메뉴 건너뛰기




Volumn 73, Issue 2, 2017, Pages 410-421

Model averaged double robust estimation

Author keywords

causal inference; confounding; double robustness; model averaging; propensity score; variable selection

Indexed keywords

HEALTH INSURANCE; RADIOTHERAPY; UNCERTAINTY ANALYSIS;

EID: 85006152289     PISSN: 0006341X     EISSN: 15410420     Source Type: Journal    
DOI: 10.1111/biom.12622     Document Type: Article
Times cited : (26)

References (40)
  • 1
    • 84876053703 scopus 로고    scopus 로고
    • Information theory and an extension of the maximumlikelihood principle
    • In, New York Springer
    • Akaike, H. (1998). Information theory and an extension of the maximum likelihood principle. In Selected Papers of Hirotugu Akaike, 199–213. New York: Springer.
    • (1998) Selected Papers of HirotuguAkaike , pp. 199-213
    • Akaike, H.1
  • 2
    • 84922160495 scopus 로고    scopus 로고
    • Hospitalization burden and survival among older glioblastoma patients?
    • Arvold, N., Wang, Y., Zigler, C., Schrag, D., and Dominici, F. (2014). Hospitalization burden and survival among older glioblastoma patients? Neuro-Oncology 16, 1530.
    • (2014) Neuro-Oncology , vol.16 , pp. 1530
    • Arvold, N.1    Wang, Y.2    Zigler, C.3    Schrag, D.4    Dominici, F.5
  • 3
    • 84896886566 scopus 로고    scopus 로고
    • Treatment options and outcomes for glioblastoma in the elderly patient
    • Arvold, N. D. and Reardon, D. A. (2014). Treatment options and outcomes for glioblastoma in the elderly patient. Clinical Interventions in Aging 9, 357.
    • (2014) Clinical Interventions in Aging , vol.9 , pp. 357
    • Arvold, N.D.1    Reardon, D.A.2
  • 4
    • 33644851650 scopus 로고    scopus 로고
    • Doubly robust estimation in missing data and causal inference models
    • Bang, H. and Robins, J. M. (2005). Doubly robust estimation in missing data and causal inference models. Biometrics 61, 962–973.
    • (2005) Biometrics , vol.61 , pp. 962-973
    • Bang, H.1    Robins, J.M.2
  • 6
    • 69249196484 scopus 로고    scopus 로고
    • Improving efficiency and robustness of the doubly robust estimator for a population mean with incomplete data
    • Cao, W., Tsiatis, A. A., and Davidian, M. (2009). Improving efficiency and robustness of the doubly robust estimator for a population mean with incomplete data. Biometrika 96, 723–734.
    • (2009) Biometrika , vol.96 , pp. 723-734
    • Cao, W.1    Tsiatis, A.A.2    Davidian, M.3
  • 8
    • 82055199021 scopus 로고    scopus 로고
    • Covariate selection for the nonparametric estimation of an average treatment effect
    • De Luna, X., Waernbaum, I., and Richardson, T. S. (2011). Covariate selection for the nonparametric estimation of an average treatment effect. Biometrika 98, 861–875.
    • (2011) Biometrika , vol.98 , pp. 861-875
    • De Luna, X.1    Waernbaum, I.2    Richardson, T.S.3
  • 9
    • 0002864224 scopus 로고    scopus 로고
    • Confounding and collapsibility in causal inference
    • Greenland, S., Robins, J. M., and Pearl, J. (1999). Confounding and collapsibility in causal inference. Statistical Science 14, 29–46.
    • (1999) Statistical Science , vol.14 , pp. 29-46
    • Greenland, S.1    Robins, J.M.2    Pearl, J.3
  • 10
    • 80054765903 scopus 로고    scopus 로고
    • Selection of confounding variables should not be based on observed associations with exposure
    • Groenwold, R. H., Klungel, O. H., Grobbee, D. E., and Hoes, A. W. (2011). Selection of confounding variables should not be based on observed associations with exposure. European Journal of Epidemiology 26, 589–593.
    • (2011) European Journal of Epidemiology , vol.26 , pp. 589-593
    • Groenwold, R.H.1    Klungel, O.H.2    Grobbee, D.E.3    Hoes, A.W.4
  • 11
    • 77953143090 scopus 로고    scopus 로고
