-
1
-
-
84905851594
-
Surgeon influence on use of needle biopsy in patient with breast cancer: a national medicare study
-
[1] Eberth, J., Xu, Y., Smith, G., Shen, Y., Jiang, J., Buchholz, T., Hunt, K., Black, D., Giordano, S., Whitman, G., Yang, W., Shen, C., Elting, L., Smith, B., Surgeon influence on use of needle biopsy in patient with breast cancer: a national medicare study. J. Clin. Oncol. 32:21 (2014), 2206–2216.
-
(2014)
J. Clin. Oncol.
, vol.32
, Issue.21
, pp. 2206-2216
-
-
Eberth, J.1
Xu, Y.2
Smith, G.3
Shen, Y.4
Jiang, J.5
Buchholz, T.6
Hunt, K.7
Black, D.8
Giordano, S.9
Whitman, G.10
Yang, W.11
Shen, C.12
Elting, L.13
Smith, B.14
-
2
-
-
84906257019
-
The evaluation of national time trends, quality of care, and factors affecting the use of minimally invasive breast biopsy and open biopsy for diagnosis of breast lesions
-
[2] Adepoju, L., Qu, W., Kazan, V., Nazzal, M., Williams, M., Sferra, J., The evaluation of national time trends, quality of care, and factors affecting the use of minimally invasive breast biopsy and open biopsy for diagnosis of breast lesions. Am. J. Surg. 208:3 (2014), 382–390.
-
(2014)
Am. J. Surg.
, vol.208
, Issue.3
, pp. 382-390
-
-
Adepoju, L.1
Qu, W.2
Kazan, V.3
Nazzal, M.4
Williams, M.5
Sferra, J.6
-
3
-
-
0026072872
-
Pathological prognostic factors in breast cancer. The value of histological grade in breast cancer: experience from a large study with long-term follow-up
-
[3] Elston, C.W., Ellis, I.O., Pathological prognostic factors in breast cancer. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19:5 (1991), 403–410.
-
(1991)
Histopathology
, vol.19
, Issue.5
, pp. 403-410
-
-
Elston, C.W.1
Ellis, I.O.2
-
4
-
-
34447649198
-
The problems and promise of central pathology review development of a standardized procedure for the children oncology group
-
[4] Teot, L., Sposto, R., Khayat, A., Qualman, S., Reaman, G., Parham, D., The problems and promise of central pathology review development of a standardized procedure for the children oncology group. Pediatr. Dev. Pathol. 10 (2007), 199–207.
-
(2007)
Pediatr. Dev. Pathol.
, vol.10
, pp. 199-207
-
-
Teot, L.1
Sposto, R.2
Khayat, A.3
Qualman, S.4
Reaman, G.5
Parham, D.6
-
5
-
-
84925884510
-
Diagnostic concordance among pathologists interpreting breast biopsy specimens
-
[5] Elmore, J., Longton, G., Carney, P., Geller, B., Onega, T., Tosteson, A., Nelson, H., Pepe, M., Allison, K., Schnitt, S., Malley, F., Weaver, D., Diagnostic concordance among pathologists interpreting breast biopsy specimens. JAMA 313:11 (2015), 1122–1132.
-
(2015)
JAMA
, vol.313
, Issue.11
, pp. 1122-1132
-
-
Elmore, J.1
Longton, G.2
Carney, P.3
Geller, B.4
Onega, T.5
Tosteson, A.6
Nelson, H.7
Pepe, M.8
Allison, K.9
Schnitt, S.10
Malley, F.11
Weaver, D.12
-
6
-
-
77956941136
-
Histopathological image analysis: a review
-
[6] Gurcan, M., Boucheron, L., Can, A., Madabhushi, A., Rajpoot, N., Yener, B., Histopathological image analysis: a review. IEEE Rev. Biomed. Eng. 2 (2009), 147–171.
-
(2009)
IEEE Rev. Biomed. Eng.
, vol.2
, pp. 147-171
-
-
Gurcan, M.1
Boucheron, L.2
Can, A.3
Madabhushi, A.4
Rajpoot, N.5
Yener, B.6
-
7
-
-
79952623483
-
Breast cancer classification applying artificial metaplasticity algorithm
-
[7] Marcano-Cedeno, A., Quintanilla-Dominguez, J., Andina, D., Breast cancer classification applying artificial metaplasticity algorithm. Neurocomputing 74 (2011), 1243–1250.
