5
Ahmad, A.6
-
4
-
-
79955984427
-
Conformational dynamics of the molecular chaperone Hsp90
-
[4] Krukenberg, K.A., Street, T.O., Lavery, L.A., Agard, D.A., Conformational dynamics of the molecular chaperone Hsp90. Q. Rev. Biophys. 44 (2011), 229–255.
-
(2011)
Q. Rev. Biophys.
, vol.44
, pp. 229-255
-
-
Krukenberg, K.A.1
Street, T.O.2
Lavery, L.A.3
Agard, D.A.4
-
5
-
-
77954947810
-
The HSP70 chaperone machinery: J proteins as drivers of functional specificity
-
[5] Kampinga, H.H., Craig, E.A., The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat. Rev. Mol. Cell Biol. 11 (2010), 579–592.
-
(2010)
Nat. Rev. Mol. Cell Biol.
, vol.11
, pp. 579-592
-
-
Kampinga, H.H.1
Craig, E.A.2
-
6
-
-
64549097439
-
Guidelines for the nomenclature of the human heat shock proteins
-
[6] Kampinga, H.H., Hageman, J., Vos, M.J., Kubota, H., Tanguay, R.M., Bruford, E.A., et al. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14 (2009), 105–111.
-
(2009)
Cell Stress Chaperones
, vol.14
, pp. 105-111
-
-
Kampinga, H.H.1
Hageman, J.2
Vos, M.J.3
Kubota, H.4
Tanguay, R.M.5
Bruford, E.A.6
-
7
-
-
0000012053
-
Major heat shock gene of Drosophila and the Escherichia coli heat-inducible dnaK gene are homologous
-
[7] Bardwell, J.C., Craig, E.A., Major heat shock gene of Drosophila and the Escherichia coli heat-inducible dnaK gene are homologous. Proc. Natl. Acad. Sci. U. S. A. 81 (1984), 848–852.
-
(1984)
Proc. Natl. Acad. Sci. U. S. A.
, vol.81
, pp. 848-852
-
-
Bardwell, J.C.1
Craig, E.A.2
-
8
-
-
0028036148
-
Molecular evolution of the HSP70 multigene family
-
[8] Boorstein, W.R., Ziegelhoffer, T., Craig, E.A., Molecular evolution of the HSP70 multigene family. J. Mol. Evol. 38 (1994), 1–17.
-
(1994)
J. Mol. Evol.
, vol.38
, pp. 1-17
-
-
Boorstein, W.R.1
Ziegelhoffer, T.2
Craig, E.A.3
-
9
-
-
84948397326
-
Hsp70 and Hsp90 of E. coli directly interact for collaboration in protein remodeling
-
[9] Genest, O., Hoskins, J.R., Kravats, A.N., Doyle, S.M., Wickner, S., Hsp70 and Hsp90 of E. coli directly interact for collaboration in protein remodeling. J. Mol. Biol. 427 (2015), 3877–3889.
-
(2015)
J. Mol. Biol.
, vol.427
, pp. 3877-3889
-
-
Genest, O.1
Hoskins, J.R.2
Kravats, A.N.3
Doyle, S.M.4
Wickner, S.5
-
10
-
-
84896846203
-
Physical interaction between bacterial heat shock protein (Hsp) 90 and Hsp70 chaperones mediates their cooperative action to refold denatured proteins
-
[10] Nakamoto, H., Fujita, K., Ohtaki, A., Watanabe, S., Narumi, S., Maruyama, T., et al. Physical interaction between bacterial heat shock protein (Hsp) 90 and Hsp70 chaperones mediates their cooperative action to refold denatured proteins. J. Biol. Chem. 289 (2014), 6110–6119.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 6110-6119
-
-
Nakamoto, H.1
Fujita, K.2
Ohtaki, A.3
Watanabe, S.4
Narumi, S.5
Maruyama, T.6
-
11
-
-
84870792675
-
Hsp70 proteins bind Hsp100 regulatory M domains to activate AAA + disaggregase at aggregate surfaces
-
[11] Seyffer, F., Kummer, E., Oguchi, Y., Winkler, J., Kumar, M., Zahn, R., et al. Hsp70 proteins bind Hsp100 regulatory M domains to activate AAA + disaggregase at aggregate surfaces. Nat. Struct. Mol. Biol. 19 (2012), 1347–1355.
-
(2012)
Nat. Struct. Mol. Biol.
