-
1
-
-
84926522192
-
Emergence of neuronal diversity from patterning of telencephalic progenitors
-
1 Azzarelli, R., Hardwick, L.J.A., Philpott, A., Emergence of neuronal diversity from patterning of telencephalic progenitors. Wiley Interdiscip Rev Dev Biol 4 (2015), 197–214.
-
(2015)
Wiley Interdiscip Rev Dev Biol
, vol.4
, pp. 197-214
-
-
Azzarelli, R.1
Hardwick, L.J.A.2
Philpott, A.3
-
2
-
-
3342978854
-
Neuroblast formation and patterning during early brain development in Drosophila
-
2 Urbach, R., Technau, G.M., Neuroblast formation and patterning during early brain development in Drosophila. Bioessays 26 (2004), 739–751.
-
(2004)
Bioessays
, vol.26
, pp. 739-751
-
-
Urbach, R.1
Technau, G.M.2
-
3
-
-
84876426570
-
Neocortical arealization: evolution, mechanisms, and open questions
-
3 Alfano, C., Studer, M., Neocortical arealization: evolution, mechanisms, and open questions. Dev Neurobiol 73 (2013), 411–447.
-
(2013)
Dev Neurobiol
, vol.73
, pp. 411-447
-
-
Alfano, C.1
Studer, M.2
-
4
-
-
67949095557
-
Hox networks and the origins of motor neuron diversity
-
4 Dasen, J.S., Jessell, T.M., Hox networks and the origins of motor neuron diversity. Curr Top Dev Biol 88 (2009), 169–200.
-
(2009)
Curr Top Dev Biol
, vol.88
, pp. 169-200
-
-
Dasen, J.S.1
Jessell, T.M.2
-
5
-
-
84888090217
-
Temporal fate specification and neural progenitor competence during development
-
5 Kohwi, M., Doe, C.Q., Temporal fate specification and neural progenitor competence during development. Nat Rev Neurosci 14 (2013), 823–838.
-
(2013)
Nat Rev Neurosci
, vol.14
, pp. 823-838
-
-
Kohwi, M.1
Doe, C.Q.2
-
6
-
-
0034307009
-
Programmed transformations in neuroblast gene expression during Drosophila CNS lineage development
-
6 Brody, T., Odenwald, W.F., Programmed transformations in neuroblast gene expression during Drosophila CNS lineage development. Dev Biol 226 (2000), 34–44.
-
(2000)
Dev Biol
, vol.226
, pp. 34-44
-
-
Brody, T.1
Odenwald, W.F.2
-
7
-
-
0035943453
-
Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny
-
7 Isshiki, T., Pearson, B., Holbrook, S., Doe, C.Q., Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. Cell 106 (2001), 511–521.
-
(2001)
Cell
, vol.106
, pp. 511-521
-
-
Isshiki, T.1
Pearson, B.2
Holbrook, S.3
Doe, C.Q.4
-
8
-
-
0031985053
-
Regulation of POU genes by castor and hunchback establishes layered compartments in the Drosophila CNS
-
8 Kambadur, R., Koizumi, K., Stivers, C., Nagle, J., Poole, S.J., Odenwald, W.F., Regulation of POU genes by castor and hunchback establishes layered compartments in the Drosophila CNS. Genes Dev 12 (1998), 246–260.
-
(1998)
Genes Dev
, vol.12
, pp. 246-260
-
-
Kambadur, R.1
Koizumi, K.2
Stivers, C.3
Nagle, J.4
Poole, S.J.5
Odenwald, W.F.6
-
9
-
-
0030579127
-
The embryonic central nervous system lineages of Drosophila melanogaster. I. Neuroblast lineages derived from the ventral half of the neuroectoderm
-
9 Bossing, T., Udolph, G., Doe, C.Q., Technau, G.M., The embryonic central nervous system lineages of Drosophila melanogaster. I. Neuroblast lineages derived from the ventral half of the neuroectoderm. Dev Biol 179 (1996), 41–64.