-
(2011)
Neurocomputing
, vol.74
, pp. 1243-1250
-
-
Marcano-Cedeno, A.1
Quintanilla-Dominguez, J.2
Andina, D.3
-
8
-
-
79957990380
-
Computer-aided prognosis: predicting patient and disease outcome via quantitative fusion of multi-scale, multi-modal data
-
[8] Madabhushi, A., Agner, S., Basavanhally, A., Doyle, S., Lee, G., Computer-aided prognosis: predicting patient and disease outcome via quantitative fusion of multi-scale, multi-modal data. Comput. Med. Imaging Graph. 35:7–8 (2011), 506–514.
-
(2011)
Comput. Med. Imaging Graph.
, vol.35
, Issue.7-8
, pp. 506-514
-
-
Madabhushi, A.1
Agner, S.2
Basavanhally, A.3
Doyle, S.4
Lee, G.5
-
9
-
-
84863869228
-
Histology image analysis for carcinoma detection and grading
-
[9] He, L., Long, L.R., Antani, S., Thoma, G.R., Histology image analysis for carcinoma detection and grading. Comput. Methods Programs Biomed. 107:3 (2012), 538–556.
-
(2012)
Comput. Methods Programs Biomed.
, vol.107
, Issue.3
, pp. 538-556
-
-
He, L.1
Long, L.R.2
Antani, S.3
Thoma, G.R.4
-
10
-
-
84900449424
-
Methods for nuclei detection, segmentation, and classification in digital histopathology: a review—current status and future potential
-
[10] Irshad, H., Veillard, A., Roux, L., Racoceanu, D., Methods for nuclei detection, segmentation, and classification in digital histopathology: a review—current status and future potential. IEEE Rev. Biomed. Eng. 7 (2014), 97–114.
-
(2014)
IEEE Rev. Biomed. Eng.
, vol.7
, pp. 97-114
-
-
Irshad, H.1
Veillard, A.2
Roux, L.3
Racoceanu, D.4
-
11
-
-
84922344423
-
Towards large-scale histopathological image analysis: hashing-based image retrieval
-
[11] Zhang, X., Liu, W., Dundar, M., Badve, S., Zhang, S., Towards large-scale histopathological image analysis: hashing-based image retrieval. IEEE Trans. Med. Imaging 34:2 (2015), 496–506.
-
(2015)
IEEE Trans. Med. Imaging
, vol.34
, Issue.2
, pp. 496-506
-
-
Zhang, X.1
Liu, W.2
Dundar, M.3
Badve, S.4
Zhang, S.5
-
12
-
-
84987858748
-
Fusing heterogeneous feature from stacked sparse autoencoder for histopathological image analysis
-
[12] Zhang, X., Dou, H., Ju, T., Xu, J., Zhang, S., Fusing heterogeneous feature from stacked sparse autoencoder for histopathological image analysis. IEEE J. Biomed. Health Inform., 99, 2015, 10.1109/JBHI.2015.2461671.
-
(2015)
IEEE J. Biomed. Health Inform.
, vol.99
-
-
Zhang, X.1
Dou, H.2
Ju, T.3
Xu, J.4
Zhang, S.5
-
13
-
-
84925119127
-
Discrimination between tumour epithelium and stroma via perception-based features
-
[13] Bianconi, F., Alvarez-Larran, A., Fernandez, A., Discrimination between tumour epithelium and stroma via perception-based features. Neurocomputing 154 (2015), 119–126.
-
(2015)
Neurocomputing
, vol.154
, pp. 119-126
-
-
Bianconi, F.1
Alvarez-Larran, A.2
Fernandez, A.3
-
14
-
-
33750912820
-
Large-scale computations on histology images reveal grade-differentiating parameters for breast cancer
-
[14] Petushi, S., Garcia, F., Haber, M., Katsinis, C., Tozeren, A., Large-scale computations on histology images reveal grade-differentiating parameters for breast cancer. BMC Med. Imaging, 6(14), 2006, 10.1186/1471-2342-6-14.