, vol.19
, pp. 1347-1355
-
-
Seyffer, F.1
Kummer, E.2
Oguchi, Y.3
Winkler, J.4
Kumar, M.5
Zahn, R.6
-
12
-
-
84858763945
-
The architecture of functional modules in the Hsp90 co-chaperone Sti1/Hop
-
[12] Schmid, A.B., Lagleder, S., Grawert, M.A., Rohl, A., Hagn, F., Wandinger, S.K., et al. The architecture of functional modules in the Hsp90 co-chaperone Sti1/Hop. EMBO J. 31 (2012), 1506–1517.
-
(2012)
EMBO J.
, vol.31
, pp. 1506-1517
-
-
Schmid, A.B.1
Lagleder, S.2
Grawert, M.A.3
Rohl, A.4
Hagn, F.5
Wandinger, S.K.6
-
13
-
-
84903149823
-
Glucocorticoid receptor function regulated by coordinated action of the Hsp90 and Hsp70 chaperone cycles
-
[13] Kirschke, E., Goswami, D., Southworth, D., Griffin, P.R., Agard, D.A., Glucocorticoid receptor function regulated by coordinated action of the Hsp90 and Hsp70 chaperone cycles. Cell 157 (2014), 1685–1697.
-
(2014)
Cell
, vol.157
, pp. 1685-1697
-
-
Kirschke, E.1
Goswami, D.2
Southworth, D.3
Griffin, P.R.4
Agard, D.A.5
-
14
-
-
33645960684
-
Chaperoning of glucocorticoid receptors
-
[14] Pratt, W.B., Morishima, Y., Murphy, M., Harrell, M., Chaperoning of glucocorticoid receptors. Handb. Exp. Pharmacol., 2006, 111–138.
-
(2006)
Handb. Exp. Pharmacol.
, pp. 111-138
-
-
Pratt, W.B.1
Morishima, Y.2
Murphy, M.3
Harrell, M.4
-
15
-
-
0032488906
-
Hop modulates Hsp70/Hsp90 interactions in protein folding
-
[15] Johnson, B.D., Schumacher, R.J., Ross, E.D., Toft, D.O., Hop modulates Hsp70/Hsp90 interactions in protein folding. J. Biol. Chem. 273 (1998), 3679–3686.
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 3679-3686
-
-
Johnson, B.D.1
Schumacher, R.J.2
Ross, E.D.3
Toft, D.O.4
-
16
-
-
31344453190
-
Substrate transfer from the chaperone Hsp70 to Hsp90
-
[16] Wegele, H., Wandinger, S.K., Schmid, A.B., Reinstein, J., Buchner, J., Substrate transfer from the chaperone Hsp70 to Hsp90. J. Mol. Biol. 356 (2006), 802–811.
-
(2006)
J. Mol. Biol.
, vol.356
, pp. 802-811
-
-
Wegele, H.1
Wandinger, S.K.2
Schmid, A.B.3
Reinstein, J.4
Buchner, J.5
-
17
-
-
84923372470
-
Structural characterization of the substrate transfer mechanism in Hsp70/Hsp90 folding machinery mediated by Hop
-
[17] Alvira, S., Cuellar, J., Rohl, A., Yamamoto, S., Itoh, H., Alfonso, C., et al. Structural characterization of the substrate transfer mechanism in Hsp70/Hsp90 folding machinery mediated by Hop. Nat. Commun., 5, 2014, 5484.
-
(2014)
Nat. Commun.
, vol.5
, pp. 5484
-
-
Alvira, S.1
Cuellar, J.2
Rohl, A.3
Yamamoto, S.4
Itoh, H.5
Alfonso, C.6
-
18
-
-
84925467061
-
Small heat shock proteins: big folding machines
-
[18] Morrow, G., Hightower, L.E., Tanguay, R.M., Small heat shock proteins: big folding machines. Cell Stress Chaperones 20 (2015), 207–212.
-
(2015)
Cell Stress Chaperones
, vol.20
, pp. 207-212
-
-
Morrow, G.1
Hightower, L.E.2
Tanguay, R.M.3
-
19
-
-
0037358061
-
The human genome encodes 10 alpha-crystallin-related small heat shock proteins: HspB1–10
-
[19] Kappe, G., Franck, E., Verschuure, P., Boelens, W.C., Leunissen, J.A., de Jong, W.W., The human genome encodes 10 alpha-crystallin-related small heat shock proteins: HspB1–10. Cell Stress Chaperones 8 (2003), 53–61.
