-
1
-
-
85001981439
-
-
Sun, Y. et al. Nature Eng. 2016, 1, 16071 10.1038/nenergy.2016.71
-
(2016)
Nature Eng.
, vol.1
, pp. 16071
-
-
Sun, Y.1
-
2
-
-
37849002504
-
-
Chan, C. K. et al. Nat. Nanotechnol. 2008, 3, 31-35 10.1038/nnano.2007.411
-
(2008)
Nat. Nanotechnol.
, vol.3
, pp. 31-35
-
-
Chan, C.K.1
-
3
-
-
38749129063
-
High capacity Li ion battery anodes using Ge nanowires
-
Chan, C. K.; Zhang, X. F.; Cui, Y. High capacity Li ion battery anodes using Ge nanowires Nano Lett. 2008, 8, 307-309 10.1021/nl0727157
-
(2008)
Nano Lett.
, vol.8
, pp. 307-309
-
-
Chan, C.K.1
Zhang, X.F.2
Cui, Y.3
-
4
-
-
34548626482
-
Nanostructured Sn-C composite as an advanced anode material in high-performance lithium-ion batteries
-
Derrien, G. et al. Nanostructured Sn-C composite as an advanced anode material in high-performance lithium-ion batteries Adv. Mater. 2007, 19, 2336-2340 10.1002/adma.200700748
-
(2007)
Adv. Mater.
, vol.19
, pp. 2336-2340
-
-
Derrien, G.1
-
5
-
-
84878047893
-
Nanostructured sulfur cathodes
-
Yang, Y.; Zheng, G.; Cui, Y. Nanostructured sulfur cathodes Chem. Soc. Rev. 2013, 42, 3018-3032 10.1039/c2cs35256g
-
(2013)
Chem. Soc. Rev.
, vol.42
, pp. 3018-3032
-
-
Yang, Y.1
Zheng, G.2
Cui, Y.3
-
7
-
-
0035890440
-
Issues and challenges facing rechargeable lithium batteries
-
Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries Nature 2001, 414, 359-367 10.1038/35104644
-
(2001)
Nature
, vol.414
, pp. 359-367
-
-
Tarascon, J.M.1
Armand, M.2
-
8
-
-
84887159109
-
Metallic anodes for next generation secondary batteries
-
Kim, H. et al. Metallic anodes for next generation secondary batteries Chem. Soc. Rev. 2013, 42, 9011-9034 10.1039/c3cs60177c
-
(2013)
Chem. Soc. Rev.
, vol.42
, pp. 9011-9034
-
-
Kim, H.1
-
9
-
-
84893029597
-
Lithium metal anodes for rechargeable batteries
-
Xu, W. et al. Lithium metal anodes for rechargeable batteries Energy Environ. Sci. 2014, 7, 513-537 10.1039/C3EE40795K
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 513-537
-
-
Xu, W.1
-
10
-
-
85019547771
-
Design principles for electrolytes and interfaces for stable lithium-metal batteries
-
Tikekar, M. D. et al. Design principles for electrolytes and interfaces for stable lithium-metal batteries Nature Energy 2016, 1, 16114 10.1038/nenergy.2016.114
-
(2016)
Nature Energy
, vol.1
, pp. 16114
-
-
Tikekar, M.D.1
-
11
-
-
0001039141
-
Electrochemical aspects of the generation of ramified metallic electrodeposits
-
Chazalviel, J.-N. Electrochemical aspects of the generation of ramified metallic electrodeposits Phys. Rev. A: At., Mol., Opt. Phys. 1990, 42, 7355 10.1103/PhysRevA.42.7355
-
(1990)
Phys. Rev. A: At., Mol., Opt. Phys.
, vol.42
, pp. 7355
-
-
Chazalviel, J.-N.1
-
12
-
-
77958036913
-
In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries
-
Bhattacharyya, R. et al. In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries Nat. Mater. 2010, 9, 504-510 10.1038/nmat2764
-
(2010)
Nat. Mater.
, vol.9
, pp. 504-510
-
-
Bhattacharyya, R.1
-
13
-
-
84905817375
-
Interconnected hollow carbon nanospheres for stable lithium metal anodes
-
Zheng, G. et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes Nat. Nanotechnol. 2014, 9, 618-623 10.1038/nnano.2014.152
-
(2014)
Nat. Nanotechnol.
