-
1
-
-
1942453243
-
Ligand Efficiency: A Useful Metric for Lead Selection
-
Hopkins, A. L.; Groom, C. R.; Alex, A. Ligand Efficiency: A Useful Metric for Lead Selection Drug Discovery Today 2004, 9, 430-431 10.1016/S1359-6446(04)03069-7
-
(2004)
Drug Discovery Today
, vol.9
, pp. 430-431
-
-
Hopkins, A.L.1
Groom, C.R.2
Alex, A.3
-
2
-
-
17044403086
-
Ligand Efficiency Indices as Guideposts for Drug Discovery
-
Abad-Zapatero, C.; Metz, J. T. Ligand Efficiency Indices as Guideposts for Drug Discovery Drug Discovery Today 2005, 10, 464-469 10.1016/S1359-6446(05)03386-6
-
(2005)
Drug Discovery Today
, vol.10
, pp. 464-469
-
-
Abad-Zapatero, C.1
Metz, J.T.2
-
3
-
-
84885172160
-
Setting Expectations in Molecular Optimizations: Strengths and Limitations of Commonly Used Composite Parameters
-
Shultz, M. D. Setting Expectations in Molecular Optimizations: Strengths and Limitations of Commonly Used Composite Parameters Bioorg. Med. Chem. Lett. 2013, 23, 5980-5991 10.1016/j.bmcl.2013.08.029
-
(2013)
Bioorg. Med. Chem. Lett.
, vol.23
, pp. 5980-5991
-
-
Shultz, M.D.1
-
4
-
-
84904389204
-
Ligand Efficiency Metrics Considered Harmful. J
-
Kenny, P. W.; Leitao, A.; Montanari, C. A. Ligand Efficiency Metrics Considered Harmful. J J. Comput.-Aided Mol. Des. 2014, 28, 699-710 10.1007/s10822-014-9757-8
-
(2014)
J. Comput.-Aided Mol. Des.
, vol.28
, pp. 699-710
-
-
Kenny, P.W.1
Leitao, A.2
Montanari, C.A.3
-
5
-
-
84887036726
-
Training Based on Ligand Efficiency Improves Prediction of Bioactivities of Ligands and Drug Target Proteins
-
Sugaya, N. Training Based on Ligand Efficiency Improves Prediction of Bioactivities of Ligands and Drug Target Proteins J. Chem. Inf. Model. 2013, 53, 2525-2537 10.1021/ci400240u
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 2525-2537
-
-
Sugaya, N.1
-
6
-
-
84908247106
-
Ligand Efficiency-Based Support Vector Regression Models for Improvement of Regression Models for Predicting Bioactivities of Ligands to Drug Target Proteins
-
Sugaya, N. Ligand Efficiency-Based Support Vector Regression Models for Improvement of Regression Models for Predicting Bioactivities of Ligands to Drug Target Proteins J. Chem. Inf. Model. 2014, 54, 2751-2763 10.1021/ci5003262
-
(2014)
J. Chem. Inf. Model.
, vol.54
, pp. 2751-2763
-
-
Sugaya, N.1
-
7
-
-
84956584689
-
Ligand Efficiency Outperforms pIC50 on Both 2D MLR and 3D CoMFA Models: A Case Study on AR Antagonists
-
Li, J.; Bai, F.; Liu, H.; Gramatica, P. Ligand Efficiency Outperforms pIC50 on Both 2D MLR and 3D CoMFA Models: a Case Study on AR Antagonists Chem. Biol. Drug Des. 2015, 86, 1501-1517 10.1111/cbdd.12619
-
(2015)
Chem. Biol. Drug Des.
, vol.86
, pp. 1501-1517
-
-
Li, J.1
Bai, F.2
Liu, H.3
Gramatica, P.4
-
8
-
-
84983440693
-
Benchmarking the Predictive Power of Ligand Efficiency Indices in QSAR
-
Cortes-Ciriano, I. Benchmarking the Predictive Power of Ligand Efficiency Indices In QSAR J. Chem. Inf. Model. 2016, 56, 1576-1587 10.1021/acs.jcim.6b00136
-
(2016)
J. Chem. Inf. Model.
, vol.56
, pp. 1576-1587
-
-
Cortes-Ciriano, I.1
-
9
-
-
84876520796
-
Time-Split Cross-Validation as a Method for Estimating the Goodness of Prospective Prediction
-
Sheridan, R. P. Time-Split Cross-Validation as a Method for Estimating the Goodness of Prospective Prediction J. Chem. Inf. Model. 2013, 53, 783-790 10.1021/ci400084k
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 783-790
-
-
Sheridan, R.P.1
-
10
-
-
84999267587
-
-
Dassault Systemes Biovia Pipeline Pilot Overview (accessed October 19)
-
Dassault Systemes Biovia Pipeline Pilot Overview http://accelrys.com/products/collaborative-science/biovia-pipeline-pilot/ (accessed October 19, 2016).
