메뉴 건너뛰기




Volumn 229, Issue , 2017, Pages 34-44

Automated grading of breast cancer histopathology using cascaded ensemble with combination of multi-level image features

Author keywords

Breast cancer grading; Cascaded ensemble; Convolutional neural networks; Histopathology; Multi level features

Indexed keywords

BIOPSY; CONVOLUTION; DISEASES; GRADING; IMAGE ENHANCEMENT; IMAGE SEGMENTATION; NEURAL NETWORKS; PIXELS; SEMANTICS; SUPPORT VECTOR MACHINES;

EID: 85006455969     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2016.05.084     Document Type: Article
Times cited : (124)

References (58)
  • 2
    • 84906257019 scopus 로고    scopus 로고
    • The evaluation of national time trends, quality of care, and factors affecting the use of minimally invasive breast biopsy and open biopsy for diagnosis of breast lesions
    • [2] Adepoju, L., Qu, W., Kazan, V., Nazzal, M., Williams, M., Sferra, J., The evaluation of national time trends, quality of care, and factors affecting the use of minimally invasive breast biopsy and open biopsy for diagnosis of breast lesions. Am. J. Surg. 208:3 (2014), 382–390.
    • (2014) Am. J. Surg. , vol.208 , Issue.3 , pp. 382-390
    • Adepoju, L.1    Qu, W.2    Kazan, V.3    Nazzal, M.4    Williams, M.5    Sferra, J.6
  • 3
    • 0026072872 scopus 로고
    • Pathological prognostic factors in breast cancer. The value of histological grade in breast cancer: experience from a large study with long-term follow-up
    • [3] Elston, C.W., Ellis, I.O., Pathological prognostic factors in breast cancer. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19:5 (1991), 403–410.
    • (1991) Histopathology , vol.19 , Issue.5 , pp. 403-410
    • Elston, C.W.1    Ellis, I.O.2
  • 4
    • 34447649198 scopus 로고    scopus 로고
    • The problems and promise of central pathology review development of a standardized procedure for the children oncology group
    • [4] Teot, L., Sposto, R., Khayat, A., Qualman, S., Reaman, G., Parham, D., The problems and promise of central pathology review development of a standardized procedure for the children oncology group. Pediatr. Dev. Pathol. 10 (2007), 199–207.
    • (2007) Pediatr. Dev. Pathol. , vol.10 , pp. 199-207
    • Teot, L.1    Sposto, R.2    Khayat, A.3    Qualman, S.4    Reaman, G.5    Parham, D.6
  • 7
    • 79952623483 scopus 로고    scopus 로고
    • Breast cancer classification applying artificial metaplasticity algorithm
    • [7] Marcano-Cedeno, A., Quintanilla-Dominguez, J., Andina, D., Breast cancer classification applying artificial metaplasticity algorithm. Neurocomputing 74 (2011), 1243–1250.
    • (2011) Neurocomputing , vol.74 , pp. 1243-1250
    • Marcano-Cedeno, A.1    Quintanilla-Dominguez, J.2    Andina, D.3
  • 8
    • 79957990380 scopus 로고    scopus 로고
    • Computer-aided prognosis: predicting patient and disease outcome via quantitative fusion of multi-scale, multi-modal data
    • [8] Madabhushi, A., Agner, S., Basavanhally, A., Doyle, S., Lee, G., Computer-aided prognosis: predicting patient and disease outcome via quantitative fusion of multi-scale, multi-modal data. Comput. Med. Imaging Graph. 35:7–8 (2011), 506–514.
    • (2011) Comput. Med. Imaging Graph. , vol.35 , Issue.7-8 , pp. 506-514
    • Madabhushi, A.1    Agner, S.2    Basavanhally, A.3    Doyle, S.4    Lee, G.5
  • 9
    • 84863869228 scopus 로고    scopus 로고
    • Histology image analysis for carcinoma detection and grading
    • [9] He, L., Long, L.R., Antani, S., Thoma, G.R., Histology image analysis for carcinoma detection and grading. Comput. Methods Programs Biomed. 107:3 (2012), 538–556.
    • (2012) Comput. Methods Programs Biomed. , vol.107 , Issue.3 , pp. 538-556
    • He, L.1    Long, L.R.2    Antani, S.3    Thoma, G.R.4
  • 10
    • 84900449424 scopus 로고    scopus 로고
    • Methods for nuclei detection, segmentation, and classification in digital histopathology: a review—current status and future potential
    • [10] Irshad, H., Veillard, A., Roux, L., Racoceanu, D., Methods for nuclei detection, segmentation, and classification in digital histopathology: a review—current status and future potential. IEEE Rev. Biomed. Eng. 7 (2014), 97–114.