-
(1996)
Dev Biol
, vol.179
, pp. 41-64
-
-
Bossing, T.1
Udolph, G.2
Doe, C.Q.3
Technau, G.M.4
-
10
-
-
84879692240
-
Temporal patterning of Drosophila medulla neuroblasts controls neural fates
-
•] this study demonstrated that optic lobe neuroblasts undergo temporal patterning. They were the first studies to identify a temporal series outside of the VNC.
-
•] this study demonstrated that optic lobe neuroblasts undergo temporal patterning. They were the first studies to identify a temporal series outside of the VNC.
-
(2013)
Nature
, vol.498
, pp. 456-462
-
-
Li, X.1
Erclik, T.2
Bertet, C.3
Chen, Z.4
Voutev, R.5
Venkatesh, S.6
Morante, J.7
Celik, A.8
Desplan, C.9
-
12
-
-
84907331854
-
Temporal patterning of neuroblasts controls Notch-mediated cell survival through regulation of hid or reaper
-
12 Bertet, C., Li, X., Erclik, T., Cavey, M., Wells, B., Desplan, C., Temporal patterning of neuroblasts controls Notch-mediated cell survival through regulation of hid or reaper. Cell 158 (2014), 1173–1186.
-
(2014)
Cell
, vol.158
, pp. 1173-1186
-
-
Bertet, C.1
Li, X.2
Erclik, T.3
Cavey, M.4
Wells, B.5
Desplan, C.6
-
13
-
-
84879689781
-
Combinatorial temporal patterning in progenitors expands neural diversity
-
This study showed that layered temporal patterning in type II neuroblasts, which produce INPs, is used to further amplify neuronal diversity in the central brain.
-
13•• Bayraktar, O.A., Doe, C.Q., Combinatorial temporal patterning in progenitors expands neural diversity. Nature 498 (2013), 449–455 This study showed that layered temporal patterning in type II neuroblasts, which produce INPs, is used to further amplify neuronal diversity in the central brain.
-
(2013)
Nature
, vol.498
, pp. 449-455
-
-
Bayraktar, O.A.1
Doe, C.Q.2
-
14
-
-
84947260355
-
Generating neuronal diversity in the mammalian cerebral cortex
-
14 Lodato, S., Arlotta, P., Generating neuronal diversity in the mammalian cerebral cortex. Annu Rev Cell Dev Biol 31 (2015), 699–720.
-
(2015)
Annu Rev Cell Dev Biol
, vol.31
, pp. 699-720
-
-
Lodato, S.1
Arlotta, P.2
-
15
-
-
84881634203
-
Temporal patterning of neural progenitors in Drosophila
-
15 Li, X., Chen, Z., Desplan, C., Temporal patterning of neural progenitors in Drosophila. Curr Top Dev Biol 105 (2013), 69–96.
-
(2013)
Curr Top Dev Biol
, vol.105
, pp. 69-96
-
-
Li, X.1
Chen, Z.2
Desplan, C.3
-
16
-
-
13344277191
-
Regulation of temporal identity transitions in Drosophila neuroblasts
-
16 Grosskortenhaus, R., Pearson, B.J., Marusich, A., Doe, C.Q., Regulation of temporal identity transitions in Drosophila neuroblasts. Dev Cell 8 (2005), 193–202.
-
(2005)
Dev Cell
, vol.8
, pp. 193-202
-
-
Grosskortenhaus, R.1
Pearson, B.J.2
Marusich, A.3
Doe, C.Q.4
-
17
-
-
33244463050
-
Timing of identity: spatiotemporal regulation of hunchback in neuroblast lineages of Drosophila by Seven-up and Prospero
-
17 Mettler, U., Vogler, G., Urban, J., Timing of identity: spatiotemporal regulation of hunchback in neuroblast lineages of Drosophila by Seven-up and Prospero. Development 133 (2006), 429–437.