-
(2003)
Cell Stress Chaperones
, vol.8
, pp. 53-61
-
-
Kappe, G.1
Franck, E.2
Verschuure, P.3
Boelens, W.C.4
Leunissen, J.A.5
de Jong, W.W.6
-
20
-
-
1542320089
-
The identity of proteins associated with a small heat shock protein during heat stress in vivo indicates that these chaperones protect a wide range of cellular functions
-
[20] Basha, E., Lee, G.J., Breci, L.A., Hausrath, A.C., Buan, N.R., Giese, K.C., et al. The identity of proteins associated with a small heat shock protein during heat stress in vivo indicates that these chaperones protect a wide range of cellular functions. J. Biol. Chem. 279 (2004), 7566–7575.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 7566-7575
-
-
Basha, E.1
Lee, G.J.2
Breci, L.A.3
Hausrath, A.C.4
Buan, N.R.5
Giese, K.C.6
-
21
-
-
84924126477
-
A first line of stress defense: small heat shock proteins and their function in protein homeostasis
-
[21] Haslbeck, M., Vierling, E., A first line of stress defense: small heat shock proteins and their function in protein homeostasis. J. Mol. Biol. 427 (2015), 1537–1548.
-
(2015)
J. Mol. Biol.
, vol.427
, pp. 1537-1548
-
-
Haslbeck, M.1
Vierling, E.2
-
22
-
-
84948073235
-
The chaperone alphaB-crystallin uses different interfaces to capture an amorphous and an amyloid client
-
[22] Mainz, A., Peschek, J., Stavropoulou, M., Back, K.C., Bardiaux, B., Asami, S., et al. The chaperone alphaB-crystallin uses different interfaces to capture an amorphous and an amyloid client. Nat. Struct. Mol. Biol. 22 (2015), 898–905.
-
(2015)
Nat. Struct. Mol. Biol.
, vol.22
, pp. 898-905
-
-
Mainz, A.1
Peschek, J.2
Stavropoulou, M.3
Back, K.C.4
Bardiaux, B.5
Asami, S.6
-
23
-
-
1342292267
-
Crystal structure of a small heat-shock protein
-
[23] Kim, K.K., Kim, R., Kim, S.H., Crystal structure of a small heat-shock protein. Nature 394 (1998), 595–599.
-
(1998)
Nature
, vol.394
, pp. 595-599
-
-
Kim, K.K.1
Kim, R.2
Kim, S.H.3
-
24
-
-
0035191639
-
Crystal structure and assembly of a eukaryotic small heat shock protein
-
[24] van Montfort, R.L., Basha, E., Friedrich, K.L., Slingsby, C., Vierling, E., Crystal structure and assembly of a eukaryotic small heat shock protein. Nat. Struct. Biol. 8 (2001), 1025–1030.
-
(2001)
Nat. Struct. Biol.
, vol.8
, pp. 1025-1030
-
-
van Montfort, R.L.1
Basha, E.2
Friedrich, K.L.3
Slingsby, C.4
Vierling, E.5
-
25
-
-
84899118154
-
The structured core domain of alphaB-crystallin can prevent amyloid fibrillation and associated toxicity
-
[25] Hochberg, G.K., Ecroyd, H., Liu, C., Cox, D., Cascio, D., Sawaya, M.R., et al. The structured core domain of alphaB-crystallin can prevent amyloid fibrillation and associated toxicity. Proc. Natl. Acad. Sci. U. S. A. 111 (2014), E1562–E1570.
-
(2014)
Proc. Natl. Acad. Sci. U. S. A.
, vol.111
, pp. E1562-E1570
-
-
Hochberg, G.K.1
Ecroyd, H.2
Liu, C.3
Cox, D.4
Cascio, D.5
Sawaya, M.R.6
-
26
-
-
84855480113
-
Multiple molecular architectures of the eye lens chaperone alphaB-crystallin elucidated by a triple hybrid approach
-
[26] Braun, N., Zacharias, M., Peschek, J., Kastenmuller, A., Zou, J., Hanzlik, M., et al. Multiple molecular architectures of the eye lens chaperone alphaB-crystallin elucidated by a triple hybrid approach. Proc. Natl. Acad. Sci. U. S. A. 108 (2011), 20491–20496.
-
(2011)
Proc. Natl. Acad. Sci. U. S. A.
, vol.108
, pp. 20491-20496
-
-
Braun, N.1
Zacharias, M.2
Peschek, J.3
Kastenmuller, A.4
Zou, J.5
Hanzlik, M.6
-
27
-
-
16544382615
-
The IXI/V motif in the C-terminal extension of alpha-crystallins: alternative interactions and oligomeric assemblies
-
[27] Pasta, S.Y., Raman, B., Ramakrishna, T., Rao Ch, M., The IXI/V motif in the C-terminal extension of alpha-crystallins: alternative interactions and oligomeric assemblies. Mol. Vis. 10 (2004), 655–662.
-
(2004)
Mol. Vis.
