메뉴 건너뛰기




Volumn , Issue , 2014, Pages 879-884

Intrusion detection model using fusion of PCA and optimized SVM

Author keywords

Cross Validation; Dimensionality Reduction; Intrusion Detection System; Principal Component Analysis; Radial Basis Function Kernel; Support Vector Machine

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPUTER CRIME; NETWORK SECURITY; PRINCIPAL COMPONENT ANALYSIS; RADIAL BASIS FUNCTION NETWORKS; SUPPORT VECTOR MACHINES;

EID: 84949922840     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IC3I.2014.7019692     Document Type: Conference Paper
Times cited : (63)

References (39)
  • 2
    • 69249216488 scopus 로고    scopus 로고
    • An adaptive genetic based signature learning system intrusion detection
    • K. Sha-, H. A. Abbass. An adaptive genetic based signature learning system intrusion detection. Expert Syst. Appl. (2009), 36 (10),12036-12043.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.10 , pp. 12036-12043
    • Sha, K.1    Abbass, H.A.2
  • 3
    • 84941079784 scopus 로고    scopus 로고
    • A new approach to intrusion detection using arti-cial neural networks and fuzzy clustering
    • G. Wang, J. X. Hao, J. Ma, L. H. Huang. A new approach to intrusion detection using arti-cial neural networks and fuzzy clustering. Expert Syst. Appl. (2010),37: 6225-6232.
    • (2010) Expert Syst. Appl. , vol.37 , pp. 6225-6232
    • Wang, G.1    Hao, J.X.2    Ma, J.3    Huang, L.H.4
  • 6
    • 68949161842 scopus 로고    scopus 로고
    • A triangle area based nearest neighbors approach to intrusion detection
    • C. F. Tsai,C. Y. Lin. A triangle area based nearest neighbors approach to intrusion detection. Pattern Recognition. (2010),43: 222-229.
    • (2010) Pattern Recognition. , vol.43 , pp. 222-229
    • Tsai, C.F.1    Lin, C.Y.2
  • 7
    • 78650805266 scopus 로고    scopus 로고
    • Finding key attribute subset in dataset for outlier detection
    • P. Yang, Q. S. Zhu. Finding key attribute subset in dataset for outlier detection. Knowl. Syst. 2011,24(2):269-274.
    • (2011) Knowl. Syst. , vol.24 , Issue.2 , pp. 269-274
    • Yang, P.1    Zhu, Q.S.2
  • 8
    • 36049030250 scopus 로고    scopus 로고
    • A new intrusion detection system using support vector machines and hierarchial clustering
    • L. Khan, M. Awad, B. Thuraisingham. A new intrusion detection system using support vector machines and hierarchial clustering, Journal on very large databases, 2007, 16(4):507-521.
    • (2007) Journal on Very Large Databases , vol.16 , Issue.4 , pp. 507-521
    • Khan, L.1    Awad, M.2    Thuraisingham, B.3
  • 10
    • 17844372755 scopus 로고    scopus 로고
    • Empirical evaluation of SVM based masquerade detection using UNIX commands
    • Han Suang Kim, Sung-Deok Cha, Empirical evaluation of SVM based masquerade detection using UNIX commands, Computers and Security, 2005,24(2),160-168.
    • (2005) Computers and Security , vol.24 , Issue.2 , pp. 160-168
    • Suang Kim, H.1    Cha, S.2
  • 11
    • 19944364877 scopus 로고    scopus 로고
    • Feature deduction and ensemble design of intrusion detection systems
    • Srilatha Chebrolu, Ajith Abraham, Johnson P Thomas. Feature deduction and ensemble design of intrusion detection systems, Computers and Security, 2005, 24(4):295-307.
    • (2005) Computers and Security , vol.24 , Issue.4 , pp. 295-307
    • Chebrolu, S.1    Abraham, A.2    Thomas, J.P.3
  • 12
    • 84894281761 scopus 로고    scopus 로고
    • A novel hybrid KPCA and SVM with GA model for intrusion detection
    • Fangjun Kuang, Weihong Xu,Siyang Zhang. A novel hybrid KPCA and SVM with GA model for intrusion detection. Applied Soft Computing,2014,178-184.
    • (2014) Applied Soft Computing , pp. 178-184
    • Kuang, F.1    Xu, W.2    Zhang, S.3
  • 13
    • 0009900351 scopus 로고    scopus 로고
    • Anomaly detection over noisy data using learned probability distributions
    • Eskin
    • Eskin, "Anomaly detection over noisy data using learned probability distributions. In: Proceedings of the International Conference on Machine Learning,2000,255-262.
    • (2000) Proceedings of the International Conference on Machine Learning , pp. 255-262
  • 14
    • 81855197007 scopus 로고    scopus 로고
    • An efficient intrusion detection system based on support vector machines and gradually feature removal method
    • Yinhui Li, Jingbo Xia, Silan Zhang, Jiakai Yan, Xiaochuan Ai, Kuobin Da. An efficient intrusion detection system based on support vector machines and gradually feature removal method. Expert Systems with Applications,2012, 39: 424-430.
    • (2012) Expert Systems with Applications , vol.39 , pp. 424-430
    • Li, Y.1    Xia, J.2    Zhang, S.3    Yan, J.4    Ai, X.5    Da, K.6
  • 15
    • 84864772502 scopus 로고    scopus 로고