-
(2006)
Development
, vol.133
, pp. 429-437
-
-
Mettler, U.1
Vogler, G.2
Urban, J.3
-
18
-
-
13344261323
-
Seven-up controls switching of transcription factors that specify temporal identities of Drosophila neuroblasts
-
18 Kanai, M.I., Okabe, M., Hiromi, Y., Seven-up controls switching of transcription factors that specify temporal identities of Drosophila neuroblasts. Dev Cell 8 (2005), 203–213.
-
(2005)
Dev Cell
, vol.8
, pp. 203-213
-
-
Kanai, M.I.1
Okabe, M.2
Hiromi, Y.3
-
19
-
-
84935727513
-
Neural stem cell progeny regulate stem cell death in a Notch and Hox dependent manner
-
19 Arya, R., Sarkissian, T., Tan, Y., White, K., Neural stem cell progeny regulate stem cell death in a Notch and Hox dependent manner. Cell Death Differ 22 (2015), 1–10.
-
(2015)
Cell Death Differ
, vol.22
, pp. 1-10
-
-
Arya, R.1
Sarkissian, T.2
Tan, Y.3
White, K.4
-
20
-
-
0032821487
-
Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons from a neuroblast
-
20 Lee, T., Lee, A., Luo, L., Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons from a neuroblast. Development 126 (1999), 4065–4076.
-
(1999)
Development
, vol.126
, pp. 4065-4076
-
-
Lee, T.1
Lee, A.2
Luo, L.3
-
21
-
-
84955615302
-
Temporal regulation of the generation of neuronal diversity in Drosophila
-
21 Yasugi, T., Nishikura, T., Temporal regulation of the generation of neuronal diversity in Drosophila. Dev Growth Differ 58 (2015), 73–87.
-
(2015)
Dev Growth Differ
, vol.58
, pp. 73-87
-
-
Yasugi, T.1
Nishikura, T.2
-
22
-
-
84863992386
-
Let-7-complex microRNAs regulate the temporal identity of Drosophila mushroom body neurons via Chinmo
-
22 Wu, Y.-C., Chen, C.-H., Mercer, A., Sokol, N.S., Let-7-complex microRNAs regulate the temporal identity of Drosophila mushroom body neurons via Chinmo. Dev Cell 23 (2012), 202–209.
-
(2012)
Dev Cell
, vol.23
, pp. 202-209
-
-
Wu, Y.-C.1
Chen, C.-H.2
Mercer, A.3
Sokol, N.S.4
-
23
-
-
84885323659
-
Extremes of lineage plasticity in the Drosophila brain
-
This study addressed the relative contribution of intrinsic versus extrinsic cues during temporal patterning in mushroom body neuroblasts, which have prolonged temporal windows. It showed that unknown extrinsic signals regulate temporal transitions in the mushroom body, which is in contrast to antennal lobe lineages where similar environmental manipulations did not alter the numbers or types of progeny produced by a neuroblast.
-
23• Lin, S., Marin, E.C., Yang, C.-P., Kao, C.-F., Apenteng, B.A., Huang, Y., O'Connor, M.B., Truman, J.W., Lee, T., Extremes of lineage plasticity in the Drosophila brain. Curr Biol 23 (2013), 1908–1913 This study addressed the relative contribution of intrinsic versus extrinsic cues during temporal patterning in mushroom body neuroblasts, which have prolonged temporal windows. It showed that unknown extrinsic signals regulate temporal transitions in the mushroom body, which is in contrast to antennal lobe lineages where similar environmental manipulations did not alter the numbers or types of progeny produced by a neuroblast.
-
(2013)
Curr Biol
, vol.23
, pp. 1908-1913
-
-
Lin, S.1
Marin, E.C.2
Yang, C.-P.3
Kao, C.-F.4
Apenteng, B.A.5
Huang, Y.6
O'Connor, M.B.7
Truman, J.W.8
Lee, T.9
-
24
-
-
84875814317
-
Protection of neuronal diversity at the expense of neuronal numbers during nutrient restriction in the Drosophila visual system
-
This study showed that in the optic lobes while neuroepithelial proliferation is sensitive to nutrient conditions, neuroblast proliferation is not, thus neuronal diversity is preserved under nutrient-poor conditions.