-
(2016)
-
-
-
11
-
-
0028466540
-
Comparison of Automatic Three-Dimensional Model Builders Using 639 X-Ray Structures
-
Sadowski, J.; Gasteiger, J.; Klebe, G. Comparison of Automatic Three-Dimensional Model Builders Using 639 X-Ray Structures J. Chem. Inf. Model. 1994, 34, 1000-1008 10.1021/ci00020a039
-
(1994)
J. Chem. Inf. Model.
, vol.34
, pp. 1000-1008
-
-
Sadowski, J.1
Gasteiger, J.2
Klebe, G.3
-
12
-
-
33845379303
-
Atom Pairs as Molecular Features in Structure-Activity Studies: Definition and Application
-
Carhart, R. E.; Smith, D. H.; Venkataraghavan, R. Atom Pairs as Molecular Features in Structure-Activity Studies: Definition and Application J. Chem. Inf. Model. 1985, 25, 64-73 10.1021/ci00046a002
-
(1985)
J. Chem. Inf. Model.
, vol.25
, pp. 64-73
-
-
Carhart, R.E.1
Smith, D.H.2
Venkataraghavan, R.3
-
13
-
-
0001577643
-
Chemical Similarity Using Physiochemical Property Descriptors
-
Kearsley, S. K.; Sallamack, S.; Fluder, E. M.; Andose, J. D.; Mosley, R. T.; Sheridan, R. P. Chemical Similarity Using Physiochemical Property Descriptors J. Chem. Inform. Comp. Sci. 1996, 36, 118-27 10.1021/ci950274j
-
(1996)
J. Chem. Inform. Comp. Sci.
, vol.36
, pp. 118-127
-
-
Kearsley, S.K.1
Sallamack, S.2
Fluder, E.M.3
Andose, J.D.4
Mosley, R.T.5
Sheridan, R.P.6
-
14
-
-
77952772341
-
Extended-Connectivity Fingerprints
-
Rogers, D.; Hahn, M. Extended-Connectivity Fingerprints J. Chem. Inf. Model. 2010, 50, 742-754 10.1021/ci100050t
-
(2010)
J. Chem. Inf. Model.
, vol.50
, pp. 742-754
-
-
Rogers, D.1
Hahn, M.2
-
15
-
-
84999091257
-
-
Chemical Computing Group QuaSAR descriptors (accessed October 19)
-
Chemical Computing Group QuaSAR descriptors https://www.chemcomp.com/journal/descr.htm (accessed October 19, 2016).
-
(2016)
-
-
-
16
-
-
0345548657
-
Random Forest: A Classification and Regression Tool for Compound Classification and QSAR Modeling
-
Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J. C.; Sheridan, R. P.; Feuston, B. P. Random Forest: A Classification And Regression Tool for Compound Classification and QSAR Modeling J. Chem. Inf. Comput. Sci. 2003, 43, 1947-1958 10.1021/ci034160g
-
(2003)
J. Chem. Inf. Comput. Sci.
, vol.43
, pp. 1947-1958
-
-
Svetnik, V.1
Liaw, A.2
Tong, C.3
Culberson, J.C.4
Sheridan, R.P.5
Feuston, B.P.6
-
17
-
-
0035478854
-
Random Forests
-
Breiman, L. Random Forests Machine Learning 2001, 45, 5-32 10.1023/A:1010933404324
-
(2001)
Machine Learning
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
18
-
-
33846829987
-
The pls Package: Principal Component and Partial Least Squares Regression in R
-
Mevik, B.-H.; Wehrens, R. The pls Package: Principal Component and Partial Least Squares Regression in R J. Stat. Software 2007, 18, issue2 10.18637/jss.v018.i02
-
(2007)
J. Stat. Software
, vol.18
, pp. issue2
-
-
Mevik, B.-H.1
Wehrens, R.2
-
19
-
-
84923367417
-
Deep Neural Networks as a Method for Quantitative Structure-Activity Relationships
-
Ma, J.; Sheridan, R. P.; Liaw, A.; Dahl, G. E.; Svetnik, V. Deep Neural Networks as a Method for Quantitative Structure-Activity Relationships J. Chem. Inf. Model. 2015, 55, 263-274 10.1021/ci500747n
-
(2015)
J. Chem. Inf. Model.
, vol.55
, pp. 263-274
-
-
Ma, J.1
Sheridan, R.P.2
Liaw, A.3
Dahl, G.E.4
Svetnik, V.5
|