메뉴 건너뛰기




Volumn 11, Issue 7, 2016, Pages 626-632

Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes

Author keywords

[No Author keywords available]

Indexed keywords

ANODES; COBALT COMPOUNDS; GRAPHENE; LITHIUM COMPOUNDS; METALS; NANOTECHNOLOGY; SECONDARY BATTERIES; SOLID ELECTROLYTES;

EID: 84961390156     PISSN: 17483387     EISSN: 17483395     Source Type: Journal    
DOI: 10.1038/nnano.2016.32     Document Type: Article
Times cited : (1641)

References (50)
  • 1
    • 0035890440 scopus 로고    scopus 로고
    • Issues and challenges facing rechargeable lithium batteries
    • Tarascon J. M, & Armand M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359-367 (2001).
    • (2001) Nature , vol.414 , pp. 359-367
    • Tarascon, J.M.1    Armand, M.2
  • 2
    • 38949102073 scopus 로고    scopus 로고
    • Building better batteries
    • Armand M, & Tarascon J. M. Building better batteries. Nature 451, 652-657 (2008).
    • (2008) Nature , vol.451 , pp. 652-657
    • Armand, M.1    Tarascon, J.M.2
  • 3
    • 84865120266 scopus 로고    scopus 로고
    • Opportunities and challenges for a sustainable energy future
    • Chu S, & Majumdar A. Opportunities and challenges for a sustainable energy future. Nature 488, 294-303 (2012).
    • (2012) Nature , vol.488 , pp. 294-303
    • Chu, S.1    Majumdar, A.2
  • 5
    • 84893029597 scopus 로고    scopus 로고
    • Lithium metal anodes for rechargeable batteries
    • Xu W, et al. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513-537 (2014).
    • (2014) Energy Environ. Sci , vol.7 , pp. 513-537
    • Xu, W.1
  • 6
    • 0032140097 scopus 로고    scopus 로고
    • A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte
    • Yamaki J.-i, et al. A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte. J. Power Sources 74 219-227 (1998).
    • (1998) J. Power Sources , vol.74 , pp. 219-227
    • Yamaki, J.-I.1
  • 7
    • 0036603992 scopus 로고    scopus 로고
    • A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions
    • Aurbach D, Zinigrad E, Cohen Y, & Teller H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics 148 405-416 (2002).
    • (2002) Solid State Ionics , vol.148 , pp. 405-416
    • Aurbach, D.1    Zinigrad, E.2    Cohen, Y.3    Teller, H.4
  • 8
    • 84961289456 scopus 로고    scopus 로고
    • Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode
    • Bieker G, Winter M, & Bieker P. Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode. Phys. Chem. Chem. Phys. 17, 8670-8679 (2015).
    • (2015) Phys. Chem. Chem. Phys , vol.17 , pp. 8670-8679
    • Bieker, G.1    Winter, M.2    Bieker, P.3
  • 9
    • 0018739724 scopus 로고
    • The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems-The solid electrolyte interphase model
    • Peled E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems-The solid electrolyte interphase model. J. Electrochem. Soc. 126, 2047-2051 (1979).
    • (1979) J. Electrochem. Soc , vol.126 , pp. 2047-2051
    • Peled, E.1
  • 10
    • 0036806190 scopus 로고    scopus 로고
    • Attempts to improve the behavior of Li electrodes in rechargeable lithium batteries
    • Aurbach D, et al. Attempts to improve the behavior of Li electrodes in rechargeable lithium batteries. J. Electrochem. Soc. 149, A1267-A1277 (2002).
    • (2002) J. Electrochem. Soc , vol.149 , pp. A1267-A1277
    • Aurbach, D.1
  • 11
    • 84916613973 scopus 로고    scopus 로고
    • Electrolytes and interphases in Li-ion batteries and beyond
    • Xu K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503-11618 (2014).
    • (2014) Chem. Rev , vol.114 , pp. 11503-11618
    • Xu, K.1
  • 12
    • 77958036913 scopus 로고    scopus 로고
    • In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries
    • Bhattacharyya R, et al. In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nature Mater. 9, 504-510 (2010).
    • (2010) Nature Mater , vol.9 , pp. 504-510