-
24• Lanet, E., Gould, A.P., Maurange, C., Protection of neuronal diversity at the expense of neuronal numbers during nutrient restriction in the Drosophila visual system. Cell Rep 3 (2013), 587–594 This study showed that in the optic lobes while neuroepithelial proliferation is sensitive to nutrient conditions, neuroblast proliferation is not, thus neuronal diversity is preserved under nutrient-poor conditions.
-
(2013)
Cell Rep
, vol.3
, pp. 587-594
-
-
Lanet, E.1
Gould, A.P.2
Maurange, C.3
-
25
-
-
84945180682
-
Opposing intrinsic temporal gradients guide neural stem cell production of varied neuronal fates
-
This study showed that the high-to-low and low-to-high gradients of the RNA-binding proteins Imp and Syp, respectively, regulate temporal identity by regulating Chinmo expression. Thus other factors, which affect post-transcriptional regulation, and not just tTFs are important for temporal fate specification.
-
25• Liu, Z., Yang, C.-P., Sugino, K., Fu, C.-C., Liu, L.-Y., Yao, X., Lee, L.P., Lee, T., Opposing intrinsic temporal gradients guide neural stem cell production of varied neuronal fates. Science 350 (2015), 317–320 This study showed that the high-to-low and low-to-high gradients of the RNA-binding proteins Imp and Syp, respectively, regulate temporal identity by regulating Chinmo expression. Thus other factors, which affect post-transcriptional regulation, and not just tTFs are important for temporal fate specification.
-
(2015)
Science
, vol.350
, pp. 317-320
-
-
Liu, Z.1
Yang, C.-P.2
Sugino, K.3
Fu, C.-C.4
Liu, L.-Y.5
Yao, X.6
Lee, L.P.7
Lee, T.8
-
26
-
-
33749991590
-
Gradients of the Drosophila Chinmo BTB-zinc finger protein govern neuronal temporal identity
-
26 Zhu, S., Lin, S., Kao, C.-F., Awasaki, T., Chiang, A.-S., Lee, T., Gradients of the Drosophila Chinmo BTB-zinc finger protein govern neuronal temporal identity. Cell 127 (2006), 409–422.
-
(2006)
Cell
, vol.127
, pp. 409-422
-
-
Zhu, S.1
Lin, S.2
Kao, C.-F.3
Awasaki, T.4
Chiang, A.-S.5
Lee, T.6
-
27
-
-
79960924567
-
MicroRNAs and developmental timing
-
27 Ambros, V., MicroRNAs and developmental timing. Curr Opin Genet Dev 21 (2011), 511–517.
-
(2011)
Curr Opin Genet Dev
, vol.21
, pp. 511-517
-
-
Ambros, V.1
-
28
-
-
84906314841
-
Intrinsically different retinal progenitor cells produce specific types of progeny
-
28 Cepko, C., Intrinsically different retinal progenitor cells produce specific types of progeny. Nat Rev Neurosci 15 (2014), 615–627.
-
(2014)
Nat Rev Neurosci
, vol.15
, pp. 615-627
-
-
Cepko, C.1
-
29
-
-
8444235080
-
Specification of temporal identity in the developing nervous system
-
29 Pearson, B.J., Doe, C.Q., Specification of temporal identity in the developing nervous system. Annu Rev Cell Dev Biol 20 (2004), 619–647.
-
(2004)
Annu Rev Cell Dev Biol
, vol.20
, pp. 619-647
-
-
Pearson, B.J.1
Doe, C.Q.2
-
30
-
-
84865975387
-
How variable clones build an invariant retina
-
30 He, J., Zhang, G., Almeida, A.D., Cayouette, M., Simons, B.D., Harris, W.A., How variable clones build an invariant retina. Neuron 75 (2012), 786–798.