, vol.9
, pp. 618-623
-
-
Zheng, G.1
-
14
-
-
84907861729
-
Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode
-
Yan, K. et al. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode Nano Lett. 2014, 14, 6016-6022 10.1021/nl503125u
-
(2014)
Nano Lett.
, vol.14
, pp. 6016-6022
-
-
Yan, K.1
-
15
-
-
84928662467
-
Controlled lithium dendrite growth by a synergistic effect of multilayered graphene coating and an electrolyte additive
-
Kim, J. S. et al. Controlled lithium dendrite growth by a synergistic effect of multilayered graphene coating and an electrolyte additive Chem. Mater. 2015, 27, 2780-2787 10.1021/cm503447u
-
(2015)
Chem. Mater.
, vol.27
, pp. 2780-2787
-
-
Kim, J.S.1
-
16
-
-
0032581661
-
Nanocomposite polymer electrolytes for lithium batteries
-
Croce, F. et al. Nanocomposite polymer electrolytes for lithium batteries Nature 1998, 394, 456-458 10.1038/28818
-
(1998)
Nature
, vol.394
, pp. 456-458
-
-
Croce, F.1
-
17
-
-
84926672497
-
Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers
-
Liu, W. et al. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers Nano Lett. 2015, 15, 2740-2745 10.1021/acs.nanolett.5b00600
-
(2015)
Nano Lett.
, vol.15
, pp. 2740-2745
-
-
Liu, W.1
-
18
-
-
77950297906
-
Ceramic and polymeric solid electrolytes for lithium-ion batteries
-
Fergus, J. W. Ceramic and polymeric solid electrolytes for lithium-ion batteries J. Power Sources 2010, 195, 4554-4569 10.1016/j.jpowsour.2010.01.076
-
(2010)
J. Power Sources
, vol.195
, pp. 4554-4569
-
-
Fergus, J.W.1
-
19
-
-
80052054095
-
A lithium superionic conductor
-
Kamaya, N. et al. A lithium superionic conductor Nat. Mater. 2011, 10, 682-686 10.1038/nmat3066
-
(2011)
Nat. Mater.
, vol.10
, pp. 682-686
-
-
Kamaya, N.1
-
20
-
-
0346334088
-
Effect of vinylene carbonate as additive to electrolyte for lithium metal anode
-
Ota, H. et al. Effect of vinylene carbonate as additive to electrolyte for lithium metal anode Electrochim. Acta 2004, 49, 565-572 10.1016/j.electacta.2003.09.010
-
(2004)
Electrochim. Acta
, vol.49
, pp. 565-572
-
-
Ota, H.1
-
21
-
-
84875415014
-
Dendrite-free lithium deposition via self-healing electrostatic shield mechanism
-
Ding, F. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism J. Am. Chem. Soc. 2013, 135, 4450-4456 10.1021/ja312241y
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 4450-4456
-
-
Ding, F.1
-
22
-
-
0030192802
-
Electrochemical deposition of very smooth lithium using nonaqueous electrolytes containing HF
-
Kanamura, K.; Shiraishi, S.; Takehara, Z. Electrochemical deposition of very smooth lithium using nonaqueous electrolytes containing HF J. Electrochem. Soc. 1996, 143, 2187-2197 10.1149/1.1836979
-
(1996)
J. Electrochem. Soc.
, vol.143
, pp. 2187-2197
-
-
Kanamura, K.1
Shiraishi, S.2
Takehara, Z.3
-
23
-
-
84910042270
-
Stable lithium electrodeposition in liquid and nanoporous solid electrolytes
-
Lu, Y.; Tu, Z.; Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes Nat. Mater. 2014, 13, 961-969 10.1038/nmat4041
-
(2014)
Nat. Mater.
, vol.13
, pp. 961-969
-
-
Lu, Y.1
Tu, Z.2
Archer, L.A.3
-
24
-
-
84935832834
-
The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth
-
Li, W. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth Nature Commun. 2015, 6, 7436 10.1038/ncomms8436
-
(2015)
Nature Commun.