    • (2014) IEEE Rev. Biomed. Eng. , vol.7 , pp. 97-114
    • Irshad, H.1    Veillard, A.2    Roux, L.3    Racoceanu, D.4
  • 11
    • 84922344423 scopus 로고    scopus 로고
    • Towards large-scale histopathological image analysis: hashing-based image retrieval
    • [11] Zhang, X., Liu, W., Dundar, M., Badve, S., Zhang, S., Towards large-scale histopathological image analysis: hashing-based image retrieval. IEEE Trans. Med. Imaging 34:2 (2015), 496–506.
    • (2015) IEEE Trans. Med. Imaging , vol.34 , Issue.2 , pp. 496-506
    • Zhang, X.1    Liu, W.2    Dundar, M.3    Badve, S.4    Zhang, S.5
  • 12
    • 84987858748 scopus 로고    scopus 로고
    • Fusing heterogeneous feature from stacked sparse autoencoder for histopathological image analysis
    • [12] Zhang, X., Dou, H., Ju, T., Xu, J., Zhang, S., Fusing heterogeneous feature from stacked sparse autoencoder for histopathological image analysis. IEEE J. Biomed. Health Inform., 99, 2015, 10.1109/JBHI.2015.2461671.
    • (2015) IEEE J. Biomed. Health Inform. , vol.99
    • Zhang, X.1    Dou, H.2    Ju, T.3    Xu, J.4    Zhang, S.5
  • 13
    • 84925119127 scopus 로고    scopus 로고
    • Discrimination between tumour epithelium and stroma via perception-based features
    • [13] Bianconi, F., Alvarez-Larran, A., Fernandez, A., Discrimination between tumour epithelium and stroma via perception-based features. Neurocomputing 154 (2015), 119–126.
    • (2015) Neurocomputing , vol.154 , pp. 119-126
    • Bianconi, F.1    Alvarez-Larran, A.2    Fernandez, A.3
  • 14
    • 33750912820 scopus 로고    scopus 로고
    • Large-scale computations on histology images reveal grade-differentiating parameters for breast cancer
    • [14] Petushi, S., Garcia, F., Haber, M., Katsinis, C., Tozeren, A., Large-scale computations on histology images reveal grade-differentiating parameters for breast cancer. BMC Med. Imaging, 6(14), 2006, 10.1186/1471-2342-6-14.
    • (2006) BMC Med. Imaging , vol.6 , Issue.14
    • Petushi, S.1    Garcia, F.2    Haber, M.3    Katsinis, C.4    Tozeren, A.5
  • 16
    • 84880845869 scopus 로고    scopus 로고
    • Automatic nuclei segmentation in H&E stained breast cancer histopathology images
    • [16] Veta, M., Van Diest, P., Kornegoor, R., Huisman, A., Viergever, M., Pluim, J., Automatic nuclei segmentation in H&E stained breast cancer histopathology images. PLoS One, 8(7), 2013, 10.1371/journal.pone.0070221.
    • (2013) PLoS One , vol.8 , Issue.7
    • Veta, M.1    Van Diest, P.2    Kornegoor, R.3    Huisman, A.4    Viergever, M.5    Pluim, J.6
  • 17
    • 77950245872 scopus 로고    scopus 로고
    • Improved automatic detection and segmentation of cell nuclei in histopathology images
    • [17] Al-Kofahi, Y., Lassoued, W., Lee, W., Roysam, B., Improved automatic detection and segmentation of cell nuclei in histopathology images. IEEE Trans. Biomed. Eng. 57:4 (2010), 841–852.
    • (2010) IEEE Trans. Biomed. Eng. , vol.57 , Issue.4 , pp. 841-852
    • Al-Kofahi, Y.1    Lassoued, W.2    Lee, W.3    Roysam, B.4
  • 18
    • 80054004347 scopus 로고    scopus 로고
    • A high-throughput active contour scheme for segmentation of histopathological imagery
    • [18] Xu, J., Janowczyk, A., Chandran, S., Madabhushi, A., A high-throughput active contour scheme for segmentation of histopathological imagery. Med. Image Anal. 15:6 (2011), 851–862.