-
(2012)
Neuron
, vol.75
, pp. 786-798
-
-
He, J.1
Zhang, G.2
Almeida, A.D.3
Cayouette, M.4
Simons, B.D.5
Harris, W.A.6
-
31
-
-
78751510046
-
Reconstruction of rat retinal progenitor cell lineages in vitro reveals a surprising degree of stochasticity in cell fate decisions
-
31 Gomes, F.L.A.F., Zhang, G., Carbonell, F., Correa, J.A., Harris, W.A., Simons, B.D., Cayouette, M., Reconstruction of rat retinal progenitor cell lineages in vitro reveals a surprising degree of stochasticity in cell fate decisions. Development 138 (2011), 227–235.
-
(2011)
Development
, vol.138
, pp. 227-235
-
-
Gomes, F.L.A.F.1
Zhang, G.2
Carbonell, F.3
Correa, J.A.4
Harris, W.A.5
Simons, B.D.6
Cayouette, M.7
-
32
-
-
84942366459
-
The independent probabilistic firing of transcription factors: a paradigm for clonal variability in the zebrafish retina
-
This study presents a simple computational model based on the independent and probabilistic expression of key fate-specifying factors in the retina, which can quantitatively account for the variance associated with retinal clones.
-
32• Boije, H., Rulands, S., Dudczig, S., Simons, B.D., Harris, W.A., The independent probabilistic firing of transcription factors: a paradigm for clonal variability in the zebrafish retina. Dev Cell 34 (2015), 532–543 This study presents a simple computational model based on the independent and probabilistic expression of key fate-specifying factors in the retina, which can quantitatively account for the variance associated with retinal clones.
-
(2015)
Dev Cell
, vol.34
, pp. 532-543
-
-
Boije, H.1
Rulands, S.2
Dudczig, S.3
Simons, B.D.4
Harris, W.A.5
-
33
-
-
53049108478
-
Ikaros confers early temporal competence to mouse retinal progenitor cells
-
33 Elliott, J., Jolicoeur, C., Ramamurthy, V., Cayouette, M., Ikaros confers early temporal competence to mouse retinal progenitor cells. Neuron 60 (2008), 26–39.
-
(2008)
Neuron
, vol.60
, pp. 26-39
-
-
Elliott, J.1
Jolicoeur, C.2
Ramamurthy, V.3
Cayouette, M.4
-
34
-
-
84922021700
-
A conserved regulatory logic controls temporal identity in mouse neural progenitors
-
This study demonstrated a temporal series in the vertebrate retina by showing that Casz1, the ortholog to Drosophila Cas, is expressed in mid-/late retinal progenitors and is necessary for their specification. They also showed transcriptional cross-regulation between these factors similar to that observed in flies.
-
34•• Mattar, P., Ericson, J., Blackshaw, S., Cayouette, M., A conserved regulatory logic controls temporal identity in mouse neural progenitors. Neuron 85 (2015), 497–504 This study demonstrated a temporal series in the vertebrate retina by showing that Casz1, the ortholog to Drosophila Cas, is expressed in mid-/late retinal progenitors and is necessary for their specification. They also showed transcriptional cross-regulation between these factors similar to that observed in flies.