-
(2006)
BMC Med. Imaging
, vol.6
, Issue.14
-
-
Petushi, S.1
Garcia, F.2
Haber, M.3
Katsinis, C.4
Tozeren, A.5
-
15
-
-
77649084558
-
Computerized image-based detection and grading of lymphocytic infiltration in HER2+ breast cancer histopathology
-
[15] Basavanhally, A., Ganesan, S., Agner, S., Monaco, J., Feldman, M., Tomaszewski, J., Bhanot, G., Madabhushi, A., Computerized image-based detection and grading of lymphocytic infiltration in HER2+ breast cancer histopathology. IEEE Trans. Biomed. Eng. 57:3 (2010), 642–653.
-
(2010)
IEEE Trans. Biomed. Eng.
, vol.57
, Issue.3
, pp. 642-653
-
-
Basavanhally, A.1
Ganesan, S.2
Agner, S.3
Monaco, J.4
Feldman, M.5
Tomaszewski, J.6
Bhanot, G.7
Madabhushi, A.8
-
16
-
-
84880845869
-
Automatic nuclei segmentation in H&E stained breast cancer histopathology images
-
[16] Veta, M., Van Diest, P., Kornegoor, R., Huisman, A., Viergever, M., Pluim, J., Automatic nuclei segmentation in H&E stained breast cancer histopathology images. PLoS One, 8(7), 2013, 10.1371/journal.pone.0070221.
-
(2013)
PLoS One
, vol.8
, Issue.7
-
-
Veta, M.1
Van Diest, P.2
Kornegoor, R.3
Huisman, A.4
Viergever, M.5
Pluim, J.6
-
17
-
-
77950245872
-
Improved automatic detection and segmentation of cell nuclei in histopathology images
-
[17] Al-Kofahi, Y., Lassoued, W., Lee, W., Roysam, B., Improved automatic detection and segmentation of cell nuclei in histopathology images. IEEE Trans. Biomed. Eng. 57:4 (2010), 841–852.
-
(2010)
IEEE Trans. Biomed. Eng.
, vol.57
, Issue.4
, pp. 841-852
-
-
Al-Kofahi, Y.1
Lassoued, W.2
Lee, W.3
Roysam, B.4
-
18
-
-
80054004347
-
A high-throughput active contour scheme for segmentation of histopathological imagery
-
[18] Xu, J., Janowczyk, A., Chandran, S., Madabhushi, A., A high-throughput active contour scheme for segmentation of histopathological imagery. Med. Image Anal. 15:6 (2011), 851–862.
-
(2011)
Med. Image Anal.
, vol.15
, Issue.6
, pp. 851-862
-
-
Xu, J.1
Janowczyk, A.2
Chandran, S.3
Madabhushi, A.4
-
19
-
-
84947426440
-
High-throughput histopathological image analysis via robust cell segmentation and hashing
-
[19] Zhang, X., Xing, F., Su, H., Yang, L., Zhang, S., High-throughput histopathological image analysis via robust cell segmentation and hashing. Med. Image Anal. 26:1 (2015), 306–315.
-
(2015)
Med. Image Anal.
, vol.26
, Issue.1
, pp. 306-315
-
-
Zhang, X.1
Xing, F.2
Su, H.3
Yang, L.4
Zhang, S.5
-
20
-
-
84959375736
-
Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images
-
[20] Xu, J., Xiang, L., Liu, Q., Gilmore, H., Wu, J., Tang, J., Madabhushi, A., Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images. IEEE Trans. Med. Imaging 35:1 (2016), 119–130.
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, Issue.1
, pp. 119-130
-
-
Xu, J.1
Xiang, L.2
Liu, Q.3
Gilmore, H.4
Wu, J.5
Tang, J.6
Madabhushi, A.7
-
21
-
-
84977845763
-
A deep convolutional neural network for segmenting and classifying epithelial and stromal regions in histopathological images
-
[21] Xu, J., Lou, X., Wang, G., Gilmore, H., Madabhushi, A., A deep convolutional neural network for segmenting and classifying epithelial and stromal regions in histopathological images. Neurocomputing 191 (2016), 214–223.
