메뉴 건너뛰기




Volumn 113, Issue 11, 2016, Pages 2862-2867

Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating

Author keywords

3D scaffold; Li composite; Li metal anode; Lithiophilic; Melt infusion

Indexed keywords

CARBON FIBER; CARBON NANOFIBER; LITHIUM; SILICA NANOPARTICLE;

EID: 84962592426     PISSN: 00278424     EISSN: 10916490     Source Type: Journal    
DOI: 10.1073/pnas.1518188113     Document Type: Article
Times cited : (781)

References (35)
  • 1
    • 84893029597 scopus 로고    scopus 로고
    • Lithium metal anodes for rechargeable batteries
    • Xu W, et al. (2014) Lithium metal anodes for rechargeable batteries. Energy Environ Sci 7(2):513-537.
    • (2014) Energy Environ Sci , vol.7 , Issue.2 , pp. 513-537
    • Xu, W.1
  • 2
    • 38749129063 scopus 로고    scopus 로고
    • High capacity Li ion battery anodes using Ge nanowires
    • Chan CK, Zhang XF, Cui Y (2008) High capacity Li ion battery anodes using Ge nanowires. Nano Lett 8(1):307-309.
    • (2008) Nano Lett , vol.8 , Issue.1 , pp. 307-309
    • Chan, C.K.1    Zhang, X.F.2    Cui, Y.3
  • 3
    • 0037958720 scopus 로고    scopus 로고
    • Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries
    • Lee KT, Jung YS, Oh SM (2003) Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries. J Am Chem Soc 125(19):5652-5653.
    • (2003) J Am Chem Soc , vol.125 , Issue.19 , pp. 5652-5653
    • Lee, K.T.1    Jung, Y.S.2    Oh, S.M.3
  • 4
    • 37849002504 scopus 로고    scopus 로고
    • High-performance lithium battery anodes using silicon nanowires
    • Chan CK, et al. (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3(1):31-35.
    • (2008) Nat Nanotechnol , vol.3 , Issue.1 , pp. 31-35
    • Chan, C.K.1
  • 5
    • 84890095656 scopus 로고    scopus 로고
    • Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries
    • Wang C, et al. (2013) Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat Chem 5(12):1042-1048.
    • (2013) Nat Chem , vol.5 , Issue.12 , pp. 1042-1048
    • Wang, C.1
  • 6
    • 84867672114 scopus 로고    scopus 로고
    • Designing nanostructured Si anodes for high energy lithium ion batteries
    • Wu H, Cui Y (2012) Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7(5):414-429.
    • (2012) Nano Today , vol.7 , Issue.5 , pp. 414-429
    • Wu, H.1    Cui, Y.2
  • 7
    • 84863110396 scopus 로고    scopus 로고
    • Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings
    • Yao Y, Liu N, McDowell MT, Pasta M, Cui Y (2012) Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings. Energy Environ Sci 5(7):7927-7930.
    • (2012) Energy Environ Sci , vol.5 , Issue.7 , pp. 7927-7930
    • Yao, Y.1    Liu, N.2    McDowell, M.T.3    Pasta, M.4    Cui, Y.5
  • 8
    • 84862805736 scopus 로고    scopus 로고
    • Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control
    • Wu H, et al. (2012) Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat Nanotechnol 7(5):310-315.
    • (2012) Nat Nanotechnol , vol.7 , Issue.5 , pp. 310-315
    • Wu, H.1
  • 9
    • 79960213953 scopus 로고    scopus 로고
    • Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life
    • Yao Y, et al. (2011) Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett 11(7):2949-2954.
    • (2011) Nano Lett , vol.11 , Issue.7 , pp. 2949-2954
    • Yao, Y.1
  • 10
    • 84895920205 scopus 로고    scopus 로고
    • A pomegranate-inspired nanoscale design for large-volumechange lithium battery anodes
    • Liu N, et al. (2014) A pomegranate-inspired nanoscale design for large-volumechange lithium battery anodes. Nat Nanotechnol 9(3):187-192.
    • (2014) Nat Nanotechnol , vol.9 , Issue.3 , pp. 187-192
    • Liu, N.1
  • 11
    • 84929160568 scopus 로고    scopus 로고
    • Polymer nanofiber-guided uniform lithium deposition for battery electrodes
    • Liang Z, et al. (2015) Polymer nanofiber-guided uniform lithium deposition for battery electrodes. Nano Lett 15(5):2910-2916.
    • (2015) Nano Lett , vol.15 , Issue.5 , pp. 2910-2916
    • Liang, Z.1
  • 12
    • 84887159109 scopus 로고    scopus 로고
    • Metallic anodes for next generation secondary batteries
    • Kim H, et al. (2013) Metallic anodes for next generation secondary batteries. Chem Soc Rev 42(23):9011-9034.
    • (2013) Chem Soc Rev , vol.42 , Issue.23 , pp. 9011-9034
    • Kim, H.1
  • 13
    • 0031220564 scopus 로고    scopus 로고
    • Future prospects of the lithium metal anode