, vol.10
, pp. 655-662
-
-
Pasta, S.Y.1
Raman, B.2
Ramakrishna, T.3
Rao Ch, M.4
-
28
-
-
79955597623
-
N-terminal domain of alphaB-crystallin provides a conformational switch for multimerization and structural heterogeneity
-
[28] Jehle, S., Vollmar, B.S., Bardiaux, B., Dove, K.K., Rajagopal, P., Gonen, T., et al. N-terminal domain of alphaB-crystallin provides a conformational switch for multimerization and structural heterogeneity. Proc. Natl. Acad. Sci. U. S. A. 108 (2011), 6409–6414.
-
(2011)
Proc. Natl. Acad. Sci. U. S. A.
, vol.108
, pp. 6409-6414
-
-
Jehle, S.1
Vollmar, B.S.2
Bardiaux, B.3
Dove, K.K.4
Rajagopal, P.5
Gonen, T.6
-
29
-
-
0036375506
-
A critical motif for oligomerization and chaperone activity of bacterial alpha-heat shock proteins
-
[29] Studer, S., Obrist, M., Lentze, N., Narberhaus, F., A critical motif for oligomerization and chaperone activity of bacterial alpha-heat shock proteins. Eur. J. Biochem. 269 (2002), 3578–3586.
-
(2002)
Eur. J. Biochem.
, vol.269
, pp. 3578-3586
-
-
Studer, S.1
Obrist, M.2
Lentze, N.3
Narberhaus, F.4
-
30
-
-
84878932295
-
Human small heat shock proteins: protein interactomes of homo- and hetero-oligomeric complexes: an update
-
[30] Arrigo, A.P., Human small heat shock proteins: protein interactomes of homo- and hetero-oligomeric complexes: an update. FEBS Lett. 587 (2013), 1959–1969.
-
(2013)
FEBS Lett.
, vol.587
, pp. 1959-1969
-
-
Arrigo, A.P.1
-
31
-
-
0033972325
-
Subunit exchange of small heat shock proteins. Analysis of oligomer formation of alphaA-crystallin and Hsp27 by fluorescence resonance energy transfer and site-directed truncations
-
[31] Bova, M.P., McHaourab, H.S., Han, Y., Fung, B.K., Subunit exchange of small heat shock proteins. Analysis of oligomer formation of alphaA-crystallin and Hsp27 by fluorescence resonance energy transfer and site-directed truncations. J. Biol. Chem. 275 (2000), 1035–1042.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 1035-1042
-
-
Bova, M.P.1
McHaourab, H.S.2
Han, Y.3
Fung, B.K.4
-
32
-
-
0141703310
-
Polydispersity of a mammalian chaperone: mass spectrometry reveals the population of oligomers in alphaB-crystallin
-
[32] Aquilina, J.A., Benesch, J.L., Bateman, O.A., Slingsby, C., Robinson, C.V., Polydispersity of a mammalian chaperone: mass spectrometry reveals the population of oligomers in alphaB-crystallin. Proc. Natl. Acad. Sci. U. S. A. 100 (2003), 10611–10616.
-
(2003)
Proc. Natl. Acad. Sci. U. S. A.
, vol.100
, pp. 10611-10616
-
-
Aquilina, J.A.1
Benesch, J.L.2
Bateman, O.A.3
Slingsby, C.4
Robinson, C.V.5
-
33
-
-
84947208872
-
Pharmacological chaperone for alpha-crystallin partially restores transparency in cataract models
-
[33] Makley, L.N., McMenimen, K.A., DeVree, B.T., Goldman, J.W., McGlasson, B.N., Rajagopal, P., et al. Pharmacological chaperone for alpha-crystallin partially restores transparency in cataract models. Science 350 (2015), 674–677.
