메뉴 건너뛰기




Volumn 56, Issue 11, 2016, Pages 2253-2262

Debunking the idea that ligand efficiency indices are superior to pIC50 as QSAR activities

Author keywords

[No Author keywords available]

Indexed keywords

EFFICIENCY;

EID: 84999266506     PISSN: 15499596     EISSN: 1549960X     Source Type: Journal    
DOI: 10.1021/acs.jcim.6b00431     Document Type: Article
Times cited : (13)

References (19)
  • 1
    • 1942453243 scopus 로고    scopus 로고
    • Ligand Efficiency: A Useful Metric for Lead Selection
    • Hopkins, A. L.; Groom, C. R.; Alex, A. Ligand Efficiency: A Useful Metric for Lead Selection Drug Discovery Today 2004, 9, 430-431 10.1016/S1359-6446(04)03069-7
    • (2004) Drug Discovery Today , vol.9 , pp. 430-431
    • Hopkins, A.L.1    Groom, C.R.2    Alex, A.3
  • 2
    • 17044403086 scopus 로고    scopus 로고
    • Ligand Efficiency Indices as Guideposts for Drug Discovery
    • Abad-Zapatero, C.; Metz, J. T. Ligand Efficiency Indices as Guideposts for Drug Discovery Drug Discovery Today 2005, 10, 464-469 10.1016/S1359-6446(05)03386-6
    • (2005) Drug Discovery Today , vol.10 , pp. 464-469
    • Abad-Zapatero, C.1    Metz, J.T.2
  • 3
    • 84885172160 scopus 로고    scopus 로고
    • Setting Expectations in Molecular Optimizations: Strengths and Limitations of Commonly Used Composite Parameters
    • Shultz, M. D. Setting Expectations in Molecular Optimizations: Strengths and Limitations of Commonly Used Composite Parameters Bioorg. Med. Chem. Lett. 2013, 23, 5980-5991 10.1016/j.bmcl.2013.08.029
    • (2013) Bioorg. Med. Chem. Lett. , vol.23 , pp. 5980-5991
    • Shultz, M.D.1
  • 4
    • 84904389204 scopus 로고    scopus 로고
    • Ligand Efficiency Metrics Considered Harmful. J
    • Kenny, P. W.; Leitao, A.; Montanari, C. A. Ligand Efficiency Metrics Considered Harmful. J J. Comput.-Aided Mol. Des. 2014, 28, 699-710 10.1007/s10822-014-9757-8
    • (2014) J. Comput.-Aided Mol. Des. , vol.28 , pp. 699-710
    • Kenny, P.W.1    Leitao, A.2    Montanari, C.A.3
  • 5
    • 84887036726 scopus 로고    scopus 로고
    • Training Based on Ligand Efficiency Improves Prediction of Bioactivities of Ligands and Drug Target Proteins
    • Sugaya, N. Training Based on Ligand Efficiency Improves Prediction of Bioactivities of Ligands and Drug Target Proteins J. Chem. Inf. Model. 2013, 53, 2525-2537 10.1021/ci400240u
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 2525-2537
    • Sugaya, N.1
  • 6
    • 84908247106 scopus 로고    scopus 로고
    • Ligand Efficiency-Based Support Vector Regression Models for Improvement of Regression Models for Predicting Bioactivities of Ligands to Drug Target Proteins
    • Sugaya, N. Ligand Efficiency-Based Support Vector Regression Models for Improvement of Regression Models for Predicting Bioactivities of Ligands to Drug Target Proteins J. Chem. Inf. Model. 2014, 54, 2751-2763 10.1021/ci5003262
    • (2014) J. Chem. Inf. Model. , vol.54 , pp. 2751-2763
    • Sugaya, N.1
  • 7
    • 84956584689 scopus 로고    scopus 로고
    • Ligand Efficiency Outperforms pIC50 on Both 2D MLR and 3D CoMFA Models: A Case Study on AR Antagonists
    • Li, J.; Bai, F.; Liu, H.; Gramatica, P. Ligand Efficiency Outperforms pIC50 on Both 2D MLR and 3D CoMFA Models: a Case Study on AR Antagonists Chem. Biol. Drug Des. 2015, 86, 1501-1517 10.1111/cbdd.12619
    • (2015) Chem. Biol. Drug Des. , vol.86 , pp. 1501-1517
    • Li, J.1    Bai, F.2    Liu, H.3    Gramatica, P.4
  • 8
    • 84983440693 scopus 로고    scopus 로고
    • Benchmarking the Predictive Power of Ligand Efficiency Indices in QSAR
    • Cortes-Ciriano, I. Benchmarking the Predictive Power of Ligand Efficiency Indices In QSAR J. Chem. Inf. Model. 2016, 56, 1576-1587 10.1021/acs.jcim.6b00136
    • (2016) J. Chem. Inf. Model. , vol.56 , pp. 1576-1587
    • Cortes-Ciriano, I.1
  • 9
