-
1
-
-
77956829762
-
Platinum and non-platinum nanomaterials for the molecular oxygen reduction reaction
-
Alonso-Vante, N. Platinum and non-platinum nanomaterials for the molecular oxygen reduction reaction ChemPhysChem 2010, 11, 2732-2744 10.1002/cphc.200900817
-
(2010)
ChemPhysChem
, vol.11
, pp. 2732-2744
-
-
Alonso-Vante, N.1
-
2
-
-
84943148794
-
Alloying Pt Sub-nano-clusters with Boron: Sintering Preventative and Coke Antagonist?
-
Dadras, J.; Jimenez-Izal, E.; Alexandrova, A. N. Alloying Pt Sub-nano-clusters with Boron: Sintering Preventative and Coke Antagonist? ACS Catal. 2015, 5, 5719-5727 10.1021/acscatal.5b01513
-
(2015)
ACS Catal.
, vol.5
, pp. 5719-5727
-
-
Dadras, J.1
Jimenez-Izal, E.2
Alexandrova, A.N.3
-
3
-
-
84959019065
-
Observable Electrochemical Oxidation of Carbon Promoted by Platinum Nanoparticles
-
Kou, Z.; Cheng, K.; Wu, H.; Sun, R.; Guo, B.; Mu, S. Observable Electrochemical Oxidation of Carbon Promoted by Platinum Nanoparticles ACS Appl. Mater. Interfaces 2016, 8, 3940-3947 10.1021/acsami.5b11086
-
(2016)
ACS Appl. Mater. Interfaces
, vol.8
, pp. 3940-3947
-
-
Kou, Z.1
Cheng, K.2
Wu, H.3
Sun, R.4
Guo, B.5
Mu, S.6
-
4
-
-
27744594711
-
0/+1/-1 (n = 5-7) Lowest-Energy Structures Using the ab-initio Gradient Embedded Genetic Algorithm (GEGA). Elucidation of the Chemical Bonding in the Lithium Clusters
-
0/+1/-1 (n = 5-7) Lowest-Energy Structures Using the ab-initio Gradient Embedded Genetic Algorithm (GEGA). Elucidation of the Chemical Bonding in the Lithium Clusters J. Chem. Theory Comput. 2005, 1, 566-580 10.1021/ct050093g
-
(2005)
J. Chem. Theory Comput.
, vol.1
, pp. 566-580
-
-
Alexandrova, A.N.1
Boldyrev, A.I.2
-
5
-
-
78649901966
-
n clusters: Microsolvation of the hydrogen atom via molecular ab initio gradient embedded genetic algorithm (GEGA)
-
n clusters: Microsolvation of the hydrogen atom via molecular ab initio gradient embedded genetic algorithm (GEGA) J. Phys. Chem. A 2010, 114, 12591-12599 10.1021/jp1092543
-
(2010)
J. Phys. Chem. A
, vol.114
, pp. 12591-12599
-
-
Alexandrova, A.N.1
-
6
-
-
84916891481
-
CLUSTER: Searching for Unique Low Energy Minima of Structures Using a Novel Implementation of a Genetic Algorithm
-
Kanters, R. P. F.; Donald, K. J. CLUSTER: Searching for Unique Low Energy Minima of Structures Using a Novel Implementation of a Genetic Algorithm J. Chem. Theory Comput. 2014, 10, 5729-5737 10.1021/ct500744k
-
(2014)
J. Chem. Theory Comput.
, vol.10
, pp. 5729-5737
-
-
Kanters, R.P.F.1
Donald, K.J.2
-
8
-
-
33744478421
-
Larger water clusters with edges and corners on their way to ice: Structural trends elucidated with an improved parallel evolutionary algorithm
-
Bandow, B.; Hartke, B. Larger water clusters with edges and corners on their way to ice: Structural trends elucidated with an improved parallel evolutionary algorithm J. Phys. Chem. A 2006, 110, 5809-5822 10.1021/jp060512l
-
(2006)
J. Phys. Chem. A
, vol.110
, pp. 5809-5822
-
-
Bandow, B.1
Hartke, B.2
-
9
-
-
34247539565
-
Global minimum structure searches via particle swarm optimization
-
Call, S. T.; Zubarev, D. Y.; Boldyrev, A. I. Global minimum structure searches via particle swarm optimization J. Comput. Chem. 2007, 28, 1177-1186 10.1002/jcc.20621
-
(2007)
