-
1
-
-
84876053703
-
Information theory and an extension of the maximumlikelihood principle
-
In, New York Springer
-
Akaike, H. (1998). Information theory and an extension of the maximum likelihood principle. In Selected Papers of Hirotugu Akaike, 199–213. New York: Springer.
-
(1998)
Selected Papers of HirotuguAkaike
, pp. 199-213
-
-
Akaike, H.1
-
2
-
-
84922160495
-
Hospitalization burden and survival among older glioblastoma patients?
-
Arvold, N., Wang, Y., Zigler, C., Schrag, D., and Dominici, F. (2014). Hospitalization burden and survival among older glioblastoma patients? Neuro-Oncology 16, 1530.
-
(2014)
Neuro-Oncology
, vol.16
, pp. 1530
-
-
Arvold, N.1
Wang, Y.2
Zigler, C.3
Schrag, D.4
Dominici, F.5
-
3
-
-
84896886566
-
Treatment options and outcomes for glioblastoma in the elderly patient
-
Arvold, N. D. and Reardon, D. A. (2014). Treatment options and outcomes for glioblastoma in the elderly patient. Clinical Interventions in Aging 9, 357.
-
(2014)
Clinical Interventions in Aging
, vol.9
, pp. 357
-
-
Arvold, N.D.1
Reardon, D.A.2
-
4
-
-
33644851650
-
Doubly robust estimation in missing data and causal inference models
-
Bang, H. and Robins, J. M. (2005). Doubly robust estimation in missing data and causal inference models. Biometrics 61, 962–973.
-
(2005)
Biometrics
, vol.61
, pp. 962-973
-
-
Bang, H.1
Robins, J.M.2
-
5
-
-
33645236260
-
Variable selection for propensity score models
-
Brookhart, M. A., Schneeweiss, S., Rothman, K. J., Glynn, R. J., Avorn, J., and Stürmer T. (2006). Variable selection for propensity score models. American Journal of Epidemiology 163, 1149–1156.
-
(2006)
American Journal of Epidemiology
, vol.163
, pp. 1149-1156
-
-
Brookhart, M.A.1
Schneeweiss, S.2
Rothman, K.J.3
Glynn, R.J.4
Avorn, J.5
Stürmer, T.6
-
6
-
-
69249196484
-
Improving efficiency and robustness of the doubly robust estimator for a population mean with incomplete data
-
Cao, W., Tsiatis, A. A., and Davidian, M. (2009). Improving efficiency and robustness of the doubly robust estimator for a population mean with incomplete data. Biometrika 96, 723–734.
-
(2009)
Biometrika
, vol.96
, pp. 723-734
-
-
Cao, W.1
Tsiatis, A.A.2
Davidian, M.3
-
8
-
-
82055199021
-
Covariate selection for the nonparametric estimation of an average treatment effect
-
De Luna, X., Waernbaum, I., and Richardson, T. S. (2011). Covariate selection for the nonparametric estimation of an average treatment effect. Biometrika 98, 861–875.
-
(2011)
Biometrika
, vol.98
, pp. 861-875
-
-
De Luna, X.1
Waernbaum, I.2
Richardson, T.S.3
-
9
-
-
0002864224
-
Confounding and collapsibility in causal inference
-
Greenland, S., Robins, J. M., and Pearl, J. (1999). Confounding and collapsibility in causal inference. Statistical Science 14, 29–46.
-
(1999)
Statistical Science
, vol.14
, pp. 29-46
-
-
Greenland, S.1
Robins, J.M.2
Pearl, J.3
-
10
-
-
80054765903
-
Selection of confounding variables should not be based on observed associations with exposure
-
Groenwold, R. H., Klungel, O. H., Grobbee, D. E., and Hoes, A. W. (2011). Selection of confounding variables should not be based on observed associations with exposure. European Journal of Epidemiology 26, 589–593.
-
(2011)
European Journal of Epidemiology
, vol.26
, pp. 589-593
-
-
Groenwold, R.H.1
Klungel, O.H.2
Grobbee, D.E.3
Hoes, A.W.4
-
11
-
-
77953143090
-
An application of collaborative targeted maximum likelihood estimation in causal inference and genomics
-
Gruber, S. and van der Laan, M. J. (2010). An application of collaborative targeted maximum likelihood estimation in causal inference and genomics. The International Journal of Biostatistics 6.
-
(2010)
The International Journal of Biostatistics
, vol.6
-
-
Gruber, S.1
van der Laan, M.J.2
-
12
-
-
84948440777
-
Consistent causal effect estimation under dual misspecification and implications for confounder selection procedures
-
Gruber, S. and van der Laan, M. J. (2012). Consistent causal effect estimation under dual misspecification and implications for confounder selection procedures. Statistical Methods in Medical Research 24, 1003–1008.
-
(2012)
Statistical Methods in Medical Research
, vol.24
, pp. 1003-1008
-
-
Gruber, S.1
van der Laan, M.J.2
-
13
-
-
1842533937
-
Functional restriction and efficiency in causal inference
-
Hahn, J. (2004). Functional restriction and efficiency in causal inference. Review of Economics and Statistics 86, 73–76.