    • An application of collaborative targeted maximum likelihood estimation in causal inference and genomics
    • Gruber, S. and van der Laan, M. J. (2010). An application of collaborative targeted maximum likelihood estimation in causal inference and genomics. The International Journal of Biostatistics 6.
    • (2010) The International Journal of Biostatistics , vol.6
    • Gruber, S.1    van der Laan, M.J.2
  • 12
    • 84948440777 scopus 로고    scopus 로고
    • Consistent causal effect estimation under dual misspecification and implications for confounder selection procedures
    • Gruber, S. and van der Laan, M. J. (2012). Consistent causal effect estimation under dual misspecification and implications for confounder selection procedures. Statistical Methods in Medical Research 24, 1003–1008.
    • (2012) Statistical Methods in Medical Research , vol.24 , pp. 1003-1008
    • Gruber, S.1    van der Laan, M.J.2
  • 13
    • 1842533937 scopus 로고    scopus 로고
    • Functional restriction and efficiency in causal inference
    • Hahn, J. (2004). Functional restriction and efficiency in causal inference. Review of Economics and Statistics 86, 73–76.
    • (2004) Review of Economics and Statistics , vol.86 , pp. 73-76
    • Hahn, J.1
  • 14
    • 84878033951 scopus 로고    scopus 로고
    • Estimation with missing data: Beyond double robustness
    • Han, P. and Wang, L. (2013). Estimation with missing data: Beyond double robustness. Biometrika 100, 417–430.
    • (2013) Biometrika , vol.100 , pp. 417-430
    • Han, P.1    Wang, L.2
  • 22
    • 46249085099 scopus 로고    scopus 로고
    • Comment: Performance of double-robust estimators when inverse probability weights are highly variable
    • Robins, J., Sued, M., Lei-Gomez, Q. and Rotnitzky, A. (2007). Comment: Performance of double-robust estimators when inverse probability weights are highly variable. Statistical Science 22, 544–559.
    • (2007) Statistical Science , vol.22 , pp. 544-559
    • Robins, J.1    Sued, M.2    Lei-Gomez, Q.3    Rotnitzky, A.4
  • 23
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum, P. R. and Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika 70, 41–55.
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 24
    • 0030862072 scopus 로고    scopus 로고
    • Estimating causal effects from large data sets using propensity scores
    • Rubin, D. (1997). Estimating causal effects from large data sets using propensity scores. Annals of internal medicine 127, 757–763.
    • (1997) Annals of internal medicine , vol.127 , pp. 757-763
    • Rubin, D.1
  • 25
    • 67651042983 scopus 로고    scopus 로고
    • High-dimensional propensity score adjustment in studies of treatment effects using health care claims data
    • Schneeweiss, S., Rassen, J. A., Glynn, R. J., Avorn, J., Mogun, H., and Brookhart, M. A. (2009). High-dimensional propensity score adjustment in studies of treatment effects using health care claims data. Epidemiology 20, 512–22.
    • (2009) Epidemiology , vol.20 , pp. 512-522
    • Schneeweiss, S.1    Rassen, J.A.2    Glynn, R.J.3    Avorn, J.4    Mogun, H.5    Brookhart, M.A.6
  • 26
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics 6, 461–464.
    • (1978) The Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 27
    • 77953071298 scopus 로고    scopus 로고
    • Bayes and empirical-bayes multiplicity adjustment in the variable-selection problem
    • Scott, J. G., Berger, J. O., et al. (2010). Bayes and empirical-bayes multiplicity adjustment in the variable-selection problem. The Annals of Statistics 38, 2587–2619.
    • (2010) The Annals of Statistics , vol.38 , pp. 2587-2619
    • Scott, J.G.1    Berger, J.O.2
  • 28
    • 84885022177 scopus 로고    scopus 로고
    • A new criterion for confounder selection? Neither a confounder nor science