-
(2016)
Neurocomputing
, vol.191
, pp. 214-223
-
-
Xu, J.1
Lou, X.2
Wang, G.3
Gilmore, H.4
Madabhushi, A.5
-
22
-
-
84878560048
-
Multi-field-of-view strategy for image-based outcome prediction of multi-parametric estrogen receptor-positive breast cancer histopathology: comparison to oncotype DX
-
[22] Basavanhally, A., Feldman, M., Shih, N., Mies, C., Tomaszewski, J., Ganesan, S., Madabhushi, A., Multi-field-of-view strategy for image-based outcome prediction of multi-parametric estrogen receptor-positive breast cancer histopathology: comparison to oncotype DX. J. Pathol. Inform., 2(S1), 2014, 10.4103/2153–3539.92027.
-
(2014)
J. Pathol. Inform.
, vol.2
, Issue.S1
-
-
Basavanhally, A.1
Feldman, M.2
Shih, N.3
Mies, C.4
Tomaszewski, J.5
Ganesan, S.6
Madabhushi, A.7
-
23
-
-
84902138072
-
Co-occurring gland angularity in localized subgraphs: predicting biochemical recurrence in intermediate-risk prostate cancer patients
-
[23] Lee, G., Sparks, R., Ali, S., Shih, N., Feldman, M., Spangler, E., Rebbeck, T., Tomaszewski, J., Madabhushi, A., Co-occurring gland angularity in localized subgraphs: predicting biochemical recurrence in intermediate-risk prostate cancer patients. PLoS One, 9(5), 2014, 10.1371/journal.pone.0097954.
-
(2014)
PLoS One
, vol.9
, Issue.5
-
-
Lee, G.1
Sparks, R.2
Ali, S.3
Shih, N.4
Feldman, M.5
Spangler, E.6
Rebbeck, T.7
Tomaszewski, J.8
Madabhushi, A.9
-
24
-
-
79959565637
-
Computerized classification of intraductal breast lesions using histopathological images
-
[24] Dundar, M., Badve, S., Bilgin, G., Raykar, V., Jain, R., Sertel, O., Gurcan, M., Computerized classification of intraductal breast lesions using histopathological images. IEEE Trans. Biomed. Eng. 58:7 (2011), 1977–1984.
-
(2011)
IEEE Trans. Biomed. Eng.
, vol.58
, Issue.7
, pp. 1977-1984
-
-
Dundar, M.1
Badve, S.2
Bilgin, G.3
Raykar, V.4
Jain, R.5
Sertel, O.6
Gurcan, M.7
-
25
-
-
84885944291
-
Automated mitosis detection in histopathology using morphological and multi-channel statistics features
-
[25] Irshad, H., Automated mitosis detection in histopathology using morphological and multi-channel statistics features. J. Pathol. Inform., 4, 2013, 10.4103/2153–3539.112695.
-
(2013)
J. Pathol. Inform.
, vol.4
-
-
Irshad, H.1
-
26
-
-
84959468244
-
Breast cancer discriminant feature analysis for diagnosis via jointly sparse learning
-
[26] Kong, H., Lai, Z., Wang, X., Liu, F., Breast cancer discriminant feature analysis for diagnosis via jointly sparse learning. Neurocomputing 177 (2016), 198–205.
-
(2016)
Neurocomputing
, vol.177
, pp. 198-205
-
-
Kong, H.1
Lai, Z.2
Wang, X.3
Liu, F.4
-
27
-
-
84899672105
-
Breast cancer histopathology image analysis: a review
-
[27] Veta, M., Pluim, J., Van Diest, P., Viergever, M., Breast cancer histopathology image analysis: a review. IEEE Trans. Biomed. Eng. 61:5 (2014), 1400–1411.
-
(2014)
IEEE Trans. Biomed. Eng.
, vol.61
, Issue.5
, pp. 1400-1411
-
-
Veta, M.1
Pluim, J.2
Van Diest, P.3
Viergever, M.4
-
28
-
-
84978419938
-
An automatic breast cancer grading method in histopathological images based on pixel-, object-, and semantic-level features
-
Proceedings of IEEE International Symposium on Biomedical Imaging: From Nano Macro (ISBI)
-
[28] J. Cao, Z. Qin, J. Jing, J. Chen, T. Wan, An automatic breast cancer grading method in histopathological images based on pixel-, object-, and semantic-level features, in: Proceedings of IEEE International Symposium on Biomedical Imaging: From Nano Macro (ISBI), 2016, in press.