    • (2011) Med. Image Anal. , vol.15 , Issue.6 , pp. 851-862
    • Xu, J.1    Janowczyk, A.2    Chandran, S.3    Madabhushi, A.4
  • 19
    • 84947426440 scopus 로고    scopus 로고
    • High-throughput histopathological image analysis via robust cell segmentation and hashing
    • [19] Zhang, X., Xing, F., Su, H., Yang, L., Zhang, S., High-throughput histopathological image analysis via robust cell segmentation and hashing. Med. Image Anal. 26:1 (2015), 306–315.
    • (2015) Med. Image Anal. , vol.26 , Issue.1 , pp. 306-315
    • Zhang, X.1    Xing, F.2    Su, H.3    Yang, L.4    Zhang, S.5
  • 20
    • 84959375736 scopus 로고    scopus 로고
    • Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images
    • [20] Xu, J., Xiang, L., Liu, Q., Gilmore, H., Wu, J., Tang, J., Madabhushi, A., Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images. IEEE Trans. Med. Imaging 35:1 (2016), 119–130.
    • (2016) IEEE Trans. Med. Imaging , vol.35 , Issue.1 , pp. 119-130
    • Xu, J.1    Xiang, L.2    Liu, Q.3    Gilmore, H.4    Wu, J.5    Tang, J.6    Madabhushi, A.7
  • 21
    • 84977845763 scopus 로고    scopus 로고
    • A deep convolutional neural network for segmenting and classifying epithelial and stromal regions in histopathological images
    • [21] Xu, J., Lou, X., Wang, G., Gilmore, H., Madabhushi, A., A deep convolutional neural network for segmenting and classifying epithelial and stromal regions in histopathological images. Neurocomputing 191 (2016), 214–223.
    • (2016) Neurocomputing , vol.191 , pp. 214-223
    • Xu, J.1    Lou, X.2    Wang, G.3    Gilmore, H.4    Madabhushi, A.5
  • 22
    • 84878560048 scopus 로고    scopus 로고
    • Multi-field-of-view strategy for image-based outcome prediction of multi-parametric estrogen receptor-positive breast cancer histopathology: comparison to oncotype DX
    • [22] Basavanhally, A., Feldman, M., Shih, N., Mies, C., Tomaszewski, J., Ganesan, S., Madabhushi, A., Multi-field-of-view strategy for image-based outcome prediction of multi-parametric estrogen receptor-positive breast cancer histopathology: comparison to oncotype DX. J. Pathol. Inform., 2(S1), 2014, 10.4103/2153–3539.92027.
    • (2014) J. Pathol. Inform. , vol.2 , Issue.S1
    • Basavanhally, A.1    Feldman, M.2    Shih, N.3    Mies, C.4    Tomaszewski, J.5    Ganesan, S.6    Madabhushi, A.7
  • 23
    • 84902138072 scopus 로고    scopus 로고
    • Co-occurring gland angularity in localized subgraphs: predicting biochemical recurrence in intermediate-risk prostate cancer patients
    • [23] Lee, G., Sparks, R., Ali, S., Shih, N., Feldman, M., Spangler, E., Rebbeck, T., Tomaszewski, J., Madabhushi, A., Co-occurring gland angularity in localized subgraphs: predicting biochemical recurrence in intermediate-risk prostate cancer patients. PLoS One, 9(5), 2014, 10.1371/journal.pone.0097954.
    • (2014) PLoS One , vol.9 , Issue.5
    • Lee, G.1    Sparks, R.2    Ali, S.3    Shih, N.4    Feldman, M.5    Spangler, E.6    Rebbeck, T.7    Tomaszewski, J.8    Madabhushi, A.9
  • 24
    • 79959565637 scopus 로고    scopus 로고
    • Computerized classification of intraductal breast lesions using histopathological images
    • [24] Dundar, M., Badve, S., Bilgin, G., Raykar, V., Jain, R., Sertel, O., Gurcan, M., Computerized classification of intraductal breast lesions using histopathological images. IEEE Trans. Biomed. Eng. 58:7 (2011), 1977–1984.
    • (2011) IEEE Trans. Biomed. Eng. , vol.58 , Issue.7 , pp. 1977-1984
    • Dundar, M.1    Badve, S.2    Bilgin, G.3    Raykar, V.4    Jain, R.5    Sertel, O.6    Gurcan, M.7
  • 25
    • 84885944291 scopus 로고    scopus 로고
    • Automated mitosis detection in histopathology using morphological and multi-channel statistics features
    • [25] Irshad, H., Automated mitosis detection in histopathology using morphological and multi-channel statistics features. J. Pathol. Inform., 4, 2013, 10.4103/2153–3539.112695.