    • Takehara Z (1997) Future prospects of the lithium metal anode. J Power Sources 68(1):82-86.
    • (1997) J Power Sources , vol.68 , Issue.1 , pp. 82-86
    • Takehara, Z.1
  • 14
    • 80052084454 scopus 로고    scopus 로고
    • Dendrite-free electrodeposition and reoxidation of lithium-sodium alloy for metal-anode battery
    • Stark JK, Ding Y, Kohl PA (2011) Dendrite-free electrodeposition and reoxidation of lithium-sodium alloy for metal-anode battery. J Electrochem Soc 158(10):A1100-A1105.
    • (2011) J Electrochem Soc , vol.158 , Issue.10 , pp. A1100-A1105
    • Stark, J.K.1    Ding, Y.2    Kohl, P.A.3
  • 15
    • 0036962155 scopus 로고    scopus 로고
    • Effects of some organic additives on lithium deposition in propylene carbonate
    • Mogi R, et al. (2002) Effects of some organic additives on lithium deposition in propylene carbonate. J Electrochem Soc 149(12):A1578-A1583.
    • (2002) J Electrochem Soc , vol.149 , Issue.12 , pp. A1578-A1583
    • Mogi, R.1
  • 16
    • 0000466358 scopus 로고
    • Long cycle-life secondary lithium cells utilizing tetrahydrofuran
    • Abraham KM, Foos JS, Goldman JL (1984) Long cycle-life secondary lithium cells utilizing tetrahydrofuran. J Electrochem Soc 131(9):2197-2199.
    • (1984) J Electrochem Soc , vol.131 , Issue.9 , pp. 2197-2199
    • Abraham, K.M.1    Foos, J.S.2    Goldman, J.L.3
  • 17
    • 0028695860 scopus 로고
    • In situ scanning vibrating electrode technique for the characterization of interface between lithium electrode and electrolytes containing additives
    • Ishikawa M, Yoshitake S, Morita M, Matsuda Y (1994) In situ scanning vibrating electrode technique for the characterization of interface between lithium electrode and electrolytes containing additives. J Electrochem Soc 141(12):L159-L161.
    • (1994) J Electrochem Soc , vol.141 , Issue.12 , pp. L159-L161
    • Ishikawa, M.1    Yoshitake, S.2    Morita, M.3    Matsuda, Y.4
  • 18
    • 84905817375 scopus 로고    scopus 로고
    • Interconnected hollow carbon nanospheres for stable lithium metal anodes
    • Zheng G, et al. (2014) Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat Nanotechnol 9(8):618-623.
    • (2014) Nat Nanotechnol , vol.9 , Issue.8 , pp. 618-623
    • Zheng, G.1
  • 19
    • 84907861729 scopus 로고    scopus 로고
    • Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode
    • Yan K, et al. (2014) Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett 14(10):6016-6022.
    • (2014) Nano Lett , vol.14 , Issue.10 , pp. 6016-6022
    • Yan, K.1
  • 20
    • 85027953053 scopus 로고    scopus 로고
    • Dendrite-free nanostructured anode: Entrapment of lithium in a 3D fibrous matrix for ultra-stable lithium-sulfur batteries
    • Cheng XB, Peng HJ, Huang JQ, Wei F, Zhang Q (2014) Dendrite-free nanostructured anode: Entrapment of lithium in a 3D fibrous matrix for ultra-stable lithium-sulfur batteries. Small 10(21):4257-4263.
    • (2014) Small , vol.10 , Issue.21 , pp. 4257-4263
    • Cheng, X.B.1    Peng, H.J.2    Huang, J.Q.3    Wei, F.4    Zhang, Q.5
  • 21
    • 84937556943 scopus 로고    scopus 로고
    • Conductive porous carbon film as a lithium metal storage medium
    • Kang HK, Woo SG, Kim JH, Lee SR, Kim YJ (2015) Conductive porous carbon film as a lithium metal storage medium. Electrochim Acta 176(10):172-178.
    • (2015) Electrochim Acta , vol.176 , Issue.10 , pp. 172-178
    • Kang, H.K.1    Woo, S.G.2    Kim, J.H.3    Lee, S.R.4    Kim, Y.J.5
  • 22
    • 0036603992 scopus 로고    scopus 로고
    • A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions
    • Aurbach D, Zinigrad E, Cohen Y, Teller H (2002) A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ion 148(3):405-416.
    • (2002) Solid State Ion , vol.148 , Issue.3 , pp. 405-416
    • Aurbach, D.1    Zinigrad, E.2    Cohen, Y.3    Teller, H.4
  • 23
    • 84901650312 scopus 로고    scopus 로고
    • Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure
    • Liang Z, et al. (2014) Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure. ACS Nano 8(5):5249-5256.
    • (2014) ACS Nano , vol.8 , Issue.5 , pp. 5249-5256
    • Liang, Z.1
  • 24
    • 84862281347 scopus 로고    scopus 로고
    • A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes
    • Liu N, et al. (2012) A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett 12(6):3315-3321.