-
(2015)
Neuron
, vol.85
, pp. 497-504
-
-
Mattar, P.1
Ericson, J.2
Blackshaw, S.3
Cayouette, M.4
-
35
-
-
84867919319
-
Direction-selective retinal ganglion cells arise from molecularly specified multipotential progenitors
-
35 De la Huerta, I., Kim, I.J., Voinescu, P.E., Sanes, J.R., Direction-selective retinal ganglion cells arise from molecularly specified multipotential progenitors. Proc Natl Acad Sci U S A 109 (2012), 17663–17668.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 17663-17668
-
-
De la Huerta, I.1
Kim, I.J.2
Voinescu, P.E.3
Sanes, J.R.4
-
36
-
-
84861204738
-
Transcription factor Olig2 defines subpopulations of retinal progenitor cells biased toward specific cell fates
-
36 Hafler, B.P., Surzenko, N., Beier, K.T., Punzo, C., Trimarchi, J.M., Kong, J.H., Cepko, C.L., Transcription factor Olig2 defines subpopulations of retinal progenitor cells biased toward specific cell fates. Proc Natl Acad Sci U S A 109 (2012), 7882–7887.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 7882-7887
-
-
Hafler, B.P.1
Surzenko, N.2
Beier, K.T.3
Punzo, C.4
Trimarchi, J.M.5
Kong, J.H.6
Cepko, C.L.7
-
37
-
-
84874273801
-
Ikaros promotes early-born neuronal fates in the cerebral cortex
-
This study shows that as in Drosophila VNC neuroblasts and in the vertebrate retina, Ikzf1 may act as a tTF early in a temporal series in the cortex.
-
37• Alsio, J.M., Tarchini, B., Cayouette, M., Livesey, F.J., Ikaros promotes early-born neuronal fates in the cerebral cortex. Proc Natl Acad Sci U S A 110 (2013), E716–E725 This study shows that as in Drosophila VNC neuroblasts and in the vertebrate retina, Ikzf1 may act as a tTF early in a temporal series in the cortex.
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. E716-E725
-
-
Alsio, J.M.1
Tarchini, B.2
Cayouette, M.3
Livesey, F.J.4
-
38
-
-
0030200120
-
Restriction of late cerebral cortical progenitors to an upper-layer fate
-
38 Frantz, G.D., McConnell, S.K., Restriction of late cerebral cortical progenitors to an upper-layer fate. Neuron 17 (1996), 55–61.
-
(1996)
Neuron
, vol.17
, pp. 55-61
-
-
Frantz, G.D.1
McConnell, S.K.2
-
39
-
-
0025952778
-
Cell cycle dependence of laminar determination in developing neocortex
-
39 McConnell, S.K., Kaznowski, C.E., Cell cycle dependence of laminar determination in developing neocortex. Science 254 (1991), 282–285.
-
(1991)
Science
, vol.254
, pp. 282-285
-
-
McConnell, S.K.1
Kaznowski, C.E.2
-
40
-
-
0033932628
-
Progressive restriction in fate potential by neural progenitors during cerebral cortical development
-
40 Desai, A.R., McConnell, S.K., Progressive restriction in fate potential by neural progenitors during cerebral cortical development. Development 127 (2000), 2863–2872.
-
(2000)
Development
, vol.127
, pp. 2863-2872
-
-
Desai, A.R.1
McConnell, S.K.2
-
41
-
-
84938506602
-
Switching modes in corticogenesis: mechanisms of neuronal subtype transitions and integration in the cerebral cortex
-
41 Toma, K., Hanashima, C., Switching modes in corticogenesis: mechanisms of neuronal subtype transitions and integration in the cerebral cortex. Front Neurosci, 9, 2015, 274.
-
(2015)
Front Neurosci
, vol.9
, pp. 274
-
-
Toma, K.1
Hanashima, C.2
-
42
-
-
26944448206
-
Evidence that embryonic neurons regulate the onset of cortical gliogenesis via cardiotrophin-1
-
42 Barnabé-Heider, F., Wasylnka, J., Fernandes, A., Porsche, K.J.L., Sendtner, C., Kaplan, M., Miller, D.R.F.D., Evidence that embryonic neurons regulate the onset of cortical gliogenesis via cardiotrophin-1. Neuron 48 (2005), 253–265.