-
(2015)
Science
, vol.350
, pp. 674-677
-
-
Makley, L.N.1
McMenimen, K.A.2
DeVree, B.T.3
Goldman, J.W.4
McGlasson, B.N.5
Rajagopal, P.6
-
34
-
-
14044272992
-
Mechanism of chaperone function in small heat shock proteins: dissociation of the HSP27 oligomer is required for recognition and binding of destabilized T4 lysozyme
-
[34] Shashidharamurthy, R., Koteiche, H.A., Dong, J., McHaourab, H.S., Mechanism of chaperone function in small heat shock proteins: dissociation of the HSP27 oligomer is required for recognition and binding of destabilized T4 lysozyme. J. Biol. Chem. 280 (2005), 5281–5289.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 5281-5289
-
-
Shashidharamurthy, R.1
Koteiche, H.A.2
Dong, J.3
McHaourab, H.S.4
-
35
-
-
0037195859
-
Changes in oligomerization are essential for the chaperone activity of a small heat shock protein in vivo and in vitro
-
[35] Giese, K.C., Vierling, E., Changes in oligomerization are essential for the chaperone activity of a small heat shock protein in vivo and in vitro. J. Biol. Chem. 277 (2002), 46310–46318.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 46310-46318
-
-
Giese, K.C.1
Vierling, E.2
-
36
-
-
0038043235
-
Analysis of the interaction of small heat shock proteins with unfolding proteins
-
[36] Stromer, T., Ehrnsperger, M., Gaestel, M., Buchner, J., Analysis of the interaction of small heat shock proteins with unfolding proteins. J. Biol. Chem. 278 (2003), 18015–18021.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 18015-18021
-
-
Stromer, T.1
Ehrnsperger, M.2
Gaestel, M.3
Buchner, J.4
-
37
-
-
0037064096
-
Subunit exchange of multimeric protein complexes. Real-time monitoring of subunit exchange between small heat shock proteins by using electrospray mass spectrometry
-
[37] Sobott, F., Benesch, J.L., Vierling, E., Robinson, C.V., Subunit exchange of multimeric protein complexes. Real-time monitoring of subunit exchange between small heat shock proteins by using electrospray mass spectrometry. J. Biol. Chem. 277 (2002), 38921–38929.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 38921-38929
-
-
Sobott, F.1
Benesch, J.L.2
Vierling, E.3
Robinson, C.V.4
-
38
-
-
76649084269
-
Quaternary dynamics and plasticity underlie small heat shock protein chaperone function
-
[38] Stengel, F., Baldwin, A.J., Painter, A.J., Jaya, N., Basha, E., Kay, L.E., et al. Quaternary dynamics and plasticity underlie small heat shock protein chaperone function. Proc. Natl. Acad. Sci. U. S. A. 107 (2010), 2007–2012.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 2007-2012
-
-
Stengel, F.1
Baldwin, A.J.2
Painter, A.J.3
Jaya, N.4
Basha, E.5
Kay, L.E.6
-
39
-
-
84923126434
-
Phosphomimics destabilize Hsp27 oligomeric assemblies and enhance chaperone activity
-
[39] Jovcevski, B., Kelly, M.A., Rote, A.P., Berg, T., Gastall, H.Y., Benesch, J.L., et al. Phosphomimics destabilize Hsp27 oligomeric assemblies and enhance chaperone activity. Chem. Biol. 22 (2015), 186–195.
-
(2015)
Chem. Biol.
, vol.22
, pp. 186-195
-
-
Jovcevski, B.1
Kelly, M.A.2
Rote, A.P.3
Berg, T.4
Gastall, H.Y.5
Benesch, J.L.6
-
40
-
-
84885081139
-
Regulated structural transitions unleash the chaperone activity of alphaB-crystallin
-
[40] Peschek, J., Braun, N., Rohrberg, J., Back, K.C., Kriehuber, T., Kastenmuller, A., et al. Regulated structural transitions unleash the chaperone activity of alphaB-crystallin. Proc. Natl. Acad. Sci. U. S. A. 110 (2013), E3780–E3789.
-
(2013)
Proc. Natl. Acad. Sci. U. S. A.
, vol.110
, pp. E3780-E3789
-
-
Peschek, J.1
Braun, N.2
Rohrberg, J.3
Back, K.C.4
Kriehuber, T.5
Kastenmuller, A.6
-
41
-
-
84918587127
-
Identification of peptides in human Hsp20 and Hsp27 that possess molecular chaperone and anti-apoptotic activities
-
[41] Nahomi, R.B., DiMauro, M.A., Wang, B., Nagaraj, R.H., Identification of peptides in human Hsp20 and Hsp27 that possess molecular chaperone and anti-apoptotic activities. Biochem. J. 465 (2015), 115–125.
-
(2015)
Biochem. J.
, vol.465
, pp. 115-125
-
-
Nahomi, R.B.1
DiMauro, M.A.2
Wang, B.3
Nagaraj, R.H.4
-
42
-
-
84867772627
-
HspB1 dynamic phospho-oligomeric structure dependent interactome as cancer therapeutic target
-
[42] Arrigo, A.P., Gibert, B., HspB1 dynamic phospho-oligomeric structure dependent interactome as cancer therapeutic target. Curr. Mol. Med. 12 (2012), 1151–1163.
-
(2012)
Curr. Mol. Med.
, vol.12
, pp. 1151-1163
-
-
Arrigo, A.P.1
Gibert, B.2
-
43
-
-
0031849099
-
Small heat-shock protein family: function in health and disease
-
[43] Welsh, M.J., Gaestel, M., Small heat-shock protein family: function in health and disease. Ann. N. Y. Acad. Sci. 851 (1998), 28–35.