, vol.6
, pp. 7436
-
-
Li, W.1
-
25
-
-
84925372951
-
Homogeneous lithium electrodeposition with pyrrolidinium-based ionic liquid electrolytes
-
Grande, L. et al. Homogeneous lithium electrodeposition with pyrrolidinium-based ionic liquid electrolytes ACS Appl. Mater. Interfaces 2015, 7, 5950-5958 10.1021/acsami.5b00209
-
(2015)
ACS Appl. Mater. Interfaces
, vol.7
, pp. 5950-5958
-
-
Grande, L.1
-
26
-
-
85042060533
-
Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth
-
Yan, K. et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth Nature Eng. 2016, 1, 16010 10.1038/nenergy.2016.10
-
(2016)
Nature Eng.
, vol.1
, pp. 16010
-
-
Yan, K.1
-
27
-
-
84961390156
-
Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes
-
Lin, D. et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes Nat. Nanotechnol. 2016, 11, 626-632 10.1038/nnano.2016.32
-
(2016)
Nat. Nanotechnol.
, vol.11
, pp. 626-632
-
-
Lin, D.1
-
28
-
-
84962592426
-
Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating
-
Liang, Z. et al. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 2862-2867 10.1073/pnas.1518188113
-
(2016)
Proc. Natl. Acad. Sci. U. S. A.
, vol.113
, pp. 2862-2867
-
-
Liang, Z.1
-
29
-
-
84961644804
-
Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode
-
Liu, Y. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode Nature Commun. 2016, 7, 10992 10.1038/ncomms10992
-
(2016)
Nature Commun.
, vol.7
, pp. 10992
-
-
Liu, Y.1
-
30
-
-
84982217751
-
Chemical dealloying derived 3D porous current collector for Li metal anodes
-
Yun, Q. et al. Chemical dealloying derived 3D porous current collector for Li metal anodes Adv. Mater. 2016, 28, 6932-6939 10.1002/adma.201601409
-
(2016)
Adv. Mater.
, vol.28
, pp. 6932-6939
-
-
Yun, Q.1
-
31
-
-
84893683272
-
Nanoporous polymer-ceramic composite electrolytes for lithium metal batteries
-
Tu, Z.; Kambe, Y.; Lu, Y.; Archer, L. A. Nanoporous polymer-ceramic composite electrolytes for lithium metal batteries Adv. Energy Mater. 2014, 4, 1300654 10.1002/aenm.201300654
-
(2014)
Adv. Energy Mater.
, vol.4
, pp. 1300654
-
-
Tu, Z.1
Kambe, Y.2
Lu, Y.3
Archer, L.A.4
-
32
-
-
85027951308
-
A dendrite-free lithium metal battery model based on nanoporous polymer/ceramic composite electrolytes and high-energy electrodes
-
Tu, Z.; Lu, Y.; Archer, L. A dendrite-free lithium metal battery model based on nanoporous polymer/ceramic composite electrolytes and high-energy electrodes Small 2015, 11, 2631-2635 10.1002/smll.201403568
-
(2015)
Small
, vol.11
, pp. 2631-2635
-
-
Tu, Z.1
Lu, Y.2
Archer, L.3
-
33
-
-
84990876575
-
Transition of lithium growth mechanisms in liquid electrolytes
-
Bai, P. et al. Transition of lithium growth mechanisms in liquid electrolytes Energy Environ. Sci. 2016, 9, 3221 10.1039/C6EE01674J
-
(2016)
Energy Environ. Sci.
, vol.9
, pp. 3221
-
-
Bai, P.1
-
34
-
-
84911897516
-
Over-limiting current and control of dendritic growth by surface conduction in nanopores
-
Han, J. H.; Khoo, E.; Bai, P.; Bazant, M. Z. Over-limiting current and control of dendritic growth by surface conduction in nanopores Sci. Rep. 2014, 4, 7056 10.1038/srep07056
-
(2014)
Sci. Rep.