-
(2005)
Neuron
, vol.48
, pp. 253-265
-
-
Barnabé-Heider, F.1
Wasylnka, J.2
Fernandes, A.3
Porsche, K.J.L.4
Sendtner, C.5
Kaplan, M.6
Miller, D.R.F.D.7
-
43
-
-
84906215257
-
Ntf3 acts downstream of Sip1 in cortical postmitotic neurons to control progenitor cell fate through feedback signaling
-
43 Parthasarathy, S., Srivatsa, S., Nityanandam, A., Tarabykin, V., Ntf3 acts downstream of Sip1 in cortical postmitotic neurons to control progenitor cell fate through feedback signaling. Development 141 (2014), 3324–3330.
-
(2014)
Development
, vol.141
, pp. 3324-3330
-
-
Parthasarathy, S.1
Srivatsa, S.2
Nityanandam, A.3
Tarabykin, V.4
-
44
-
-
52149102948
-
An intrinsic mechanism of corticogenesis from embryonic stem cells
-
44 Gaspard, N., Bouschet, T., Hourez, R., Dimidschstein, J., Naeije, G., van Den Ameele, J., Espuny-Camacho, I., Passante, L., Herpoel, A., Schiffmann, S.N., et al. An intrinsic mechanism of corticogenesis from embryonic stem cells. Nature 455 (2008), 351–357.
-
(2008)
Nature
, vol.455
, pp. 351-357
-
-
Gaspard, N.1
Bouschet, T.2
Hourez, R.3
Dimidschstein, J.4
Naeije, G.5
van Den Ameele, J.6
Espuny-Camacho, I.7
Passante, L.8
Herpoel, A.9
Schiffmann, S.N.10
-
45
-
-
33745726874
-
The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells
-
45 Shen, Q., Wang, Y., Dimos, J.T., Fasano, C.A., Phoenix, T.N., Lemischka, I.R., Ivanova, N.B., Stifani, S., Morrisey, E.E., Temple, S., The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nat Neurosci 9 (2006), 743–751.
-
(2006)
Nat Neurosci
, vol.9
, pp. 743-751
-
-
Shen, Q.1
Wang, Y.2
Dimos, J.T.3
Fasano, C.A.4
Phoenix, T.N.5
Lemischka, I.R.6
Ivanova, N.B.7
Stifani, S.8
Morrisey, E.E.9
Temple, S.10
-
46
-
-
69249213730
-
Making cortex in a dish: in vitro corticopoiesis from embryonic stem cells
-
46 Gaspard, N., Gaillard, A., Vanderhaeghen, P., Making cortex in a dish: in vitro corticopoiesis from embryonic stem cells. Cell Cycle 8 (2009), 2491–2496.
-
(2009)
Cell Cycle
, vol.8
, pp. 2491-2496
-
-
Gaspard, N.1
Gaillard, A.2
Vanderhaeghen, P.3
-
47
-
-
84964412448
-
Cell-cycle-independent transitions in temporal identity of mammalian neural progenitor cells
-
This study identified a subset of genes whose expression changes over time in cortical progenitors independent of their differentiation status, and that intrinsic and extrinsic cues are needed for these gene expression changes to occur normally, though they occur in cell-cycle arrested progenitors.
-
47• Okamoto, M., Miyata, T., Konno, D., Ueda, H.R., Kasukawa, T., Hashimoto, M., Matsuzaki, F., Kawaguchi, A., Cell-cycle-independent transitions in temporal identity of mammalian neural progenitor cells. Nat Commun, 7, 2016, 11349 This study identified a subset of genes whose expression changes over time in cortical progenitors independent of their differentiation status, and that intrinsic and extrinsic cues are needed for these gene expression changes to occur normally, though they occur in cell-cycle arrested progenitors.