-
(2016)
-
-
Cao, J.1
Qin, Z.2
Jing, J.3
Chen, J.4
Wan, T.5
-
29
-
-
33645146449
-
Histograms of oriented gradients for human detection
-
[29] N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in: Proceedings of CVPR, 2005, pp. 886–893.
-
(2005)
Proceedings of CVPR
, pp. 886-893
-
-
Dalal, N.1
Triggs, B.2
-
30
-
-
0029669420
-
A comparative study of texture measures with classification based on feature distributions
-
[30] Ojala, T., Pietikainen, M., Harwood, D., A comparative study of texture measures with classification based on feature distributions. Pattern Recognit. 29:1 (1996), 51–59.
-
(1996)
Pattern Recognit.
, vol.29
, Issue.1
, pp. 51-59
-
-
Ojala, T.1
Pietikainen, M.2
Harwood, D.3
-
31
-
-
84921744002
-
Automated classification of breast cancer morphology in histopathological image
-
[31] Ojansivu, V., Linder, N., Rahtu, E., Pietikainen, M., Lundin, M., Joensuu, H., Lundin, J., Automated classification of breast cancer morphology in histopathological image. Diagn. Pathol., 8(1), 2013, S29.
-
(2013)
Diagn. Pathol.
, vol.8
, Issue.1
, pp. S29
-
-
Ojansivu, V.1
Linder, N.2
Rahtu, E.3
Pietikainen, M.4
Lundin, M.5
Joensuu, H.6
Lundin, J.7
-
32
-
-
84949254575
-
Scalable analysis of big pathology image data cohorts using efficient methods and high-performance computing strategies
-
[32] Kurc, T., Qi, X., Wang, D., Wang, F., Teodoro, G., Cooper, L., Nalisnik, M., Yang, L., Saltz, J., Foran, D., Scalable analysis of big pathology image data cohorts using efficient methods and high-performance computing strategies. BMC Bioinform., 16(399), 2015, 10.1186/s12859-015-0831-6.
-
(2015)
BMC Bioinform.
, vol.16
, Issue.399
-
-
Kurc, T.1
Qi, X.2
Wang, D.3
Wang, F.4
Teodoro, G.5
Cooper, L.6
Nalisnik, M.7
Yang, L.8
Saltz, J.9
Foran, D.10
-
33
-
-
0032171598
-
Automated breast tumor diagnosis and grading based on wavelet chromatin texture description
-
[33] Weyn, B., Van de Wouwer, G., Van Daele, A., Scheunders, P., Van Dyck, D., Van Marck, E., Jacob, W., Automated breast tumor diagnosis and grading based on wavelet chromatin texture description. Cytometry 33:1 (1998), 32–40.
-
(1998)
Cytometry
, vol.33
, Issue.1
, pp. 32-40
-
-
Weyn, B.1
Van de Wouwer, G.2
Van Daele, A.3
Scheunders, P.4
Van Dyck, D.5
Van Marck, E.6
Jacob, W.7
-
34
-
-
51049109414
-
Automated grading of breast cancer histopathology using spectral clustering with textural and architectural image features
-
[34] S. Doyle, S. Agner, A. Madabhushi, M. Feldman, J. Tomaszewski, Automated grading of breast cancer histopathology using spectral clustering with textural and architectural image features, in: Proceedings of IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI), vol. 29, 2008, pp. 469–499.
-
(2008)
Proceedings of IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI)
, vol.29
, pp. 469-499
-
-
Doyle, S.1
Agner, S.2
Madabhushi, A.3
Feldman, M.4
Tomaszewski, J.5
-
35
-
-
61849134532
-
Automatic breast cancer grading of histopathological images
-
[35] J. Dalle, W. Leow, D. Racoceanu, A. Tutac, T. Putti, Automatic breast cancer grading of histopathological images, in: Conference Proceedings: IEEE Engineering in Medicine and Biology Society, 2008, pp. 3052–3055.