    • An intelligent algorithm with feature selection and decision rules applied to anomaly intrusion detection
    • Shih-Wei Lin,Kuo-Ching Ying,Chou-Yuan Lee,Zne-Jung Lee. An intelligent algorithm with feature selection and decision rules applied to anomaly intrusion detection. Applied Soft Computing, 2012, 3285-3290.
    • (2012) Applied Soft Computing , pp. 3285-3290
    • Lin, S.1    Ying, K.2    Lee, C.3    Lee, Z.4
  • 17
    • 84924189598 scopus 로고    scopus 로고
    • http://kdd. ics. uci. edu/databases/kddcup99/task. html.
  • 22
    • 84900841262 scopus 로고    scopus 로고
    • Enhancing SVM performance in intrusion detection using optimal feature subset selection based on genetic principal components
    • February
    • Iftikhar Ahmad, Muhammad Hussain,Abdullah Alghamadi, Abdulhameed Alelaiwi. Enhancing SVM performance in intrusion detection using optimal feature subset selection based on genetic principal components. Neural Computing Applications, February 2013, 1370-1376.
    • (2013) Neural Computing Applications , pp. 1370-1376
    • Ahmad, I.1    Hussain, M.2    Alghamadi, A.3    Alelaiwi, A.4
  • 23
    • 24944485860 scopus 로고    scopus 로고
    • Fusions of GA and SVM for anomaly detection in intrusion detection system. Advances in neural networks
    • Kim D, Nguyen H,Syng-Yup O,Jong SP. Fusions of GA and SVM for anomaly detection in intrusion detection system. Advances in neural networks, Lecture Notes in Computer Science, 2005, 3498:415-420.
    • (2005) Lecture Notes in Computer Science , vol.3498 , pp. 415-420
    • Kim, D.1    Nguyen, H.2    Syng-Yup, O.3    Jong, S.P.4
  • 24
    • 69349090629 scopus 로고    scopus 로고
    • A research using hybrid RBF/Elman neural networks for intrusion detection system secure model
    • Tong X, Wang Z,Haining Y. A research using hybrid RBF/Elman neural networks for intrusion detection system secure model. Comput Phys Communication,2009, 180:1795-1801.
    • (2009) Comput Phys Communication , vol.180 , pp. 1795-1801
    • Tong, X.1    Wang, Z.2    Haining, Y.3
  • 25
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • Jerome Friedman,Trevor Hastie,Rob Tibshirani. Regularization paths for generalized linear models via coordinate descent. Journal of statistical software,2010,33(1):1-22.
    • (2010) Journal of Statistical Software , vol.33 , Issue.1 , pp. 1-22
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 26
    • 0037381038 scopus 로고    scopus 로고
    • A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine
    • Cao LJ, Chua KS, Chong WK,Lee HP,Gu QM. A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine. Neurocomputing, 2003, 55:321-326.
    • (2003) Neurocomputing , vol.55 , pp. 321-326
    • Cao, L.J.1    Chua, K.S.2    Chong, W.K.3    Lee, H.P.4    Gu, Q.M.5
  • 27
    • 33847406678 scopus 로고    scopus 로고
    • A hierarchical intrusion detection model based on the PCA and neural networks
    • Liu G, Yi Z, Yang S. A hierarchical intrusion detection model based on the PCA and neural networks. Neurocomputing, 2007,70:1561-1568.
    • (2007) Neurocomputing , vol.70 , pp. 1561-1568
    • Liu, G.1    Yi, Z.2    Yang, S.3
  • 28
    • 77953845946 scopus 로고    scopus 로고
    • Analysis of unsupervised dimensionality reduction techniques
    • Ch. Aswani Kumar. Analysis of Unsupervised Dimensionality Reduction Techniques. Computer Science and Information Systems,2009, 6(2): 217-227.
    • (2009) Computer Science and Information Systems , vol.6 , Issue.2 , pp. 217-227
    • Aswani Kumar Ch.1
  • 31
    • 0002554758 scopus 로고
    • Further normalization of the database relational model
    • R. Rustin ed., Prentice-Hall
    • E. F. Codd, "Further Normalization of the Database Relational Model". In Database System, R. Rustin ed., Prentice-Hall, pp. 33-64,1972.
    • (1972) Database System , pp. 33-64
    • Codd, E.F.1
  • 33
    • 0141441130 scopus 로고    scopus 로고
    • PHAD: Packet header anomaly detection for identifying hostile network traffic
    • Florida Institute of Technology:
    • Mahoney MV, Chan PK. PHAD: packet header anomaly detection for identifying hostile network traffic. Technical report CS-2001-4 2004,Florida Institute of Technology: 2001.
    • (2001) Technical Report CS-2001-4 2004
    • Mahoney, M.V.1    Chan, P.K.2
  • 34
    • 0344008570 scopus 로고    scopus 로고
    • Detecting novel attacks by identifying anomalous network packet headers
    • Florida Institute of Technology
    • Mahoney MV. Detecting novel attacks by identifying anomalous network packet headers. Technical report CS-2001-4 2004. Florida Institute of Technology:2001.
    • (2001) Technical report CS-2001-4 2004
    • Mahoney, M.V.1
  • 38
    • 84924113201 scopus 로고    scopus 로고
    • http://www. mathworks. in/help/stats/svmtrain. html


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.