-
(1998)
Ann. N. Y. Acad. Sci.
, vol.851
, pp. 28-35
-
-
Welsh, M.J.1
Gaestel, M.2
-
44
-
-
84930629588
-
A conserved histidine modulates HSPB5 structure to trigger chaperone activity in response to stress-related acidosis
-
[44] Rajagopal, P., Tse, E., Borst, A.J., Delbecq, S.P., Shi, L., Southworth, D.R., et al. A conserved histidine modulates HSPB5 structure to trigger chaperone activity in response to stress-related acidosis. eLife, 4, 2015.
-
(2015)
eLife
, vol.4
-
-
Rajagopal, P.1
Tse, E.2
Borst, A.J.3
Delbecq, S.P.4
Shi, L.5
Southworth, D.R.6
-
45
-
-
84937640129
-
The chaperone activity of the developmental small heat shock protein Sip1 is regulated by pH-dependent conformational changes
-
[45] Fleckenstein, T., Kastenmuller, A., Stein, M.L., Peters, C., Daake, M., Krause, M., et al. The chaperone activity of the developmental small heat shock protein Sip1 is regulated by pH-dependent conformational changes. Mol. Cell 58 (2015), 1067–1078.
-
(2015)
Mol. Cell
, vol.58
, pp. 1067-1078
-
-
Fleckenstein, T.1
Kastenmuller, A.2
Stein, M.L.3
Peters, C.4
Daake, M.5
Krause, M.6
-
46
-
-
84864387363
-
Chaperone networks in protein disaggregation and prion propagation
-
[46] Winkler, J., Tyedmers, J., Bukau, B., Mogk, A., Chaperone networks in protein disaggregation and prion propagation. J. Struct. Biol. 179 (2012), 152–160.
-
(2012)
J. Struct. Biol.
, vol.179
, pp. 152-160
-
-
Winkler, J.1
Tyedmers, J.2
Bukau, B.3
Mogk, A.4
-
47
-
-
84971433330
-
Heat shock proteins promote cancer: it's a protection racket
-
[47] Calderwood, S.K., Gong, J., Heat shock proteins promote cancer: it's a protection racket. Trends Biochem. Sci., 2016.
-
(2016)
Trends Biochem. Sci.
-
-
Calderwood, S.K.1
Gong, J.2
-
48
-
-
0035041855
-
Tuning of chaperone activity of Hsp70 proteins by modulation of nucleotide exchange
-
[48] Brehmer, D., Rudiger, S., Gassler, C.S., Klostermeier, D., Packschies, L., Reinstein, J., et al. Tuning of chaperone activity of Hsp70 proteins by modulation of nucleotide exchange. Nat. Struct. Biol. 8 (2001), 427–432.
-
(2001)
Nat. Struct. Biol.
, vol.8
, pp. 427-432
-
-
Brehmer, D.1
Rudiger, S.2
Gassler, C.S.3
Klostermeier, D.4
Packschies, L.5
Reinstein, J.6
-
49
-
-
80054740161
-
Nucleotide exchange factors for Hsp70 chaperones
-
[49] Rampelt, H., Mayer, M.P., Bukau, B., Nucleotide exchange factors for Hsp70 chaperones. Methods Mol. Biol. 787 (2011), 83–91.
-
(2011)
Methods Mol. Biol.
, vol.787
, pp. 83-91
-
-
Rampelt, H.1
Mayer, M.P.2
Bukau, B.3
-
50
-
-
84892653392
-
Binding of human nucleotide exchange factors to heat shock protein 70 (Hsp70) generates functionally distinct complexes in vitro
-
[50] Rauch, J.N., Gestwicki, J.E., Binding of human nucleotide exchange factors to heat shock protein 70 (Hsp70) generates functionally distinct complexes in vitro. J. Biol. Chem. 289 (2014), 1402–1414.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 1402-1414
-
-
Rauch, J.N.1
Gestwicki, J.E.2
-
51
-
-
77956940128
-
BAG3 directly associates with guanine nucleotide exchange factor of Rap1, PDZGEF2, and regulates cell adhesion
-
[51] Iwasaki, M., Tanaka, R., Hishiya, A., Homma, S., Reed, J.C., Takayama, S., BAG3 directly associates with guanine nucleotide exchange factor of Rap1, PDZGEF2, and regulates cell adhesion. Biochem. Biophys. Res. Commun. 400 (2010), 413–418.
-
(2010)
Biochem. Biophys. Res. Commun.