-
(2008)
Conference Proceedings: IEEE Engineering in Medicine and Biology Society
, pp. 3052-3055
-
-
Dalle, J.1
Leow, W.2
Racoceanu, D.3
Tutac, A.4
Putti, T.5
-
36
-
-
84880902295
-
Multi-field-of-view framework for distinguishing tumor grade in ER+ breast cancer from entire histopathology slides
-
[36] Basavanhally, A., Ganesan, S., Feldman, M., Shih, N., Mies, C., Tomaszewski, J., Madabhushi, A., Multi-field-of-view framework for distinguishing tumor grade in ER+ breast cancer from entire histopathology slides. IEEE Trans. Biomed. Eng. 60:8 (2013), 2089–2099.
-
(2013)
IEEE Trans. Biomed. Eng.
, vol.60
, Issue.8
, pp. 2089-2099
-
-
Basavanhally, A.1
Ganesan, S.2
Feldman, M.3
Shih, N.4
Mies, C.5
Tomaszewski, J.6
Madabhushi, A.7
-
37
-
-
0015077742
-
Computer determination of the constituent structure of biological images
-
[37] Kirsch, R., Computer determination of the constituent structure of biological images. Comput. Biomed. Res. 4:3 (1971), 315–328.
-
(1971)
Comput. Biomed. Res.
, vol.4
, Issue.3
, pp. 315-328
-
-
Kirsch, R.1
-
38
-
-
84896521745
-
Spatio-temporal texture (SpTeT) for distinguishing vulnerable from stable atherosclerotic plaque on dynamic contrast enhancement (DCE) MRI in a rabbit model
-
[38] Wan, T., Madabhushi, A., Phinikaridou, A., Hamilton, J., Hua, N., Pham, T., Danagoulian, J., Kleiman, R., Buckler, A., Spatio-temporal texture (SpTeT) for distinguishing vulnerable from stable atherosclerotic plaque on dynamic contrast enhancement (DCE) MRI in a rabbit model. Med. Phys., 41(4), 2014, 042303.
-
(2014)
Med. Phys.
, vol.41
, Issue.4
, pp. 042303
-
-
Wan, T.1
Madabhushi, A.2
Phinikaridou, A.3
Hamilton, J.4
Hua, N.5
Pham, T.6
Danagoulian, J.7
Kleiman, R.8
Buckler, A.9
-
39
-
-
80052876547
-
Textural kinetics: a novel dynamic contrast-enhanced (DCE)-MRI feature for breast lesion classification
-
[39] Agner, S., Soman, S., Libfeld, E., McDonald, M., Thomas, K., Englander, S., Rosen, M., Chin, D., Nosher, J., Madabhushi, A., Textural kinetics: a novel dynamic contrast-enhanced (DCE)-MRI feature for breast lesion classification. J. Digit. Imaging 24:3 (2011), 446–463.
-
(2011)
J. Digit. Imaging
, vol.24
, Issue.3
, pp. 446-463
-
-
Agner, S.1
Soman, S.2
Libfeld, E.3
McDonald, M.4
Thomas, K.5
Englander, S.6
Rosen, M.7
Chin, D.8
Nosher, J.9
Madabhushi, A.10
-
40
-
-
84902573972
-
A new feature extraction framework based on wavelets for breast cancer diagnosis
-
[40] Ergin, S., Kilinc, O., A new feature extraction framework based on wavelets for breast cancer diagnosis. Comput. Biol. Med. 51 (2014), 171–182.
-
(2014)
Comput. Biol. Med.
, vol.51
, pp. 171-182
-
-
Ergin, S.1
Kilinc, O.2
-
41
-
-
84938895674
-
Fusion of completed local binary pattern features with curvelet features for mammogram classification
-
[41] Gardezi, S., Faye, I., Fusion of completed local binary pattern features with curvelet features for mammogram classification. Appl. Math. Inf. Sci. 9:6 (2015), 3037–3048.
-
(2015)
Appl. Math. Inf. Sci.
, vol.9
, Issue.6
, pp. 3037-3048
-
-
Gardezi, S.1
Faye, I.2
-
42
-
-
84958581520
-
A radio-genomics approach for identifying high risk estrogen receptor-positive breast cancers on DCE-MRI: preliminary results in predicting OncotypeDX risk scores
-
Sci. Rep. 6 ).