J. Comput. Chem.
, vol.28
, pp. 1177-1186
-
-
Call, S.T.1
Zubarev, D.Y.2
Boldyrev, A.I.3
-
10
-
-
84978864099
-
Firefly Algorithm for Structural Search
-
Avendaño-Franco, G.; Romero, A. H. Firefly Algorithm for Structural Search J. Chem. Theory Comput. 2016, 12, 3416-3428 10.1021/acs.jctc.5b01157
-
(2016)
J. Chem. Theory Comput.
, vol.12
, pp. 3416-3428
-
-
Avendaño-Franco, G.1
Romero, A.H.2
-
12
-
-
84904817556
-
Observation of an all-boron fullerene
-
Zhai, H.-J.; Zhao, Y.-F.; Li, W.-L.; Chen, Q.; Bai, H.; Hu, H.-S.; Piazza, Z. a; Tian, W.-J.; Lu, H.-G.; Wu, Y.-B.; Mu, Y.-W.; Wei, G.-F.; Liu, Z.-P.; Li, J.; Li, S.-D.; Wang, L.-S. Observation of an all-boron fullerene Nat. Chem. 2014, 6, 727-731 10.1038/nchem.1999
-
(2014)
Nat. Chem.
, vol.6
, pp. 727-731
-
-
Zhai, H.-J.1
Zhao, Y.-F.2
Li, W.-L.3
Chen, Q.4
Bai, H.5
Hu, H.-S.6
Piazza, Z.A.7
Tian, W.-J.8
Lu, H.-G.9
Wu, Y.-B.10
Mu, Y.-W.11
Wei, G.-F.12
Liu, Z.-P.13
Li, J.14
Li, S.-D.15
Wang, L.-S.16
-
14
-
-
84929191562
-
AFFCK: Adaptive Force-Field-Assisted ab initio Coalescence Kick method for global minimum search
-
Zhai, H.; Ha, H.-A.; Alexandrova, A. N. AFFCK: Adaptive Force-Field-Assisted ab initio Coalescence Kick method for global minimum search J. Chem. Theory Comput. 2015, 11, 2385-2393 10.1021/acs.jctc.5b00065
-
(2015)
J. Chem. Theory Comput.
, vol.11
, pp. 2385-2393
-
-
Zhai, H.1
Ha, H.-A.2
Alexandrova, A.N.3
-
15
-
-
0141947503
-
Potential energy surfaces for macromolecules. A neural network technique
-
Sumpter, B. G.; Noid, D. W. Potential energy surfaces for macromolecules. A neural network technique Chem. Phys. Lett. 1992, 192, 455-462 10.1016/0009-2614(92)85498-Y
-
(1992)
Chem. Phys. Lett.
, vol.192
, pp. 455-462
-
-
Sumpter, B.G.1
Noid, D.W.2
-
16
-
-
49149107508
-
Parameterization of analytic interatomic potential functions using neural networks
-
Malshe, M.; Narulkar, R.; Raff, L. M.; Hagan, M.; Bukkapatnam, S.; Komanduri, R. Parameterization of analytic interatomic potential functions using neural networks J. Chem. Phys. 2008, 129, 044111 10.1063/1.2957490
-
(2008)
J. Chem. Phys.
, vol.129
, pp. 044111
-
-
Malshe, M.1
Narulkar, R.2
Raff, L.M.3
Hagan, M.4
Bukkapatnam, S.5
Komanduri, R.6
-
17
-
-
75249087503
-
2 + H on an ab Initio Potential-Energy Surface Obtained Using Neural Network Methods with Both Potential and Gradient Accuracy Determination
-
2 + H on an ab Initio Potential-Energy Surface Obtained Using Neural Network Methods with Both Potential and Gradient Accuracy Determination J. Phys. Chem. A 2010, 114, 45-53 10.1021/jp907507z
-
(2010)
J. Phys. Chem. A
, vol.114
, pp. 45-53
-
-
Le, H.M.1
Raff, L.M.2
-
18
-
-
84903362821
-
Permutation invariant polynomial neural network approach to fitting potential energy surfaces. II. Four-atom systems
-
Li, J.; Jiang, B.; Guo, H. Permutation invariant polynomial neural network approach to fitting potential energy surfaces. II. Four-atom systems J. Chem. Phys. 2013, 139, 204103 10.1063/1.4832697
-
(2013)