    • Bhattacharyya, R.1
  • 13
    • 84858796175 scopus 로고    scopus 로고
    • 7Li MRI of Li batteries reveals location of microstructural lithium
    • Chandrashekar S, et al. 7Li MRI of Li batteries reveals location of microstructural lithium. Nature Mater. 11, 311-315 (2012).
    • (2012) Nature Mater , vol.11 , pp. 311-315
    • Chandrashekar, S.1
  • 14
    • 84890572462 scopus 로고    scopus 로고
    • Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes
    • Harry K. J, Hallinan D. T, Parkinson D. Y, MacDowell A. A, & Balsara N. P. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nature Mater. 13, 69-73 (2014).
    • (2014) Nature Mater , vol.13 , pp. 69-73
    • Harry, K.J.1    Hallinan, D.T.2    Parkinson, D.Y.3    MacDowell, A.A.4    Balsara, N.P.5
  • 15
    • 84910042270 scopus 로고    scopus 로고
    • Stable lithium electrodeposition in liquid and nanoporous solid electrolytes
    • Lu Y, Tu Z, & Archer L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nature Mater. 13, 961-969 (2014).
    • (2014) Nature Mater , vol.13 , pp. 961-969
    • Lu, Y.1    Tu, Z.2    Archer, L.A.3
  • 16
    • 0346334088 scopus 로고    scopus 로고
    • Effect of vinylene carbonate as additive to electrolyte for lithium metal anode
    • Ota H, Shima K, Ue M, & Yamaki J.-i. Effect of vinylene carbonate as additive to electrolyte for lithium metal anode. Electrochim. Acta 49, 565-572 (2004).
    • (2004) Electrochim. Acta , vol.49 , pp. 565-572
    • Ota, H.1    Shima, K.2    Ue, M.3    Yamaki, J.-I.4
  • 17
    • 1842479657 scopus 로고    scopus 로고
    • Characterization of lithium electrode in lithium imides/ethylene carbonate and cyclic ether electrolytes: II surface chemistry
    • Ota H, Sakata Y, Wang X, Sasahara J, & Yasukawa E. Characterization of lithium electrode in lithium imides/ethylene carbonate and cyclic ether electrolytes: II. surface chemistry. J. Electrochem. Soc. 151, A437-A446 (2004).
    • (2004) J. Electrochem. Soc , vol.151 , pp. A437-A446
    • Ota, H.1    Sakata, Y.2    Wang, X.3    Sasahara, J.4    Yasukawa, E.5
  • 18
    • 84875415014 scopus 로고    scopus 로고
    • Dendrite-free lithium deposition via self-healing electrostatic shield mechanism
    • Ding F, et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450-4456 (2013).
    • (2013) J. Am. Chem. Soc , vol.135 , pp. 4450-4456
    • Ding, F.1
  • 19
    • 84923365387 scopus 로고    scopus 로고
    • High rate and stable cycling of lithium metal anode
    • Qian J, et al. High rate and stable cycling of lithium metal anode. Nature Commun. 6, 6362 (2015).
    • (2015) Nature Commun , vol.6 , pp. 6362
    • Qian, J.1
  • 20
    • 52649141034 scopus 로고    scopus 로고
    • Effect of electrolyte composition on lithium dendrite growth
    • Crowther O. & West A. C. Effect of electrolyte composition on lithium dendrite growth. J. Electrochem. Soc. 155, A806-A811 (2008).
    • (2008) J. Electrochem. Soc , vol.155 , pp. A806-A811
    • Crowther, O.1    West, A.C.2
  • 21
    • 84935832834 scopus 로고    scopus 로고
    • The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth
    • Li W, et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nature Commun. 6, 7436 (2015).
    • (2015) Nature Commun , vol.6 , pp. 7436
    • Li, W.1
  • 22
    • 84857419572 scopus 로고    scopus 로고
    • Resolution of the modulus versus adhesion dilemma in solid polymer electrolytes for rechargeable lithium metal batteries
    • Stone G. M, et al. Resolution of the modulus versus adhesion dilemma in solid polymer electrolytes for rechargeable lithium metal batteries. J. Electrochem. Soc. 159, A222-A227 (2012).
    • (2012) J. Electrochem. Soc , vol.159 , pp. A222-A227
    • Stone, G.M.1
  • 23
    • 84876684025 scopus 로고    scopus 로고
    • Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries
    • Bouchet R, et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nature Mater. 12, 452-457 (2013).