-
[42] T. Wan, B.N. Bloch, D. Plecha, C.L. Thompson, H. Gilmore, C. Jaffe, L. Harris, A.Madabhushi, A radio-genomics approach for identifying high risk estrogen receptor-positive breast cancers on DCE-MRI: preliminary results in predicting OncotypeDX risk scores, Sci. Rep. 6 (2016) http://dx.doi.org/10.1038/srep21394.
-
(2016)
-
-
Wan, T.1
Bloch, B.N.2
Plecha, D.3
Thompson, C.L.4
Gilmore, H.5
Jaffe, C.6
Harris, L.7
Madabhushi, A.8
-
43
-
-
84951864666
-
Joint kernel-based supervised hashing for scalable histopathological image analysis
-
[43] M. Jiang, S. Zhang, J. Huang, L. Yang, D.N. Metaxas, Joint kernel-based supervised hashing for scalable histopathological image analysis, in: Proceedings of MICCAI, 2015, pp. 366–373.
-
(2015)
Proceedings of MICCAI
, pp. 366-373
-
-
Jiang, M.1
Zhang, S.2
Huang, J.3
Yang, L.4
Metaxas, D.N.5
-
44
-
-
84869425939
-
Biological interpretation of morphological patterns in histopathological whole-slide images
-
[44] S. Kothari, J.H. Phan, A.O. Osunkoya, M.D. Wang, Biological interpretation of morphological patterns in histopathological whole-slide images, in: ACM Conference Proceedings on Bioinformatics, Computational Biology and Biomedicine, 2012, pp. 218–225.
-
(2012)
ACM Conference Proceedings on Bioinformatics, Computational Biology and Biomedicine
, pp. 218-225
-
-
Kothari, S.1
Phan, J.H.2
Osunkoya, A.O.3
Wang, M.D.4
-
45
-
-
84886247903
-
Pathology imaging informatics for quantitative analysis of whole-slide images
-
[45] Kothari, S., Phan, J., Stokes, T., Wang, M., Pathology imaging informatics for quantitative analysis of whole-slide images. J. Am. Med. Inf. Assoc. 20:6 (2013), 1099–1108.
-
(2013)
J. Am. Med. Inf. Assoc.
, vol.20
, Issue.6
, pp. 1099-1108
-
-
Kothari, S.1
Phan, J.2
Stokes, T.3
Wang, M.4
-
46
-
-
84923019397
-
Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features
-
[46] Wang, H., Cruz-Roa, A., Basavanhally, A., Gilmore, H., Shih, N., Feldman, M., Tomaszewski, J., Gonzalez, F., Madabhushi, A., Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features. J.Med. Imaging, 1(3), 2014, 034003.
-
(2014)
J.Med. Imaging
, vol.1
, Issue.3
, pp. 034003
-
-
Wang, H.1
Cruz-Roa, A.2
Basavanhally, A.3
Gilmore, H.4
Shih, N.5
Feldman, M.6
Tomaszewski, J.7
Gonzalez, F.8
Madabhushi, A.9
-
47
-
-
84885899176
-
Mitosis detection in breast cancer histology images with deep neural networks
-
[47] D. Ciresan, A. Giusti, L. Gambardella, J. Schmidhuber, Mitosis detection in breast cancer histology images with deep neural networks, in: Proceedings of MICCAI, 2013, pp. 441–418.
-
(2013)
Proceedings of MICCAI
, pp. 441-418
-
-
Ciresan, D.1
Giusti, A.2
Gambardella, L.3
Schmidhuber, J.4
-
48
-
-
84867896468
-
Cascaded discrimination of normal, abnormal, and confounder classes in histopathology: Gleason grading of prostate cancer
-
[48] Doyle, S., Feldman, M., Shih, N., Tomaszewski, J., Madabhushi, A., Cascaded discrimination of normal, abnormal, and confounder classes in histopathology: Gleason grading of prostate cancer. BMC Bioinform., 13(282), 2012, 10.1186/1471–2105–13–282.
-
(2012)
BMC Bioinform.
, vol.13
, Issue.282
-
-
Doyle, S.1
Feldman, M.2
Shih, N.3
Tomaszewski, J.4
Madabhushi, A.5
-
49
-
-
84902105432
-
Distinguishing prostate cancer from benign confounders via a cascaded classifier on multi-parametric MRI
-
in: Proceedings of SPIE Medical Imaging, vol. 3035,, p. 903512.