    • (2013) J. Pathol. Inform. , vol.4
    • Irshad, H.1
  • 26
    • 84959468244 scopus 로고    scopus 로고
    • Breast cancer discriminant feature analysis for diagnosis via jointly sparse learning
    • [26] Kong, H., Lai, Z., Wang, X., Liu, F., Breast cancer discriminant feature analysis for diagnosis via jointly sparse learning. Neurocomputing 177 (2016), 198–205.
    • (2016) Neurocomputing , vol.177 , pp. 198-205
    • Kong, H.1    Lai, Z.2    Wang, X.3    Liu, F.4
  • 27
    • 84899672105 scopus 로고    scopus 로고
    • Breast cancer histopathology image analysis: a review
    • [27] Veta, M., Pluim, J., Van Diest, P., Viergever, M., Breast cancer histopathology image analysis: a review. IEEE Trans. Biomed. Eng. 61:5 (2014), 1400–1411.
    • (2014) IEEE Trans. Biomed. Eng. , vol.61 , Issue.5 , pp. 1400-1411
    • Veta, M.1    Pluim, J.2    Van Diest, P.3    Viergever, M.4
  • 28
    • 84978419938 scopus 로고    scopus 로고
    • An automatic breast cancer grading method in histopathological images based on pixel-, object-, and semantic-level features
    • Proceedings of IEEE International Symposium on Biomedical Imaging: From Nano Macro (ISBI)
    • [28] J. Cao, Z. Qin, J. Jing, J. Chen, T. Wan, An automatic breast cancer grading method in histopathological images based on pixel-, object-, and semantic-level features, in: Proceedings of IEEE International Symposium on Biomedical Imaging: From Nano Macro (ISBI), 2016, in press.
    • (2016)
    • Cao, J.1    Qin, Z.2    Jing, J.3    Chen, J.4    Wan, T.5
  • 29
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • [29] N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in: Proceedings of CVPR, 2005, pp. 886–893.
    • (2005) Proceedings of CVPR , pp. 886-893
    • Dalal, N.1    Triggs, B.2
  • 30
    • 0029669420 scopus 로고    scopus 로고
    • A comparative study of texture measures with classification based on feature distributions
    • [30] Ojala, T., Pietikainen, M., Harwood, D., A comparative study of texture measures with classification based on feature distributions. Pattern Recognit. 29:1 (1996), 51–59.
    • (1996) Pattern Recognit. , vol.29 , Issue.1 , pp. 51-59
    • Ojala, T.1    Pietikainen, M.2    Harwood, D.3
  • 32
    • 84949254575 scopus 로고    scopus 로고
    • Scalable analysis of big pathology image data cohorts using efficient methods and high-performance computing strategies
    • [32] Kurc, T., Qi, X., Wang, D., Wang, F., Teodoro, G., Cooper, L., Nalisnik, M., Yang, L., Saltz, J., Foran, D., Scalable analysis of big pathology image data cohorts using efficient methods and high-performance computing strategies. BMC Bioinform., 16(399), 2015, 10.1186/s12859-015-0831-6.
    • (2015) BMC Bioinform. , vol.16 , Issue.399
    • Kurc, T.1    Qi, X.2    Wang, D.3    Wang, F.4    Teodoro, G.5    Cooper, L.6    Nalisnik, M.7    Yang, L.8    Saltz, J.9    Foran, D.10
  • 33
  • 36
    • 84880902295 scopus 로고    scopus 로고
    • Multi-field-of-view framework for distinguishing tumor grade in ER+ breast cancer from entire histopathology slides
    • [36] Basavanhally, A., Ganesan, S., Feldman, M., Shih, N., Mies, C., Tomaszewski, J., Madabhushi, A., Multi-field-of-view framework for distinguishing tumor grade in ER+ breast cancer from entire histopathology slides. IEEE Trans. Biomed. Eng. 60:8 (2013), 2089–2099.
    • (2013) IEEE Trans. Biomed. Eng. , vol.60 , Issue.8 , pp. 2089-2099
    • Basavanhally, A.1    Ganesan, S.2    Feldman, M.3    Shih, N.4    Mies, C.5    Tomaszewski, J.6    Madabhushi, A.7
  • 37
    • 0015077742 scopus 로고
    • Computer determination of the constituent structure of biological images
    • [37] Kirsch, R., Computer determination of the constituent structure of biological images. Comput. Biomed. Res. 4:3 (1971), 315–328.
