메뉴 건너뛰기




Volumn 2016-June, Issue , 2016, Pages 1151-1154

An automatic breast cancer grading method in histopathological images based on pixel-, object-, and semantic-level features

Author keywords

breast cancer grading; convolutional neural networks; histopathology; multi level features

Indexed keywords

CONVOLUTION; DISEASES; GRADING; IMAGE PROCESSING; IMAGE SEGMENTATION; MACROS; NEURAL NETWORKS; NUMERICAL METHODS; PIXELS; SEMANTICS;

EID: 84978419938     PISSN: 19457928     EISSN: 19458452     Source Type: Conference Proceeding    
DOI: 10.1109/ISBI.2016.7493470     Document Type: Conference Paper
Times cited : (22)

References (9)
  • 1
    • 0026072872 scopus 로고
    • Pathological prognostic factors in breast cancer. The value of histological grade in breast cancer: Experience from a large study with longterm follow-up
    • C. W. Elston and I. O. Ellis, "Pathological prognostic factors in breast cancer. The value of histological grade in breast cancer: Experience from a large study with longterm follow-up, " Histopathology, vol. 19, no. 5, pp. 403-410, 1991.
    • (1991) Histopathology , vol.19 , Issue.5 , pp. 403-410
    • Elston, C.W.1    Ellis, I.O.2
  • 2
    • 85010072332 scopus 로고    scopus 로고
    • Fusing heterogeneous features from stacked sparse autoencoder for histopathological image analysis
    • X. Zhang et al., "Fusing heterogeneous features from stacked sparse autoencoder for histopathological image analysis, " J. Biomed. Health Inform., 2015.
    • (2015) J. Biomed. Health Inform.
    • Zhang, X.1
  • 3
    • 33750912820 scopus 로고    scopus 로고
    • Large-scale computations on hisology images reveal grade-differentiating parameters for breast cancer
    • S. Petushi et al., "Large-scale computations on hisology images reveal grade-differentiating parameters for breast cancer, " BMC Med. Imaging, vol. 6, no. 1, 2006.
    • (2006) BMC Med. Imaging , vol.6 , Issue.1
    • Petushi, S.1
  • 4
    • 84949929292 scopus 로고    scopus 로고
    • Wavelet-based statistical features for distinguishing mitotic and non-mitotic cells in breast cancer histopathology
    • T. Wan et al., "Wavelet-based statistical features for distinguishing mitotic and non-mitotic cells in breast cancer histopathology, " in ICIP, 2014, pp. 2290-2294.
    • (2014) ICIP , pp. 2290-2294
    • Wan, T.1
  • 5
    • 84880902295 scopus 로고    scopus 로고
    • Multi-field-of-view framework for distinguishing tumor grade in ER+ breast cancer from entire histopathology slides
    • A. Basavanhally et al., "Multi-field-of-view framework for distinguishing tumor grade in ER+ breast cancer from entire histopathology slides, " IEEE Trans. Biomed. Eng., vol. 60, no. 8, pp. 2089-2099, 2013.
    • (2013) IEEE Trans. Biomed. Eng. , vol.60 , Issue.8 , pp. 2089-2099
    • Basavanhally, A.1
  • 6
    • 84923019397 scopus 로고    scopus 로고
    • Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features
    • H. Wang et al., "Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features, " J. of Med. Imaging, vol. 1, no. 3, 2014.
    • (2014) J. of Med. Imaging , vol.1 , Issue.3
    • Wang, H.1
  • 7
    • 57849106010 scopus 로고    scopus 로고
    • Medical image segmentation using new hybrid level-set method
    • Y. Zhang et al., "Medical image segmentation using new hybrid level-set method, " in MEDIVIS, 2008, pp. 71-76.
    • (2008) MEDIVIS , pp. 71-76
    • Zhang, Y.1
  • 8
    • 84886247903 scopus 로고    scopus 로고
    • Pathology imaging informatics for quantitative analysis of whole-slide images
    • S. Kothari et al., "Pathology imaging informatics for quantitative analysis of whole-slide images, " J. Am. Med. Inform. Assoc., vol. 20, no. 6, pp. 1099-1108, 2013.
    • (2013) J. Am. Med. Inform. Assoc. , vol.20 , Issue.6 , pp. 1099-1108
    • Kothari, S.1
  • 9
    • 43049174575 scopus 로고    scopus 로고
    • Speeded-up robust features(SURF)
    • H. Bay et al., "Speeded-up robust features(SURF), " Comput. Vis. Image Understand., vol. 110, pp. 346-359, 2008.
    • (2008) Comput. Vis. Image Understand , vol.110 , pp. 346-359
    • Bay, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.