    • (2013) Nature Mater , vol.12 , pp. 452-457
    • Bouchet, R.1
  • 25
    • 0000482535 scopus 로고    scopus 로고
    • Lithium ionic conductor thio-LISICON: The Li2SGeS2P2S5 system
    • Kanno R, & Murayama M. Lithium ionic conductor thio-LISICON: the Li2SGeS2P2S5 system. J. Electrochem. Soc. 148, A742-A746 (2001).
    • (2001) J. Electrochem. Soc , vol.148 , pp. A742-A746
    • Kanno, R.1    Murayama, M.2
  • 26
    • 80052054095 scopus 로고    scopus 로고
    • A lithium superionic conductor
    • Kamaya N, et al. A lithium superionic conductor. Nature Mater. 10, 682-686 (2011).
    • (2011) Nature Mater , vol.10 , pp. 682-686
    • Kamaya, N.1
  • 27
    • 35349008587 scopus 로고    scopus 로고
    • Fast lithium ion conduction in garnet-Type Li7La3Zr2O12
    • Murugan R, Thangadurai V, & Weppner W. Fast lithium ion conduction in garnet-Type Li7La3Zr2O12. Angew. Chem. Int. Ed. 46, 7778-7781 (2007).
    • (2007) Angew. Chem. Int. Ed. , vol.46 , pp. 7778-7781
    • Murugan, R.1    Thangadurai, V.2    Weppner, W.3
  • 28
    • 84905817375 scopus 로고    scopus 로고
    • Interconnected hollow carbon nanospheres for stable lithium metal anodes
    • Zheng G, et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nature Nanotech. 9, 618-623 (2014).
    • (2014) Nature Nanotech , vol.9 , pp. 618-623
    • Zheng, G.1
  • 29
    • 84907861729 scopus 로고    scopus 로고
    • Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode
    • Yan K, et al. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 14, 6016-6022 (2014).
    • (2014) Nano Lett , vol.14 , pp. 6016-6022
    • Yan, K.1
  • 30
    • 0038033665 scopus 로고
    • Single-shell carbon nanotubes of 1-nm diameter
    • Iijima S, & Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603-605 (1993).
    • (1993) Nature , vol.363 , pp. 603-605
    • Iijima, S.1    Ichihashi, T.2
  • 31
    • 0034723247 scopus 로고    scopus 로고
    • Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load
    • Yu M.-F, et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637-640 (2000).
    • (2000) Science , vol.287 , pp. 637-640
    • Yu, M.-F.1
  • 32
    • 27744534165 scopus 로고    scopus 로고
    • Two-dimensional gas of massless Dirac fermions in graphene
    • Novoselov K. S, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197-200 (2005).
    • (2005) Nature , vol.438 , pp. 197-200
    • Novoselov, K.S.1
  • 34
    • 0033556058 scopus 로고    scopus 로고
    • Synthesis and applications of supramolecular-Templated mesoporous materials
    • Ying J. Y, Mehnert C. P, & Wong M. S. Synthesis and applications of supramolecular-Templated mesoporous materials. Angew. Chem. Int. Ed. 38, 56-77 (1999).
    • (1999) Angew. Chem. Int. Ed. , vol.38 , pp. 56-77
    • Ying, J.Y.1    Mehnert, C.P.2    Wong, M.S.3
  • 35
    • 11644298091 scopus 로고
    • Mechanisms for lithium insertion in carbonaceous materials
    • Dahn J. R, Zheng T, Liu Y. H, & Xue J. S. Mechanisms for lithium insertion in carbonaceous materials. Science 270, 590-593 (1995).
    • (1995) Science , vol.270 , pp. 590-593
    • Dahn, J.R.1    Zheng, T.2    Liu, Y.H.3    Xue, J.S.4
  • 36
    • 25444456944 scopus 로고    scopus 로고
    • Single wall carbon nanotube paper as anode for lithium-ion battery
    • Ng S. H, Wang J, Guo Z. P, Wang G. X, & Liu H. K. Single wall carbon nanotube paper as anode for lithium-ion battery. Electrochim. Acta 51, 23-28 (2005).
    • (2005) Electrochim. Acta , vol.51 , pp. 23-28
    • Ng, S.H.1    Wang, J.2    Guo, Z.P.3    Wang, G.X.4    Liu, H.K.5
  • 37
    • 77955230632 scopus 로고    scopus 로고
    • High-power lithium batteries from functionalized carbonnanotube electrodes
    • Lee S. W, et al. High-power lithium batteries from functionalized carbonnanotube electrodes. Nature Nanotech. 5, 531-537 (2010).
    • (2010) Nature Nanotech , vol.5 , pp. 531-537
    • Lee, S.W.1
  • 38