    • (2012) Nano Lett , vol.12 , Issue.6 , pp. 3315-3321
    • Liu, N.1
  • 25
    • 84861630450 scopus 로고    scopus 로고
    • Self-assembled germanium/carbon nanostructures as high-power anode material for the lithium-ion battery
    • Seng KH, Park MH, Guo ZP, Liu HK, Cho J (2012) Self-assembled germanium/carbon nanostructures as high-power anode material for the lithium-ion battery. Angew Chem Int Ed Engl 51(23):5657-5661.
    • (2012) Angew Chem Int Ed Engl , vol.51 , Issue.23 , pp. 5657-5661
    • Seng, K.H.1    Park, M.H.2    Guo, Z.P.3    Liu, H.K.4    Cho, J.5
  • 26
    • 80054030179 scopus 로고    scopus 로고
    • Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries
    • Zheng G, Yang Y, Cha JJ, Hong SS, Cui Y (2011) Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett 11(10):4462-4467.
    • (2011) Nano Lett , vol.11 , Issue.10 , pp. 4462-4467
    • Zheng, G.1    Yang, Y.2    Cha, J.J.3    Hong, S.S.4    Cui, Y.5
  • 27
    • 84877789697 scopus 로고    scopus 로고
    • Quantum engineering at the silicon surface using dangling bonds
    • Schofield SR, et al. (2013) Quantum engineering at the silicon surface using dangling bonds. Nat Commun 4:1649.
    • (2013) Nat Commun , vol.4 , pp. 1649
    • Schofield, S.R.1
  • 28
    • 84914102043 scopus 로고    scopus 로고
    • Wetting properties of liquid lithium on select fusion relevant surfaces
    • Fiflis P, et al. (2014) Wetting properties of liquid lithium on select fusion relevant surfaces. Fusion Eng Des 89(12):2827-2832.
    • (2014) Fusion Eng des , vol.89 , Issue.12 , pp. 2827-2832
    • Fiflis, P.1
  • 29
    • 84908257347 scopus 로고    scopus 로고
    • Lithium silicide nanocrystals: Synthesis, chemical stability, thermal stability, and carbon encapsulation
    • Cloud JE, et al. (2014) Lithium silicide nanocrystals: Synthesis, chemical stability, thermal stability, and carbon encapsulation. Inorg Chem 53(20):11289-11297.
    • (2014) Inorg Chem , vol.53 , Issue.20 , pp. 11289-11297
    • Cloud, J.E.1
  • 30
    • 79952672319 scopus 로고    scopus 로고
    • Structure and properties of Li-Si alloys: A first-principles study
    • Kim H, Chou CY, Ekerdt JG, Hwang GS (2011) Structure and properties of Li-Si alloys: A first-principles study. J Phys Chem B 115(5):2514-2521.
    • (2011) J Phys Chem B , vol.115 , Issue.5 , pp. 2514-2521
    • Kim, H.1    Chou, C.Y.2    Ekerdt, J.G.3    Hwang, G.S.4
  • 31
    • 84855927066 scopus 로고    scopus 로고
    • Lithium peroxide surfaces are metallic, while lithium oxide surfaces are not
    • Radin MD, Rodriguez JF, Tian F, Siegel DJ (2012) Lithium peroxide surfaces are metallic, while lithium oxide surfaces are not. J Am Chem Soc 134(2):1093-1103.
    • (2012) J Am Chem Soc , vol.134 , Issue.2 , pp. 1093-1103
    • Radin, M.D.1    Rodriguez, J.F.2    Tian, F.3    Siegel, D.J.4
  • 32
    • 84880397398 scopus 로고    scopus 로고
    • Li-B alloy as anode material for lithium/sulfur battery
    • Duan B, et al. (2013) Li-B alloy as anode material for lithium/sulfur battery. ECS Electrochem Lett 2(6):A47-A51.
    • (2013) ECS Electrochem Lett , vol.2 , Issue.6 , pp. A47-A51
    • Duan, B.1
  • 33
    • 84961289456 scopus 로고    scopus 로고
    • Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode
    • Bieker G, Winter M, Bieker P (2015) Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode. Phys Chem Chem Phys 17(14):8670-8679.
    • (2015) Phys Chem Chem Phys , vol.17 , Issue.14 , pp. 8670-8679
    • Bieker, G.1    Winter, M.2    Bieker, P.3
  • 34
    • 84910042270 scopus 로고    scopus 로고
    • Stable lithium electrodeposition in liquid and nanoporous solid electrolytes
    • Lu Y, Tu Z, Archer LA (2014) Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat Mater 13(10):961-969.
    • (2014) Nat Mater , vol.13 , Issue.10 , pp. 961-969
    • Lu, Y.1    Tu, Z.2    Archer, L.A.3
  • 35
    • 84891784511 scopus 로고    scopus 로고
    • Ionic-liquid-nanoparticle hybrid electrolytes: Applications in lithium metal batteries
    • Lu Y, Korf K, Kambe Y, Tu Z, Archer LA (2014) Ionic-liquid-nanoparticle hybrid electrolytes: Applications in lithium metal batteries. Angew Chem Int Ed Engl 53(2): 488-492.
    • (2014) Angew Chem Int Ed Engl , vol.53 , Issue.2 , pp. 488-492
    • Lu, Y.1    Korf, K.2    Kambe, Y.3    Tu, Z.4    Archer, L.A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.