J. Chem. Phys.
, vol.139
, pp. 204103
-
-
Li, J.1
Jiang, B.2
Guo, H.3
-
19
-
-
79953856961
-
Atom-centered symmetry functions for constructing high-dimensional neural network potentials
-
Behler, J. Atom-centered symmetry functions for constructing high-dimensional neural network potentials J. Chem. Phys. 2011, 134, 074106 10.1063/1.3553717
-
(2011)
J. Chem. Phys.
, vol.134
, pp. 074106
-
-
Behler, J.1
-
20
-
-
84936800620
-
Constructing high-dimensional neural network potentials: A tutorial review
-
Behler, J. Constructing high-dimensional neural network potentials: A tutorial review Int. J. Quantum Chem. 2015, 115, 1032-1050 10.1002/qua.24890
-
(2015)
Int. J. Quantum Chem.
, vol.115
, pp. 1032-1050
-
-
Behler, J.1
-
21
-
-
79961106334
-
High-dimensional neural-network potentials for multicomponent systems: Applications to zinc oxide
-
Artrith, N.; Morawietz, T.; Behler, J. High-dimensional neural-network potentials for multicomponent systems: Applications to zinc oxide Phys. Rev. B: Condens. Matter Mater. Phys. 2011, 83, 153101 10.1103/PhysRevB.83.153101
-
(2011)
Phys. Rev. B: Condens. Matter Mater. Phys.
, vol.83
, pp. 153101
-
-
Artrith, N.1
Morawietz, T.2
Behler, J.3
-
22
-
-
84940996633
-
Global minimization of gold clusters by combining neural network potentials and the basin-hopping method
-
Ouyang, R.; Xie, Y.; Jiang, D. Global minimization of gold clusters by combining neural network potentials and the basin-hopping method Nanoscale 2015, 7, 14817-14821 10.1039/C5NR03903G
-
(2015)
Nanoscale
, vol.7
, pp. 14817-14821
-
-
Ouyang, R.1
Xie, Y.2
Jiang, D.3
-
24
-
-
33748257982
-
A random-sampling high dimensional model representation neural network for building potential energy surfaces
-
Manzhos, S.; Carrington, T. A random-sampling high dimensional model representation neural network for building potential energy surfaces J. Chem. Phys. 2006, 125, 084109 10.1063/1.2336223
-
(2006)
J. Chem. Phys.
, vol.125
, pp. 084109
-
-
Manzhos, S.1
Carrington, T.2
-
25
-
-
57649225620
-
Using neural networks, optimized coordinates, and high-dimensional model representations to obtain a vinyl bromide potential surface
-
Manzhos, S.; Carrington, T. Using neural networks, optimized coordinates, and high-dimensional model representations to obtain a vinyl bromide potential surface J. Chem. Phys. 2008, 129, 224104 10.1063/1.3021471
-
(2008)
J. Chem. Phys.
, vol.129
, pp. 224104
-
-
Manzhos, S.1
Carrington, T.2
-
26
-
-
69349090197
-
Learning Deep Architectures for AI
-
Bengio, Y. Learning Deep Architectures for AI Found. Trends Mach. Learn. 2009, 2, 1-127 10.1561/2200000006
-
(2009)
Found. Trends Mach. Learn.
, vol.2
, pp. 1-127
-
-
Bengio, Y.1
-
28
-
-
84864073449
-
Greedy Layer-Wise Training of Deep Networks Yoshua
-
Bengio, Y.; Lamblin, P.; Popovici, D.; Larochelle, H. Greedy Layer-Wise Training of Deep Networks Yoshua Adv. Neural Inf. Process. Syst. 2007, 19, 153
-
(2007)
Adv. Neural Inf. Process. Syst.
, vol.19
, pp. 153
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
-
29
-
-
84944081816
-
-
2014; arXiv:1410.0759v3. arXiv.org ePrint archive. (accessed Aug 6,).