-
(2004)
Review of Economics and Statistics
, vol.86
, pp. 73-76
-
-
Hahn, J.1
-
14
-
-
84878033951
-
Estimation with missing data: Beyond double robustness
-
Han, P. and Wang, L. (2013). Estimation with missing data: Beyond double robustness. Biometrika 100, 417–430.
-
(2013)
Biometrika
, vol.100
, pp. 417-430
-
-
Han, P.1
Wang, L.2
-
15
-
-
8744315994
-
Model selection, confounder control, and marginal structural models
-
Joffe, M. M., Ten Have, T. R., Feldman, H. I., and Kimmel, S. E. (2004). Model selection, confounder control, and marginal structural models. The American Statistician 58, 272–279.
-
(2004)
The American Statistician
, vol.58
, pp. 272-279
-
-
Joffe, M.M.1
Ten Have, T.R.2
Feldman, H.I.3
Kimmel, S.E.4
-
17
-
-
21844520724
-
Bayesian graphical models for discrete data
-
Madigan, D., York, J., and Allard, D. (1995). Bayesian graphical models for discrete data. International Statistical Review/Revue Internationale de Statistique 63, 215–232.
-
(1995)
International Statistical Review/Revue Internationale deStatistique
, vol.63
, pp. 215-232
-
-
Madigan, D.1
York, J.2
Allard, D.3
-
18
-
-
77950544211
-
Cutting feedback in bayesian regression adjustment for the propensity score
-
McCandless, L. C., Douglas, I. J., Evans, S. J., and Smeeth, L. (2010). Cutting feedback in bayesian regression adjustment for the propensity score. The International Journal of Biostatistics 6.
-
(2010)
The International Journal of Biostatistics
, vol.6
-
-
McCandless, L.C.1
Douglas, I.J.2
Evans, S.J.3
Smeeth, L.4
-
20
-
-
4444292273
-
Risk adjustment of medicare capitation payments using the cms-hcc model
-
Pope, G. C., Kautter, J. Ellis, R. P., Ash, A. S., Ayanian, J. Z., Ingber, M. J., Levy, J. M., and Robst, J. (2004). Risk adjustment of medicare capitation payments using the cms-hcc model. Health Care Financing Review 25, 119.
-
(2004)
Health Care Financing Review
, vol.25
, pp. 119
-
-
Pope, G.C.1
Kautter, J.2
Ellis, R.P.3
Ash, A.S.4
Ayanian, J.Z.5
Ingber, M.J.6
Levy, J.M.7
Robst, J.8
-
22
-
-
46249085099
-
Comment: Performance of double-robust estimators when inverse probability weights are highly variable
-
Robins, J., Sued, M., Lei-Gomez, Q. and Rotnitzky, A. (2007). Comment: Performance of double-robust estimators when inverse probability weights are highly variable. Statistical Science 22, 544–559.
-
(2007)
Statistical Science
, vol.22
, pp. 544-559
-
-
Robins, J.1
Sued, M.2
Lei-Gomez, Q.3
Rotnitzky, A.4
-
23
-
-
77951622706
-
The central role of the propensity score in observational studies for causal effects
-
Rosenbaum, P. R. and Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika 70, 41–55.
-
(1983)
Biometrika
, vol.70
, pp. 41-55
-
-
Rosenbaum, P.R.1
Rubin, D.B.2
-
24
-
-
0030862072
-
Estimating causal effects from large data sets using propensity scores
-
Rubin, D. (1997). Estimating causal effects from large data sets using propensity scores. Annals of internal medicine 127, 757–763.
-
(1997)
Annals of internal medicine
, vol.127
, pp. 757-763
-
-
Rubin, D.1
-
25
-
-
67651042983
-
High-dimensional propensity score adjustment in studies of treatment effects using health care claims data
-
Schneeweiss, S., Rassen, J. A., Glynn, R. J., Avorn, J., Mogun, H., and Brookhart, M. A. (2009). High-dimensional propensity score adjustment in studies of treatment effects using health care claims data. Epidemiology 20, 512–22.
-
(2009)
Epidemiology
, vol.20
, pp. 512-522
-
-
Schneeweiss, S.1
Rassen, J.A.2
Glynn, R.J.3
Avorn, J.4
Mogun, H.5
Brookhart, M.A.6
-
26
-
-
0000120766
-
Estimating the dimension of a model
-
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics 6, 461–464.
-
(1978)
The Annals of Statistics
, vol.6
, pp. 461-464
-
-
Schwarz, G.1
-
27
-
-
77953071298
-
Bayes and empirical-bayes multiplicity adjustment in the variable-selection problem
-
Scott, J. G., Berger, J. O., et al. (2010). Bayes and empirical-bayes multiplicity adjustment in the variable-selection problem. The Annals of Statistics 38, 2587–2619.