, vol.400
, pp. 413-418
-
-
Iwasaki, M.1
Tanaka, R.2
Hishiya, A.3
Homma, S.4
Reed, J.C.5
Takayama, S.6
-
52
-
-
84875210317
-
Cellular mechanotransduction relies on tension-induced and chaperone-assisted autophagy
-
[52] Ulbricht, A., Eppler, F.J., Tapia, V.E., van der Ven, P.F., Hampe, N., Hersch, N., et al. Cellular mechanotransduction relies on tension-induced and chaperone-assisted autophagy. Curr. Biol. 23 (2013), 430–435.
-
(2013)
Curr. Biol.
, vol.23
, pp. 430-435
-
-
Ulbricht, A.1
Eppler, F.J.2
Tapia, V.E.3
van der Ven, P.F.4
Hampe, N.5
Hersch, N.6
-
53
-
-
84907055560
-
Hsp70–Bag3 interactions regulate cancer-related signaling networks
-
[53] Colvin, T.A., Gabai, V.L., Gong, J., Calderwood, S.K., Li, H., Gummuluru, S., et al. Hsp70–Bag3 interactions regulate cancer-related signaling networks. Cancer Res. 74 (2014), 4731–4740.
-
(2014)
Cancer Res.
, vol.74
, pp. 4731-4740
-
-
Colvin, T.A.1
Gabai, V.L.2
Gong, J.3
Calderwood, S.K.4
Li, H.5
Gummuluru, S.6
-
54
-
-
0034618385
-
CAIR-1/BAG-3 forms an EGF-regulated ternary complex with phospholipase C-gamma and Hsp70/Hsc70
-
[54] Doong, H., Price, J., Kim, Y.S., Gasbarre, C., Probst, J., Liotta, L.A., et al. CAIR-1/BAG-3 forms an EGF-regulated ternary complex with phospholipase C-gamma and Hsp70/Hsc70. Oncogene 19 (2000), 4385–4395.
-
(2000)
Oncogene
, vol.19
, pp. 4385-4395
-
-
Doong, H.1
Price, J.2
Kim, Y.S.3
Gasbarre, C.4
Probst, J.5
Liotta, L.A.6
-
55
-
-
72449141635
-
Identification of the key structural motifs involved in HspB8/HspB6–Bag3 interaction
-
[55] Fuchs, M., Poirier, D.J., Seguin, S.J., Lambert, H., Carra, S., Charette, S.J., et al. Identification of the key structural motifs involved in HspB8/HspB6–Bag3 interaction. Biochem. J. 425 (2010), 245–255.
-
(2010)
Biochem. J.
, vol.425
, pp. 245-255
-
-
Fuchs, M.1
Poirier, D.J.2
Seguin, S.J.3
Lambert, H.4
Carra, S.5
Charette, S.J.6
-
56
-
-
38949184241
-
HspB8 and Bag3: a new chaperone complex targeting misfolded proteins to macroautophagy
-
[56] Carra, S., Seguin, S.J., Landry, J., HspB8 and Bag3: a new chaperone complex targeting misfolded proteins to macroautophagy. Autophagy 4 (2008), 237–239.
-
(2008)
Autophagy
, vol.4
, pp. 237-239
-
-
Carra, S.1
Seguin, S.J.2
Landry, J.3
-
57
-
-
79952635812
-
BAG3 directly interacts with mutated alphaB-crystallin to suppress its aggregation and toxicity
-
e16828
-
[57] Hishiya, A., Salman, M.N., Carra, S., Kampinga, H.H., Takayama, S., BAG3 directly interacts with mutated alphaB-crystallin to suppress its aggregation and toxicity. PLoS One, 6, 2011, e16828.
-
(2011)
PLoS One
, vol.6
-
-
Hishiya, A.1
Salman, M.N.2
Carra, S.3
Kampinga, H.H.4
Takayama, S.5
-
58
-
-
0032535631
-
The mammalian small heat-shock protein Hsp20 forms dimers and is a poor chaperone
-
[58] van de Klundert, F.A., Smulders, R.H., Gijsen, M.L., Lindner, R.A., Jaenicke, R., Carver, J.A., et al. The mammalian small heat-shock protein Hsp20 forms dimers and is a poor chaperone. Eur. J. Biochem. 258 (1998), 1014–1021.
-
(1998)
Eur. J. Biochem.