-
Chetlur, S.; Woolley, C.; Vandermersch, P.; Cohen, J.; Tran, J.; Catanzaro, B.; Shelhamer, E. cuDNN: Efficient Primitives for Deep Learning. 2014; arXiv:1410.0759v3. arXiv.org ePrint archive. https://arxiv.org/abs/1410.0759 (accessed Aug 6, 2016).
-
(2016)
cuDNN: Efficient Primitives for Deep Learning
-
-
Chetlur, S.1
Woolley, C.2
Vandermersch, P.3
Cohen, J.4
Tran, J.5
Catanzaro, B.6
Shelhamer, E.7
-
31
-
-
0011596225
-
Approximate single-valued representations of multivalued potential energy surfaces
-
Murrell, J. N.; Carter, S. Approximate single-valued representations of multivalued potential energy surfaces J. Phys. Chem. 1984, 88, 4887-4891 10.1021/j150665a016
-
(1984)
J. Phys. Chem.
, vol.88
, pp. 4887-4891
-
-
Murrell, J.N.1
Carter, S.2
-
32
-
-
27744577658
-
Modeling solid-state chemistry: Interatomic potentials for multicomponent systems
-
Tersoff, J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems Phys. Rev. B: Condens. Matter Mater. Phys. 1989, 39, 5566-5568 10.1103/PhysRevB.39.5566
-
(1989)
Phys. Rev. B: Condens. Matter Mater. Phys.
, vol.39
, pp. 5566-5568
-
-
Tersoff, J.1
-
34
-
-
84862294866
-
Deep Sparse Rectifier Neural Networks
-
In April
-
Glorot, X.; Bordes, A.; Bengio, Y. Deep Sparse Rectifier Neural Networks. In Int. Conf. Artif. Intell. Stat. April, 2011; 15, 315-323.
-
(2011)
Int. Conf. Artif. Intell. Stat.
, vol.15
, pp. 315-323
-
-
Glorot, X.1
Bordes, A.2
Bengio, Y.3
-
36
-
-
84979557463
-
-
2016; arXiv:1605.02688v1. arXiv.org ePrint archive. (accessed Aug 11,).
-
Al-Rfou, R.; Alain, G.; Almahairi, A.; Angermueller, C.; Bahdanau, D.; Ballas, N.; Bastien, F.; Bayer, J.; Belikov, A.; et al. Theano: A Python framework for fast computation of mathematical expressions. 2016; arXiv:1605.02688v1. arXiv.org ePrint archive. https://arxiv.org/abs/1605.02688 (accessed Aug 11, 2016).
-
(2016)
Theano: A Python framework for fast computation of mathematical expressions
-
-
Al-Rfou, R.1
Alain, G.2
Almahairi, A.3
Angermueller, C.4
Bahdanau, D.5
Ballas, N.6
Bastien, F.7
Bayer, J.8
Belikov, A.9
-
37
-
-
84897510162
-
On the importance of initialization and momentum in deep learning
-
Atlanta, Georgia
-
Sutskever, I.; Martens, J.; Dahl, G.; Hinton, G. On the importance of initialization and momentum in deep learning. In Proceedings of the 30th International Conference on Machine Learning, Atlanta, Georgia, 2013; Vol. 3, 1139-1147.
-
(2013)
Proceedings of the 30th International Conference on Machine Learning
, vol.3
, pp. 1139-1147
-
-
Sutskever, I.1
Martens, J.2
Dahl, G.3
Hinton, G.4
-
38
-
-
0031345518
-
Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization
-
Zhu, C.; Byrd, R. H.; Lu, P.; Nocedal, J. Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization ACM Trans. Math. Softw. 1997, 23, 550-560 10.1145/279232.279236
-
(1997)
ACM Trans. Math. Softw.