-
[49] G. Litjens, R. Elliott, N. Shih, M. Feldman, J. Barentsz, C. van de Kaa, I. Kovacs, H. Huisman, A. Madabhushi, Distinguishing prostate cancer from benign confounders via a cascaded classifier on multi-parametric MRI, in: Proceedings of SPIE Medical Imaging, vol. 3035, 2014, p. 903512.
-
(2014)
-
-
Litjens, G.1
Elliott, R.2
Shih, N.3
Feldman, M.4
Barentsz, J.5
van de Kaa, C.6
Kovacs, I.7
Huisman, H.8
Madabhushi, A.9
-
50
-
-
84978372524
-
An improved hybrid active contour model for unclear segmentation on breast cancer histopathology
-
Proceedings of IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI)
-
[50] J. Jing, T. Wan, J. Cao, J. Chen, Z. Qin, An improved hybrid active contour model for unclear segmentation on breast cancer histopathology, in: Proceedings of IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI), 2016, in press.
-
(2016)
-
-
Jing, J.1
Wan, T.2
Cao, J.3
Chen, J.4
Qin, Z.5
-
51
-
-
84901269374
-
A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution
-
[51] Khan, A., Rajpoot, N., Treanor, D., Magee, D., A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution. IEEE Trans. Biomed. Eng. 61:6 (2014), 1729–1738.
-
(2014)
IEEE Trans. Biomed. Eng.
, vol.61
, Issue.6
, pp. 1729-1738
-
-
Khan, A.1
Rajpoot, N.2
Treanor, D.3
Magee, D.4
-
52
-
-
70449699693
-
An efficient local Chan–Vese model for image segmentation
-
[52] Wang, X., Huang, D., Xu, H., An efficient local Chan–Vese model for image segmentation. Pattern Recognit. 43:3 (2010), 603–618.
-
(2010)
Pattern Recognit.
, vol.43
, Issue.3
, pp. 603-618
-
-
Wang, X.1
Huang, D.2
Xu, H.3
-
53
-
-
36849014901
-
Representing shape with a spatial pyramid kernel
-
[53] A. Bosch, A. Zisserman, X. Munoz, Representing shape with a spatial pyramid kernel, in: Proceedings of CIVR, 2007, pp. 401–408.
-
(2007)
Proceedings of CIVR
, pp. 401-408
-
-
Bosch, A.1
Zisserman, A.2
Munoz, X.3
-
54
-
-
33947194180
-
Graph embedding and extensions: a general framework for dimensionality reduction
-
[54] Yan, S., Xu, D., Zhang, B., Zhang, H., Yang, Q., Lin, S., Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans. Pattern Anal. Mach. Intell. 29 (2007), 40–51.
-
(2007)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.29
, pp. 40-51
-
-
Yan, S.1
Xu, D.2
Zhang, B.3
Zhang, H.4
Yang, Q.5
Lin, S.6
-
56
-
-
84874765890
-
Spectral embedding based active contour (SEAC) for lesion segmentation on breast dynamic contrast enhanced magnetic resonance imaging
-
[56] Agner, S., Xu, J., Madabhushi, A., Spectral embedding based active contour (SEAC) for lesion segmentation on breast dynamic contrast enhanced magnetic resonance imaging. Med. Phys. 40:3 (2013), 1–12.
-
(2013)
Med. Phys.
, vol.40
, Issue.3
, pp. 1-12
-
-
Agner, S.1
Xu, J.2
Madabhushi, A.3
-
57
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
[57] Freund, Y., Schapire, R., A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55 (1997), 119–139.
-
(1997)
J. Comput. Syst. Sci.
, vol.55
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.2
-
58
-
-
77958028886
-
Multi-class adaboost
-
[58] Zhu, J., Zou, H., Rosset, S., Hastie, T., Multi-class adaboost. Stat. Interface 2 (2009), 349–360.
-
(2009)
Stat. Interface
, vol.2
, pp. 349-360
-
-
Zhu, J.1
Zou, H.2
Rosset, S.3
Hastie, T.4
|