, vol.4
, pp. 7056
-
-
Han, J.H.1
Khoo, E.2
Bai, P.3
Bazant, M.Z.4
-
35
-
-
79959826630
-
Nanoporous hybrid electrolytes
-
Schaefer, J. L. et al. Nanoporous hybrid electrolytes J. Mater. Chem. 2011, 21, 10094-10101 10.1039/c0jm04171h
-
(2011)
J. Mater. Chem.
, vol.21
, pp. 10094-10101
-
-
Schaefer, J.L.1
-
36
-
-
84902276214
-
2 batteries by a two-dimensionally ordered nanoporous separator
-
2 batteries by a two-dimensionally ordered nanoporous separator J. Mater. Chem. A 2014, 2, 9970-9974 10.1039/c4ta01314j
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 9970-9974
-
-
Kang, S.J.1
-
38
-
-
84906080288
-
The race of nanowires: Morphological instabilities and a control strategy
-
Shin, S. et al. The race of nanowires: morphological instabilities and a control strategy Nano Lett. 2014, 14, 4395-4399 10.1021/nl501324t
-
(2014)
Nano Lett.
, vol.14
, pp. 4395-4399
-
-
Shin, S.1
-
39
-
-
84858651760
-
Manipulating crystal growth and polymorphism by confinement in nanoscale crystallization chambers
-
Hamilton, B. D.; Ha, J.; Hillmyer, M. A.; Ward, M. D. Manipulating crystal growth and polymorphism by confinement in nanoscale crystallization chambers Acc. Chem. Res. 2012, 45, 414-423 10.1021/ar200147v
-
(2012)
Acc. Chem. Res.
, vol.45
, pp. 414-423
-
-
Hamilton, B.D.1
Ha, J.2
Hillmyer, M.A.3
Ward, M.D.4
-
40
-
-
0032140097
-
A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte
-
Yamaki, J. et al. A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte J. Power Sources 1998, 74, 219-227 10.1016/S0378-7753(98)00067-6
-
(1998)
J. Power Sources
, vol.74
, pp. 219-227
-
-
Yamaki, J.1
-
41
-
-
84903962814
-
Stability analysis of electrodeposition across a structured electrolyte with immobilized anions
-
Tikekar, M. D.; Archer, L. A.; Koch, D. L. Stability analysis of electrodeposition across a structured electrolyte with immobilized anions J. Electrochem. Soc. 2014, 161, A847-A855 10.1149/2.085405jes
-
(2014)
J. Electrochem. Soc.
, vol.161
, pp. A847-A855
-
-
Tikekar, M.D.1
Archer, L.A.2
Koch, D.L.3
-
42
-
-
0001039141
-
Electrochemical aspects of the generation of ramified metallic electrodeposits
-
Chazalviel, J. N. Electrochemical aspects of the generation of ramified metallic electrodeposits Phys. Rev. A: At., Mol., Opt. Phys. 1990, 42, 7355 10.1103/PhysRevA.42.7355
-
(1990)
Phys. Rev. A: At., Mol., Opt. Phys.
, vol.42
, pp. 7355
-
-
Chazalviel, J.N.1
-
43
-
-
0035396061
-
-
Rosso, M. T. et al. J. Power Sources 2001, 97-98, 804-806 10.1016/S0378-7753(01)00734-0
-
(2001)
J. Power Sources
, vol.9798
, pp. 804-806
-
-
Rosso, M.T.1
-
45
-
-
84949595620
-
Correlating microstructural lithium metal growth with electrolyte salt depletion in lithium batteries using 7Li MRI
-
Chang, H. J. et al. Correlating microstructural lithium metal growth with electrolyte salt depletion in lithium batteries using 7Li MRI J. Am. Chem. Soc. 2015, 137, 15209-15216 10.1021/jacs.5b09385
-
(2015)
J. Am. Chem. Soc.
, vol.137
, pp. 15209-15216
-
-
Chang, H.J.1
-
46
-
-
77958036913
-
In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries
-
Bhattacharyya, R. et al. In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries Nat. Mater. 2010, 9, 504-510 10.1038/nmat2764
-
(2010)
Nat. Mater.
, vol.9
, pp. 504-510
-
-
Bhattacharyya, R.1
-
47
-
-
84858796175
-
7Li MRI of Li batteries reveals location of microstructural lithium
-
Chandrashekar, S. et al. 7Li MRI of Li batteries reveals location of microstructural lithium Nat. Mater. 2012, 11, 311-315 10.1038/nmat3246
-
(2012)
Nat. Mater.
, vol.11
, pp. 311-315
-
-
Chandrashekar, S.1
|