    • 80755185475 scopus 로고    scopus 로고
    • Silicon-carbon nanotube coaxial sponge as Li-ion anodes with high areal capacity
    • Hu L. B, et al. Silicon-carbon nanotube coaxial sponge as Li-ion anodes with high areal capacity. Adv. Energy Mater. 1, 523-527 (2011).
    • (2011) Adv. Energy Mater , vol.1 , pp. 523-527
    • Hu, L.B.1
  • 39
    • 79960237024 scopus 로고    scopus 로고
    • Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability
    • Wang H. L, et al. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 11, 2644-2647 (2011).
    • (2011) Nano Lett , vol.11 , pp. 2644-2647
    • Wang, H.L.1
  • 40
    • 84921957935 scopus 로고    scopus 로고
    • Charging graphene for energy
    • Liu J. Charging graphene for energy. Nature Nanotech. 9, 739-741 (2014).
    • (2014) Nature Nanotech , vol.9 , pp. 739-741
    • Liu, J.1
  • 41
    • 84924854984 scopus 로고    scopus 로고
    • The role of graphene for electrochemical energy storage
    • Raccichini R, Varzi A, Passerini S, & Scrosati B. The role of graphene for electrochemical energy storage. Nature Mater. 14, 271-279 (2015).
    • (2015) Nature Mater , vol.14 , pp. 271-279
    • Raccichini, R.1    Varzi, A.2    Passerini, S.3    Scrosati, B.4
  • 42
    • 84933060055 scopus 로고    scopus 로고
    • Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density
    • Son I. H, et al. Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density. Nature Commun. 6, 7393 (2015).
    • (2015) Nature Commun , vol.6 , pp. 7393
    • Son, I.H.1
  • 43
    • 84937459362 scopus 로고    scopus 로고
    • Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge
    • Zhou G, Paek E, Hwang G. S, & Manthiram A. Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nature Commun. 6, 7760 (2015).
    • (2015) Nature Commun , vol.6 , pp. 7760
    • Zhou, G.1    Paek, E.2    Hwang, G.S.3    Manthiram, A.4
  • 44
    • 78649614247 scopus 로고    scopus 로고
    • Synthesis of nitrogen-doped graphene films for lithium battery application
    • Reddy A. L. M, et al. Synthesis of nitrogen-doped graphene films for lithium battery application. Acs Nano 4, 6337-6342 (2010).
    • (2010) Acs Nano , vol.4 , pp. 6337-6342
    • Reddy, A.L.M.1
  • 45
    • 34547199896 scopus 로고    scopus 로고
    • Preparation and characterization of graphene oxide paper
    • Dikin D. A, et al. Preparation and characterization of graphene oxide paper. Nature 448, 457-460 (2007).
    • (2007) Nature , vol.448 , pp. 457-460
    • Dikin, D.A.1
  • 46
    • 84891558212 scopus 로고    scopus 로고
    • Actuation triggered exfoliation of graphene oxide at low temperature for electrochemical capacitor applications
    • Sun G, et al. Actuation triggered exfoliation of graphene oxide at low temperature for electrochemical capacitor applications. Carbon 68, 748-754 (2014).
    • (2014) Carbon , vol.68 , pp. 748-754
    • Sun, G.1
  • 47
    • 84939491980 scopus 로고    scopus 로고
    • Popping of graphite oxide: Application in preparing metal nanoparticle catalysts
    • Gao Y, et al. Popping of graphite oxide: application in preparing metal nanoparticle catalysts. Adv. Mater. 27, 4688-4694 (2015).
    • (2015) Adv. Mater , vol.27 , pp. 4688-4694
    • Gao, Y.1
  • 48
    • 78650092372 scopus 로고    scopus 로고
    • Improved synthesis of graphene oxide
    • Marcano D. C, et al. Improved synthesis of graphene oxide. ACS Nano 4, 4806-4814 (2010).
    • (2010) ACS Nano , vol.4 , pp. 4806-4814
    • Marcano, D.C.1
  • 49
    • 80052164561 scopus 로고    scopus 로고
    • Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies
    • Ganguly A, Sharma S, Papakonstantinou P, & Hamilton J. Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. J. Phys. Chem. C 115, 17009-17019 (2011).
    • (2011) J. Phys. Chem. C , vol.115 , pp. 17009-17019
    • Ganguly, A.1    Sharma, S.2    Papakonstantinou, P.3    Hamilton, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.