    • (1971) Comput. Biomed. Res. , vol.4 , Issue.3 , pp. 315-328
    • Kirsch, R.1
  • 38
    • 84896521745 scopus 로고    scopus 로고
    • Spatio-temporal texture (SpTeT) for distinguishing vulnerable from stable atherosclerotic plaque on dynamic contrast enhancement (DCE) MRI in a rabbit model
    • [38] Wan, T., Madabhushi, A., Phinikaridou, A., Hamilton, J., Hua, N., Pham, T., Danagoulian, J., Kleiman, R., Buckler, A., Spatio-temporal texture (SpTeT) for distinguishing vulnerable from stable atherosclerotic plaque on dynamic contrast enhancement (DCE) MRI in a rabbit model. Med. Phys., 41(4), 2014, 042303.
    • (2014) Med. Phys. , vol.41 , Issue.4 , pp. 042303
    • Wan, T.1    Madabhushi, A.2    Phinikaridou, A.3    Hamilton, J.4    Hua, N.5    Pham, T.6    Danagoulian, J.7    Kleiman, R.8    Buckler, A.9
  • 40
    • 84902573972 scopus 로고    scopus 로고
    • A new feature extraction framework based on wavelets for breast cancer diagnosis
    • [40] Ergin, S., Kilinc, O., A new feature extraction framework based on wavelets for breast cancer diagnosis. Comput. Biol. Med. 51 (2014), 171–182.
    • (2014) Comput. Biol. Med. , vol.51 , pp. 171-182
    • Ergin, S.1    Kilinc, O.2
  • 41
    • 84938895674 scopus 로고    scopus 로고
    • Fusion of completed local binary pattern features with curvelet features for mammogram classification
    • [41] Gardezi, S., Faye, I., Fusion of completed local binary pattern features with curvelet features for mammogram classification. Appl. Math. Inf. Sci. 9:6 (2015), 3037–3048.
    • (2015) Appl. Math. Inf. Sci. , vol.9 , Issue.6 , pp. 3037-3048
    • Gardezi, S.1    Faye, I.2
  • 42
    • 84958581520 scopus 로고    scopus 로고
    • A radio-genomics approach for identifying high risk estrogen receptor-positive breast cancers on DCE-MRI: preliminary results in predicting OncotypeDX risk scores
    • Sci. Rep. 6 ).
    • [42] T. Wan, B.N. Bloch, D. Plecha, C.L. Thompson, H. Gilmore, C. Jaffe, L. Harris, A.Madabhushi, A radio-genomics approach for identifying high risk estrogen receptor-positive breast cancers on DCE-MRI: preliminary results in predicting OncotypeDX risk scores, Sci. Rep. 6 (2016) http://dx.doi.org/10.1038/srep21394.
    • (2016)
    • Wan, T.1    Bloch, B.N.2    Plecha, D.3    Thompson, C.L.4    Gilmore, H.5    Jaffe, C.6    Harris, L.7    Madabhushi, A.8
  • 43
    • 84951864666 scopus 로고    scopus 로고
    • Joint kernel-based supervised hashing for scalable histopathological image analysis
    • [43] M. Jiang, S. Zhang, J. Huang, L. Yang, D.N. Metaxas, Joint kernel-based supervised hashing for scalable histopathological image analysis, in: Proceedings of MICCAI, 2015, pp. 366–373.
    • (2015) Proceedings of MICCAI , pp. 366-373
    • Jiang, M.1    Zhang, S.2    Huang, J.3    Yang, L.4    Metaxas, D.N.5
  • 45
    • 84886247903 scopus 로고    scopus 로고
    • Pathology imaging informatics for quantitative analysis of whole-slide images
    • [45] Kothari, S., Phan, J., Stokes, T., Wang, M., Pathology imaging informatics for quantitative analysis of whole-slide images. J. Am. Med. Inf. Assoc. 20:6 (2013), 1099–1108.
    • (2013) J. Am. Med. Inf. Assoc. , vol.20 , Issue.6 , pp. 1099-1108
    • Kothari, S.1    Phan, J.2    Stokes, T.3    Wang, M.4
  • 47
    • 84885899176 scopus 로고    scopus 로고
    • Mitosis detection in breast cancer histology images with deep neural networks
    • [47] D. Ciresan, A. Giusti, L. Gambardella, J. Schmidhuber, Mitosis detection in breast cancer histology images with deep neural networks, in: Proceedings of MICCAI, 2013, pp. 441–418.