, vol.23
, pp. 550-560
-
-
Zhu, C.1
Byrd, R.H.2
Lu, P.3
Nocedal, J.4
-
39
-
-
3342932276
-
Total and Local Quadratic Indices of the Molecular Pseudograph’s Atom Adjacency Matrix: Applications to the Prediction of Physical Properties of Organic Compounds
-
Ponce, Y. M. Total and Local Quadratic Indices of the Molecular Pseudograph’s Atom Adjacency Matrix: Applications to the Prediction of Physical Properties of Organic Compounds Molecules 2003, 8, 687-726 10.3390/80900687
-
(2003)
Molecules
, vol.8
, pp. 687-726
-
-
Ponce, Y.M.1
-
40
-
-
40949156135
-
Periodic trends in the geometric structures of 13-atom metal clusters
-
Sun, Y.; Zhang, M.; Fournier, R. Periodic trends in the geometric structures of 13-atom metal clusters Phys. Rev. B 2008, 77, 075435 10.1103/PhysRevB.77.075435
-
(2008)
Phys. Rev. B
, vol.77
, pp. 075435
-
-
Sun, Y.1
Zhang, M.2
Fournier, R.3
-
41
-
-
84865796611
-
Particle-swarm structure prediction on clusters
-
Lv, J.; Wang, Y.; Zhu, L.; Ma, Y. Particle-swarm structure prediction on clusters J. Chem. Phys. 2012, 137, 084104 10.1063/1.4746757
-
(2012)
J. Chem. Phys.
, vol.137
, pp. 084104
-
-
Lv, J.1
Wang, Y.2
Zhu, L.3
Ma, Y.4
-
42
-
-
43049106458
-
Improved real-space genetic algorithm for crystal structure and polymorph prediction
-
Abraham, N. L.; Probert, M. I. J. Improved real-space genetic algorithm for crystal structure and polymorph prediction Phys. Rev. B: Condens. Matter Mater. Phys. 2008, 77, 134117 10.1103/PhysRevB.77.134117
-
(2008)
Phys. Rev. B: Condens. Matter Mater. Phys.
, vol.77
, pp. 134117
-
-
Abraham, N.L.1
Probert, M.I.J.2
-
43
-
-
84874438960
-
-
Even, G. Ed. Cambridge University Press: Cambridge
-
Even, S. Graph Algorithms; Even, G., Ed.; Cambridge University Press: Cambridge, 2011; pp 46-48.
-
(2011)
Graph Algorithms
, pp. 46-48
-
-
Even, S.1
-
44
-
-
85005946990
-
-
TURBOMOLE V6.6 2014, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since. Available from (accessed Nov 14, 2016).
-
TURBOMOLE V6.6 2014, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007. Available from http://www.turbomole.com (accessed Nov 14, 2016).
-
(2007)
-
-
-
45
-
-
4243402296
-
Efficient molecular numerical integration schemes
-
Treutler, O.; Ahlrichs, R. Efficient molecular numerical integration schemes J. Chem. Phys. 1995, 102, 346 10.1063/1.469408
-
(1995)
J. Chem. Phys.
, vol.102
, pp. 346
-
-
Treutler, O.1
Ahlrichs, R.2
-
46
-
-
0347319419
-
Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes
-
Staroverov, V. N.; Scuseria, G. E.; Tao, J.; Perdew, J. P. Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes J. Chem. Phys. 2003, 119, 12129-12137 10.1063/1.1626543
-
(2003)
J. Chem. Phys.
, vol.119
, pp. 12129-12137
-
-
Staroverov, V.N.1
Scuseria, G.E.2
Tao, J.3
Perdew, J.P.4
-
47
-
-
84907993096
-
Hybrid Density Functionals for Clusters of Late Transition Metals: Assessing Energetic and Structural Properties
-
Soini, T. M.; Genest, A.; Nikodem, A.; Rosch, N. Hybrid Density Functionals for Clusters of Late Transition Metals: Assessing Energetic and Structural Properties J. Chem. Theory Comput. 2014, 10, 4408-4416 10.1021/ct500703q
-
(2014)
J. Chem. Theory Comput.
, vol.10
, pp. 4408-4416
-
-
Soini, T.M.1
Genest, A.2
Nikodem, A.3
Rosch, N.4
-
48
-
-
26244461462
-
Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
-
Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy Phys. Chem. Chem. Phys. 2005, 7, 3297-3305 10.1039/b508541a
-
(2005)
Phys. Chem. Chem. Phys.