, vol.258
, pp. 1014-1021
-
-
van de Klundert, F.A.1
Smulders, R.H.2
Gijsen, M.L.3
Lindner, R.A.4
Jaenicke, R.5
Carver, J.A.6
-
59
-
-
2542451125
-
Essential role of the NH2-terminal WD/EPF motif in the phosphorylation-activated protective function of mammalian Hsp27
-
[59] Theriault, J.R., Lambert, H., Chavez-Zobel, A.T., Charest, G., Lavigne, P., Landry, J., Essential role of the NH2-terminal WD/EPF motif in the phosphorylation-activated protective function of mammalian Hsp27. J. Biol. Chem. 279 (2004), 23463–23471.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 23463-23471
-
-
Theriault, J.R.1
Lambert, H.2
Chavez-Zobel, A.T.3
Charest, G.4
Lavigne, P.5
Landry, J.6
-
60
-
-
17644408766
-
Subunit exchange of polydisperse proteins: mass spectrometry reveals consequences of alphaA-crystallin truncation
-
[60] Aquilina, J.A., Benesch, J.L., Ding, L.L., Yaron, O., Horwitz, J., Robinson, C.V., Subunit exchange of polydisperse proteins: mass spectrometry reveals consequences of alphaA-crystallin truncation. J. Biol. Chem. 280 (2005), 14485–14491.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 14485-14491
-
-
Aquilina, J.A.1
Benesch, J.L.2
Ding, L.L.3
Yaron, O.4
Horwitz, J.5
Robinson, C.V.6
-
61
-
-
27144448839
-
Some like it hot: the structure and function of small heat-shock proteins
-
[61] Haslbeck, M., Franzmann, T., Weinfurtner, D., Buchner, J., Some like it hot: the structure and function of small heat-shock proteins. Nat. Struct. Mol. Biol. 12 (2005), 842–846.
-
(2005)
Nat. Struct. Mol. Biol.
, vol.12
, pp. 842-846
-
-
Haslbeck, M.1
Franzmann, T.2
Weinfurtner, D.3
Buchner, J.4
-
62
-
-
0042733148
-
Refolding of substrates bound to small Hsps relies on a disaggregation reaction mediated most efficiently by ClpB/DnaK
-
[62] Mogk, A., Schlieker, C., Friedrich, K.L., Schonfeld, H.J., Vierling, E., Bukau, B., Refolding of substrates bound to small Hsps relies on a disaggregation reaction mediated most efficiently by ClpB/DnaK. J. Biol. Chem. 278 (2003), 31033–31042.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 31033-31042
-
-
Mogk, A.1
Schlieker, C.2
Friedrich, K.L.3
Schonfeld, H.J.4
Vierling, E.5
Bukau, B.6
-
63
-
-
0031024691
-
A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state
-
[63] Lee, G.J., Roseman, A.M., Saibil, H.R., Vierling, E., A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J. 16 (1997), 659–671.
-
(1997)
EMBO J.
, vol.16
, pp. 659-671
-
-
Lee, G.J.1
Roseman, A.M.2
Saibil, H.R.3
Vierling, E.4
-
64
-
-
0343742639
-
Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation
-
[64] Ehrnsperger, M., Graber, S., Gaestel, M., Buchner, J., Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J. 16 (1997), 221–229.
-
(1997)
EMBO J.
, vol.16
, pp. 221-229
-
-
Ehrnsperger, M.1
Graber, S.2
Gaestel, M.3
Buchner, J.4
-
65
-
-
0033765314
-
A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein
-
[65] Lee, G.J., Vierling, E., A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol. 122 (2000), 189–198.
-
(2000)
Plant Physiol.
, vol.122
, pp. 189-198
-
-
Lee, G.J.1
Vierling, E.2
-
66
-
-
0032567434
-
Hop as an adaptor in the heat shock protein 70 (Hsp70) and hsp90 chaperone machinery
-
[66] Chen, S., Smith, D.F., Hop as an adaptor in the heat shock protein 70 (Hsp70) and hsp90 chaperone machinery. J. Biol. Chem. 273 (1998), 35194–35200.
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 35194-35200
-
-
Chen, S.1
Smith, D.F.2
-
67
-
-
84867809427
-
Analysis of the tau-associated proteome reveals that exchange of Hsp70 for Hsp90 is involved in tau degradation
-
[67] Thompson, A.D., Scaglione, K.M., Prensner, J., Gillies, A.T., Chinnaiyan, A., Paulson, H.L., et al. Analysis of the tau-associated proteome reveals that exchange of Hsp70 for Hsp90 is involved in tau degradation. ACS Chem. Biol. 7 (2012), 1677–1686.
-
(2012)
ACS Chem. Biol.
, vol.7
, pp. 1677-1686
-
-
Thompson, A.D.1
Scaglione, K.M.2
Prensner, J.3
Gillies, A.T.4
Chinnaiyan, A.5
Paulson, H.L.6
|