    • 84876520796 scopus 로고    scopus 로고
    • Time-Split Cross-Validation as a Method for Estimating the Goodness of Prospective Prediction
    • Sheridan, R. P. Time-Split Cross-Validation as a Method for Estimating the Goodness of Prospective Prediction J. Chem. Inf. Model. 2013, 53, 783-790 10.1021/ci400084k
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 783-790
    • Sheridan, R.P.1
  • 10
    • 84999267587 scopus 로고    scopus 로고
    • Dassault Systemes Biovia Pipeline Pilot Overview (accessed October 19)
    • Dassault Systemes Biovia Pipeline Pilot Overview http://accelrys.com/products/collaborative-science/biovia-pipeline-pilot/ (accessed October 19, 2016).
    • (2016)
  • 11
    • 0028466540 scopus 로고
    • Comparison of Automatic Three-Dimensional Model Builders Using 639 X-Ray Structures
    • Sadowski, J.; Gasteiger, J.; Klebe, G. Comparison of Automatic Three-Dimensional Model Builders Using 639 X-Ray Structures J. Chem. Inf. Model. 1994, 34, 1000-1008 10.1021/ci00020a039
    • (1994) J. Chem. Inf. Model. , vol.34 , pp. 1000-1008
    • Sadowski, J.1    Gasteiger, J.2    Klebe, G.3
  • 12
    • 33845379303 scopus 로고
    • Atom Pairs as Molecular Features in Structure-Activity Studies: Definition and Application
    • Carhart, R. E.; Smith, D. H.; Venkataraghavan, R. Atom Pairs as Molecular Features in Structure-Activity Studies: Definition and Application J. Chem. Inf. Model. 1985, 25, 64-73 10.1021/ci00046a002
    • (1985) J. Chem. Inf. Model. , vol.25 , pp. 64-73
    • Carhart, R.E.1    Smith, D.H.2    Venkataraghavan, R.3
  • 14
    • 77952772341 scopus 로고    scopus 로고
    • Extended-Connectivity Fingerprints
    • Rogers, D.; Hahn, M. Extended-Connectivity Fingerprints J. Chem. Inf. Model. 2010, 50, 742-754 10.1021/ci100050t
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 742-754
    • Rogers, D.1    Hahn, M.2
  • 15
    • 84999091257 scopus 로고    scopus 로고
    • Chemical Computing Group QuaSAR descriptors (accessed October 19)
    • Chemical Computing Group QuaSAR descriptors https://www.chemcomp.com/journal/descr.htm (accessed October 19, 2016).
    • (2016)
  • 16
    • 0345548657 scopus 로고    scopus 로고
    • Random Forest: A Classification and Regression Tool for Compound Classification and QSAR Modeling
    • Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J. C.; Sheridan, R. P.; Feuston, B. P. Random Forest: A Classification And Regression Tool for Compound Classification and QSAR Modeling J. Chem. Inf. Comput. Sci. 2003, 43, 1947-1958 10.1021/ci034160g
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , pp. 1947-1958
    • Svetnik, V.1    Liaw, A.2    Tong, C.3    Culberson, J.C.4    Sheridan, R.P.5    Feuston, B.P.6
  • 17
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman, L. Random Forests Machine Learning 2001, 45, 5-32 10.1023/A:1010933404324
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 18
    • 33846829987 scopus 로고    scopus 로고
    • The pls Package: Principal Component and Partial Least Squares Regression in R
    • Mevik, B.-H.; Wehrens, R. The pls Package: Principal Component and Partial Least Squares Regression in R J. Stat. Software 2007, 18, issue2 10.18637/jss.v018.i02
    • (2007) J. Stat. Software , vol.18 , pp. issue2
    • Mevik, B.-H.1    Wehrens, R.2
  • 19
    • 84923367417 scopus 로고    scopus 로고
    • Deep Neural Networks as a Method for Quantitative Structure-Activity Relationships
    • Ma, J.; Sheridan, R. P.; Liaw, A.; Dahl, G. E.; Svetnik, V. Deep Neural Networks as a Method for Quantitative Structure-Activity Relationships J. Chem. Inf. Model. 2015, 55, 263-274 10.1021/ci500747n
    • (2015) J. Chem. Inf. Model. , vol.55 , pp. 263-274
    • Ma, J.1    Sheridan, R.P.2    Liaw, A.3    Dahl, G.E.4    Svetnik, V.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.