    • Shahar, E. (2013). A new criterion for confounder selection? Neither a confounder nor science. Journal of Evaluation in Clinical Practice 19, 984–986.
    • (2013) Journal of Evaluation in Clinical Practice , vol.19 , pp. 984-986
    • Shahar, E.1
  • 29
    • 77955858058 scopus 로고    scopus 로고
    • Bounded, efficient and doubly robust estimation with inverse weighting
    • Tan, Z. (2010). Bounded, efficient and doubly robust estimation with inverse weighting. Biometrika 97, 661–682.
    • (2010) Biometrika , vol.97 , pp. 661-682
    • Tan, Z.1
  • 31
    • 80054726997 scopus 로고    scopus 로고
    • A new criterion for confounder selection
    • VanderWeele, T. J. and Shpitser, I. (2011). A new criterion for confounder selection. Biometrics 67, 1406–1413.
    • (2011) Biometrics , vol.67 , pp. 1406-1413
    • VanderWeele, T.J.1    Shpitser, I.2
  • 33
    • 84941748969 scopus 로고    scopus 로고
    • Accounting for uncertainty in confounder and effect modifier selection when estimating average causal effects in generalized linear models
    • Wang, C., Dominici, F., Parmigiani, G., and Zigler, C. M. (2015). Accounting for uncertainty in confounder and effect modifier selection when estimating average causal effects in generalized linear models. Biometrics 71, 654–665.
    • (2015) Biometrics , vol.71 , pp. 654-665
    • Wang, C.1    Dominici, F.2    Parmigiani, G.3    Zigler, C.M.4
  • 34
    • 84866746931 scopus 로고    scopus 로고
    • Bayesian effect estimation accounting for adjustment uncertainty
    • Wang, C., Parmigiani, G., and Dominici, F. (2012). Bayesian effect estimation accounting for adjustment uncertainty. Biometrics 68, 661–671.
    • (2012) Biometrics , vol.68 , pp. 661-671
    • Wang, C.1    Parmigiani, G.2    Dominici, F.3
  • 35
    • 84919844877 scopus 로고    scopus 로고
    • Confounder selection via penalized credible regions
    • Wilson, A. and Reich, B. J. (2014). Confounder selection via penalized credible regions. Biometrics 70, 852–861.
    • (2014) Biometrics , vol.70 , pp. 852-861
    • Wilson, A.1    Reich, B.J.2
  • 36
    • 77649320613 scopus 로고    scopus 로고
    • Technical report, Tech. Rep., % 20research/treat1r6. pdf, Michigan State University, MI
    • Wooldridge, J. (2009). Should instrumental variables be used as matching variables. Technical report, Tech. Rep. https://www.msu.edu/ec/faculty/wooldridge/current% 20research/treat1r6. pdf, Michigan State University, MI.
    • (2009) Should instrumental variables be used as matching variables
    • Wooldridge, J.1
  • 37
    • 0141573227 scopus 로고    scopus 로고
    • Regression with multiple candidate models: Selecting or mixing?
    • Yang, Y. (2003). Regression with multiple candidate models: Selecting or mixing? Statistica Sinica 13, 783–809.
    • (2003) Statistica Sinica , vol.13 , pp. 783-809
    • Yang, Y.1
  • 38
    • 27944460480 scopus 로고    scopus 로고
    • Can the strengths of aic and bic be shared? A conflict between model indentification and regression estimation
    • Yang, Y. (2005). Can the strengths of aic and bic be shared? A conflict between model indentification and regression estimation. Biometrika 92, 937–950.
    • (2005) Biometrika , vol.92 , pp. 937-950
    • Yang, Y.1
  • 39
    • 84901800622 scopus 로고    scopus 로고
    • Uncertainty in propensity score estimation: Bayesian methods for variable selection and model-averaged causal effects
    • Zigler, C. M. and Dominici, F. (2014). Uncertainty in propensity score estimation: Bayesian methods for variable selection and model-averaged causal effects. Journal of the American Statistical Association 109, 95–107.
    • (2014) Journal of the American Statistical Association , vol.109 , pp. 95-107
    • Zigler, C.M.1    Dominici, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.