-
(2016)
Nat Commun
, vol.7
, pp. 11349
-
-
Okamoto, M.1
Miyata, T.2
Konno, D.3
Ueda, H.R.4
Kasukawa, T.5
Hashimoto, M.6
Matsuzaki, F.7
Kawaguchi, A.8
-
48
-
-
84873282055
-
Pyramidal neurons derived from human pluripotent stem cells integrate efficiently into mouse brain circuits in vivo
-
48 Espuny-Camacho, I., Michelsen, K.A., Gall, D., Linaro, D., Hasche, A., Bonnefont, J., Bali, C., Orduz, D., Bilheu, A., Herpoel, A., et al. Pyramidal neurons derived from human pluripotent stem cells integrate efficiently into mouse brain circuits in vivo. Neuron 77 (2013), 440–456.
-
(2013)
Neuron
, vol.77
, pp. 440-456
-
-
Espuny-Camacho, I.1
Michelsen, K.A.2
Gall, D.3
Linaro, D.4
Hasche, A.5
Bonnefont, J.6
Bali, C.7
Orduz, D.8
Bilheu, A.9
Herpoel, A.10
-
49
-
-
84919444200
-
Tgfβ signaling regulates temporal neurogenesis and potency of neural stem cells in the CNS
-
49 Dias, J.M., Alekseenko, Z., Applequist, J.M., Ericson, J., Tgfβ signaling regulates temporal neurogenesis and potency of neural stem cells in the CNS. Neuron 84 (2014), 927–939.
-
(2014)
Neuron
, vol.84
, pp. 927-939
-
-
Dias, J.M.1
Alekseenko, Z.2
Applequist, J.M.3
Ericson, J.4
-
50
-
-
84901610587
-
Thinking out of the dish: what to learn about cortical development using pluripotent stem cells
-
50 Van den Ameele, J., Tiberi, L., Vanderhaeghen, P., Espuny-Camacho, I., Thinking out of the dish: what to learn about cortical development using pluripotent stem cells. Trends Neurosci 37 (2014), 334–342.
-
(2014)
Trends Neurosci
, vol.37
, pp. 334-342
-
-
Van den Ameele, J.1
Tiberi, L.2
Vanderhaeghen, P.3
Espuny-Camacho, I.4
-
51
-
-
77950076985
-
Neurogenic radial glia in the outer subventricular zone of human neocortex
-
51 Hansen, D.V., Lui, J.H., Parker, P.R.L., Kriegstein, A.R., Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464 (2010), 554–561.
-
(2010)
Nature
, vol.464
, pp. 554-561
-
-
Hansen, D.V.1
Lui, J.H.2
Parker, P.R.L.3
Kriegstein, A.R.4
-
52
-
-
79958263078
-
Strategies for homeostatic stem cell self-renewal in adult tissues
-
52 Simons, B.D., Clevers, H., Strategies for homeostatic stem cell self-renewal in adult tissues. Cell 145 (2011), 851–862.
-
(2011)
Cell
, vol.145
, pp. 851-862
-
-
Simons, B.D.1
Clevers, H.2
-
53
-
-
84910092651
-
Deterministic progenitor behavior and unitary production of neurons in the neocortex
-
53 Gao, P., Postiglione, M.P., Krieger, T.G., Hernandez, L., Wang, C., Han, Z., Streicher, C., Papusheva, E., Insolera, R., Chugh, K., et al. Deterministic progenitor behavior and unitary production of neurons in the neocortex. Cell 159 (2014), 775–788.
-
(2014)
Cell
, vol.159
, pp. 775-788
-
-
Gao, P.1
Postiglione, M.P.2
Krieger, T.G.3
Hernandez, L.4
Wang, C.5
Han, Z.6
Streicher, C.7
Papusheva, E.8
Insolera, R.9
Chugh, K.10
-
54
-
-
43949139294
-
Temporal transcription factors and their targets schedule the end of neural proliferation in Drosophila
-
54 Maurange, C., Cheng, L., Gould, A.P., Temporal transcription factors and their targets schedule the end of neural proliferation in Drosophila. Cell 133 (2008), 891–902.
-
(2008)
Cell
, vol.133
, pp. 891-902
-
-
Maurange, C.1
Cheng, L.2
Gould, A.P.3
|