-
(2010)
The Annals of Statistics
, vol.38
, pp. 2587-2619
-
-
Scott, J.G.1
Berger, J.O.2
-
28
-
-
84885022177
-
A new criterion for confounder selection? Neither a confounder nor science
-
Shahar, E. (2013). A new criterion for confounder selection? Neither a confounder nor science. Journal of Evaluation in Clinical Practice 19, 984–986.
-
(2013)
Journal of Evaluation in Clinical Practice
, vol.19
, pp. 984-986
-
-
Shahar, E.1
-
29
-
-
77955858058
-
Bounded, efficient and doubly robust estimation with inverse weighting
-
Tan, Z. (2010). Bounded, efficient and doubly robust estimation with inverse weighting. Biometrika 97, 661–682.
-
(2010)
Biometrika
, vol.97
, pp. 661-682
-
-
Tan, Z.1
-
31
-
-
80054726997
-
A new criterion for confounder selection
-
VanderWeele, T. J. and Shpitser, I. (2011). A new criterion for confounder selection. Biometrics 67, 1406–1413.
-
(2011)
Biometrics
, vol.67
, pp. 1406-1413
-
-
VanderWeele, T.J.1
Shpitser, I.2
-
32
-
-
79953903665
-
On model selection and model misspecification in causal inference
-
Vansteelandt, S., Bekaert, M., and Claeskens, G. (2012). On model selection and model misspecification in causal inference. Statistical Methods in Medical Research 21, 7–30.
-
(2012)
Statistical Methods in Medical Research
, vol.21
, pp. 7-30
-
-
Vansteelandt, S.1
Bekaert, M.2
Claeskens, G.3
-
33
-
-
84941748969
-
Accounting for uncertainty in confounder and effect modifier selection when estimating average causal effects in generalized linear models
-
Wang, C., Dominici, F., Parmigiani, G., and Zigler, C. M. (2015). Accounting for uncertainty in confounder and effect modifier selection when estimating average causal effects in generalized linear models. Biometrics 71, 654–665.
-
(2015)
Biometrics
, vol.71
, pp. 654-665
-
-
Wang, C.1
Dominici, F.2
Parmigiani, G.3
Zigler, C.M.4
-
34
-
-
84866746931
-
Bayesian effect estimation accounting for adjustment uncertainty
-
Wang, C., Parmigiani, G., and Dominici, F. (2012). Bayesian effect estimation accounting for adjustment uncertainty. Biometrics 68, 661–671.
-
(2012)
Biometrics
, vol.68
, pp. 661-671
-
-
Wang, C.1
Parmigiani, G.2
Dominici, F.3
-
35
-
-
84919844877
-
Confounder selection via penalized credible regions
-
Wilson, A. and Reich, B. J. (2014). Confounder selection via penalized credible regions. Biometrics 70, 852–861.
-
(2014)
Biometrics
, vol.70
, pp. 852-861
-
-
Wilson, A.1
Reich, B.J.2
-
36
-
-
77649320613
-
-
Technical report, Tech. Rep., % 20research/treat1r6. pdf, Michigan State University, MI
-
Wooldridge, J. (2009). Should instrumental variables be used as matching variables. Technical report, Tech. Rep. https://www.msu.edu/ec/faculty/wooldridge/current% 20research/treat1r6. pdf, Michigan State University, MI.
-
(2009)
Should instrumental variables be used as matching variables
-
-
Wooldridge, J.1
-
37
-
-
0141573227
-
Regression with multiple candidate models: Selecting or mixing?
-
Yang, Y. (2003). Regression with multiple candidate models: Selecting or mixing? Statistica Sinica 13, 783–809.
-
(2003)
Statistica Sinica
, vol.13
, pp. 783-809
-
-
Yang, Y.1
-
38
-
-
27944460480
-
Can the strengths of aic and bic be shared? A conflict between model indentification and regression estimation
-
Yang, Y. (2005). Can the strengths of aic and bic be shared? A conflict between model indentification and regression estimation. Biometrika 92, 937–950.
-
(2005)
Biometrika
, vol.92
, pp. 937-950
-
-
Yang, Y.1
-
39
-
-
84901800622
-
Uncertainty in propensity score estimation: Bayesian methods for variable selection and model-averaged causal effects
-
Zigler, C. M. and Dominici, F. (2014). Uncertainty in propensity score estimation: Bayesian methods for variable selection and model-averaged causal effects. Journal of the American Statistical Association 109, 95–107.
-
(2014)
Journal of the American Statistical Association
, vol.109
, pp. 95-107
-
-
Zigler, C.M.1
Dominici, F.2
-
40
-
-
84875963163
-
Model feedback in bayesian propensity score estimation
-
Zigler, C. M., Watts, K., Yeh, R. W., Wang, Y., Coull, B. A., and Dominici, F. (2013). Model feedback in bayesian propensity score estimation. Biometrics 69, 263–273.
-
(2013)
Biometrics
, vol.69
, pp. 263-273
-
-
Zigler, C.M.1
Watts, K.2
Yeh, R.W.3
Wang, Y.4
Coull, B.A.5
Dominici, F.6
|