, vol.7
, pp. 3297-3305
-
-
Weigend, F.1
Ahlrichs, R.2
-
49
-
-
84919912886
-
Structure, vibrational, and optical properties of platinum cluster: a density functional theory approach
-
Singh, N. B.; Sarkar, U. Structure, vibrational, and optical properties of platinum cluster: a density functional theory approach J. Mol. Model. 2014, 20, 2537 10.1007/s00894-014-2537-5
-
(2014)
J. Mol. Model.
, vol.20
, pp. 2537
-
-
Singh, N.B.1
Sarkar, U.2
-
50
-
-
43949093830
-
Evolution of atomic and electronic structure of Pt clusters: Planar, layered, pyramidal, cage, cubic, and octahedral growth
-
Kumar, V.; Kawazoe, Y. Evolution of atomic and electronic structure of Pt clusters: Planar, layered, pyramidal, cage, cubic, and octahedral growth Phys. Rev. B: Condens. Matter Mater. Phys. 2008, 77, 205418 10.1103/PhysRevB.77.205418
-
(2008)
Phys. Rev. B: Condens. Matter Mater. Phys.
, vol.77
, pp. 205418
-
-
Kumar, V.1
Kawazoe, Y.2
-
52
-
-
84912523919
-
Structure of Small Platinum Clusters Revised
-
Winczewski, S.; Rybicki, J. Structure of Small Platinum Clusters Revised Comput. Methods Sci. Technol. 2011, 17, 75-85 10.12921/cmst.2011.17.01.75-85
-
(2011)
Comput. Methods Sci. Technol.
, vol.17
, pp. 75-85
-
-
Winczewski, S.1
Rybicki, J.2
-
53
-
-
2442537377
-
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
-
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 54, 11169-11186 10.1103/PhysRevB.54.11169
-
(1996)
Phys. Rev. B: Condens. Matter Mater. Phys.
, vol.54
, pp. 11169-11186
-
-
Kresse, G.1
Furthmüller, J.2
-
55
-
-
4243943295
-
Generalized Gradient Approximation Made Simple
-
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple Phys. Rev. Lett. 1996, 77, 3865-3868 10.1103/PhysRevLett.77.3865
-
(1996)
Phys. Rev. Lett.
, vol.77
, pp. 3865-3868
-
-
Perdew, J.P.1
Burke, K.2
Ernzerhof, M.3
-
56
-
-
84874892421
-
Ab initio random structure search for 13-atom clusters of fcc elements
-
Chou, J. P.; Hsing, C. R.; Wei, C. M.; Cheng, C.; Chang, C. M. Ab initio random structure search for 13-atom clusters of fcc elements J. Phys.: Condens. Matter 2013, 25, 125305 10.1088/0953-8984/25/12/125305
-
(2013)
J. Phys.: Condens. Matter
, vol.25
, pp. 125305
-
-
Chou, J.P.1
Hsing, C.R.2
Wei, C.M.3
Cheng, C.4
Chang, C.M.5
-
58
-
-
65549140346
-
13, M = Ta-Pt
-
13, M = Ta-Pt Phys. Rev. A: At., Mol., Opt. Phys. 2009, 79, 043203 10.1103/PhysRevA.79.043203
-
(2009)
Phys. Rev. A: At., Mol., Opt. Phys.
, vol.79
, pp. 043203
-
-
Zhang, M.1
Fournier, R.2
-
59
-
-
85005960004
-
-
MOLPRO, version 2015.1, a package of ab initio programs. See (accessed Nov 14, 2016).
-
Werner, H.-J.; Knowles, P. J.; Knizia, G.; Manby, F. R.; Schütz, M. et al.. MOLPRO, version 2015.1, a package of ab initio programs. See http://www.molpro.net (accessed Nov 14, 2016).
-
-
-
Werner, H.-J.1
Knowles, P.J.2
Knizia, G.3
Manby, F.R.4
Schütz, M.5
-
60
-
-
84963762071
-
Energy landscapes for a machine learning application to series data
-
Ballard, A. J.; Stevenson, J. D.; Das, R.; Wales, D. J. Energy landscapes for a machine learning application to series data J. Chem. Phys. 2016, 144, 124119 10.1063/1.4944672
-
(2016)
J. Chem. Phys.
, vol.144
, pp. 124119
-
-
Ballard, A.J.1
Stevenson, J.D.2
Das, R.3
Wales, D.J.4
|