    • (2013) Proceedings of MICCAI , pp. 441-418
    • Ciresan, D.1    Giusti, A.2    Gambardella, L.3    Schmidhuber, J.4
  • 48
    • 84867896468 scopus 로고    scopus 로고
    • Cascaded discrimination of normal, abnormal, and confounder classes in histopathology: Gleason grading of prostate cancer
    • [48] Doyle, S., Feldman, M., Shih, N., Tomaszewski, J., Madabhushi, A., Cascaded discrimination of normal, abnormal, and confounder classes in histopathology: Gleason grading of prostate cancer. BMC Bioinform., 13(282), 2012, 10.1186/1471–2105–13–282.
    • (2012) BMC Bioinform. , vol.13 , Issue.282
    • Doyle, S.1    Feldman, M.2    Shih, N.3    Tomaszewski, J.4    Madabhushi, A.5
  • 49
    • 84902105432 scopus 로고    scopus 로고
    • Distinguishing prostate cancer from benign confounders via a cascaded classifier on multi-parametric MRI
    • in: Proceedings of SPIE Medical Imaging, vol. 3035,, p. 903512.
    • [49] G. Litjens, R. Elliott, N. Shih, M. Feldman, J. Barentsz, C. van de Kaa, I. Kovacs, H. Huisman, A. Madabhushi, Distinguishing prostate cancer from benign confounders via a cascaded classifier on multi-parametric MRI, in: Proceedings of SPIE Medical Imaging, vol. 3035, 2014, p. 903512.
    • (2014)
    • Litjens, G.1    Elliott, R.2    Shih, N.3    Feldman, M.4    Barentsz, J.5    van de Kaa, C.6    Kovacs, I.7    Huisman, H.8    Madabhushi, A.9
  • 50
    • 84978372524 scopus 로고    scopus 로고
    • An improved hybrid active contour model for unclear segmentation on breast cancer histopathology
    • Proceedings of IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI)
    • [50] J. Jing, T. Wan, J. Cao, J. Chen, Z. Qin, An improved hybrid active contour model for unclear segmentation on breast cancer histopathology, in: Proceedings of IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI), 2016, in press.
    • (2016)
    • Jing, J.1    Wan, T.2    Cao, J.3    Chen, J.4    Qin, Z.5
  • 51
    • 84901269374 scopus 로고    scopus 로고
    • A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution
    • [51] Khan, A., Rajpoot, N., Treanor, D., Magee, D., A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution. IEEE Trans. Biomed. Eng. 61:6 (2014), 1729–1738.
    • (2014) IEEE Trans. Biomed. Eng. , vol.61 , Issue.6 , pp. 1729-1738
    • Khan, A.1    Rajpoot, N.2    Treanor, D.3    Magee, D.4
  • 52
    • 70449699693 scopus 로고    scopus 로고
    • An efficient local Chan–Vese model for image segmentation
    • [52] Wang, X., Huang, D., Xu, H., An efficient local Chan–Vese model for image segmentation. Pattern Recognit. 43:3 (2010), 603–618.
    • (2010) Pattern Recognit. , vol.43 , Issue.3 , pp. 603-618
    • Wang, X.1    Huang, D.2    Xu, H.3
  • 53
    • 36849014901 scopus 로고    scopus 로고
    • Representing shape with a spatial pyramid kernel
    • [53] A. Bosch, A. Zisserman, X. Munoz, Representing shape with a spatial pyramid kernel, in: Proceedings of CIVR, 2007, pp. 401–408.
    • (2007) Proceedings of CIVR , pp. 401-408
    • Bosch, A.1    Zisserman, A.2    Munoz, X.3
  • 56
    • 84874765890 scopus 로고    scopus 로고
    • Spectral embedding based active contour (SEAC) for lesion segmentation on breast dynamic contrast enhanced magnetic resonance imaging
    • [56] Agner, S., Xu, J., Madabhushi, A., Spectral embedding based active contour (SEAC) for lesion segmentation on breast dynamic contrast enhanced magnetic resonance imaging. Med. Phys. 40:3 (2013), 1–12.
    • (2013) Med. Phys. , vol.40 , Issue.3 , pp. 1-12
    • Agner, S.1    Xu, J.2    Madabhushi, A.3
  • 57
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • [57] Freund, Y., Schapire, R., A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55 (1997), 119–139.
    • (1997) J. Comput. Syst. Sci. , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.