-
1
-
-
84899434956
-
Online implicit agent modelling
-
Bard, Nolan, Johanson, Michael, Burch, Neil, and Bowling, Michael. Online implicit agent modelling. In Proceedings of International Conference on Autonomous Agents and Multiagent Systems, 2013.
-
(2013)
Proceedings of International Conference on Autonomous Agents and Multiagent Systems
-
-
Bard, N.1
Johanson, M.2
Burch, N.3
Bowling, M.4
-
2
-
-
0031635794
-
Opponent modeling in poker
-
Billings, Darse, Papp, Denis, Schaeffer, Jonathan, and Szafron, Duane. Opponent modeling in poker. In Association for the Advancement of Artificial Intelligence, 1998a.
-
(1998)
Association for the Advancement of Artificial Intelligence
-
-
Billings, D.1
Papp, D.2
Schaeffer, J.3
Szafron, D.4
-
3
-
-
0031635794
-
Opponent modeling in poker
-
Billings, Darse, Papp, Denis, Schaeffer, Jonathan, and Szafron, Duane. Opponent modeling in poker. In Association for the Advancement of Artificial Intelligence, 1998b.
-
(1998)
Association for the Advancement of Artificial Intelligence
-
-
Billings, D.1
Papp, D.2
Schaeffer, J.3
Szafron, D.4
-
4
-
-
84883313759
-
Besting the quiz master: Crowdsourcing incremental classification games
-
Boyd-Graber, Jordan, Satinoff, Brianna, He, He, and Daume ID, Hal. Besting the quiz master: Crowdsourcing incremental classification games. In Empirical Methods in Natural Language Processing, 2012.
-
(2012)
Empirical Methods in Natural Language Processing
-
-
Boyd-Graber, J.1
Satinoff, B.2
He, H.3
Daume ID, H.4
-
9
-
-
84979258646
-
-
Arxiv:1602.02672
-
Foerster, Jakob N., Assael, Yannis M., de Freitas, Nando, and Whiteson, Shimon. Learning to communicate to solve riddles with deep distributed recurrent q-networks. Arxiv:1602.02672, 2016.
-
(2016)
Learning to Communicate to Solve Riddles with Deep Distributed Recurrent Q-networks
-
-
Foerster, J.N.1
Assael, Y.M.2
De Freitas, N.3
Whiteson, S.4
-
12
-
-
0001940458
-
Adaptive mixtures of local experts
-
Jacobs, Robert A., Jordan, Michael I., Nowlan, Steven J., and Hinton, Geoffrey E. Adaptive mixtures of local experts. Neural Computation, 3(1):79-87, 1991.
-
(1991)
Neural Computation
, vol.3
, Issue.1
, pp. 79-87
-
-
Jacobs, R.A.1
Jordan, M.I.2
Nowlan, S.J.3
Hinton, G.E.4
-
15
-
-
84937959846
-
Recurrent models of visual attention
-
Mnih, Volodymyr, Heess, Nicolas, Graves, Alex, and Kavukcuoglu, Koray. Recurrent models of visual attention. In Proceedings of Advances in Neural Information Processing Systems, 2014.
-
(2014)
Proceedings of Advances in Neural Information Processing Systems
-
-
Mnih, V.1
Heess, N.2
Graves, A.3
Kavukcuoglu, K.4
-
16
-
-
84924051598
-
Human-level control through deep reinforcement learning
-
02, URL
-
Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David, Rusu, Andrei A., Veness, Joel, Bellemare, Marc G., Graves, Alex, Riedmiller, Martin, Fidjeland, Andreas K., Ostrovski, Georg, Petersen, Stig, Beattie, Charles, Sadik, Amir, Antonoglou, Ioannis, King, Helen, Kumaran, Dhar- shan, Wierstra, Daan, Legg, Shane, and Hassabis, Demis. Human-level control through deep reinforcement learning. Nature, 518(7540):529-533, 02 2015. URL http://dx.doi.org/10.1038/naturel4236.
-
(2015)
Nature
, vol.518
, Issue.7540
, pp. 529-533
-
-
Mnih, V.1
Kavukcuoglu, K.2
Silver, D.3
Rusu, A.A.4
Veness, J.5
Bellemare, M.G.6
Graves, A.7
Riedmiller, M.8
Fidjeland, A.K.9
Ostrovski, G.10
Petersen, S.11
Beattie, C.12
Sadik, A.13
Antonoglou, I.14
King, H.15
Kumaran, D.-S.16
Wierstra, D.17
Legg, S.18
Hassabis, D.19
-
19
-
-
84877965791
-
Opponent modeling in real-time strategy games
-
Schadd, Frederik, Bakkes, Er, and Spronck, Pieter. Opponent modeling in real-time strategy games. In Proceedings of the GAME-ON 2007, pp. 61-68, 2007.
-
(2007)
Proceedings of the GAME-ON 2007
, pp. 61-68
-
-
Schadd, F.1
Bakkes, E.2
Spronck, P.3
-
20
-
-
80053237361
-
Bayes' bluff: Opponent modelling in poker
-
Southey, Finnegan, Bowling, Michael, Larson, Bryce, Pic- cione, Carmelo, Burch, Neil, Billings, Darse, and Rayner, Chris. Bayes' bluff: Opponent modelling in poker. In Proceedings of Uncertainty in Artificial Intelligence, 2005.
-
(2005)
Proceedings of Uncertainty in Artificial Intelligence
-
-
Southey, F.1
Bowling, M.2
Larson, B.3
Pic-Cione, C.4
Burch, N.5
Billings, D.6
Rayner, C.7
-
22
-
-
84998600495
-
-
ArXiv: 1511.08779
-
Tampuu, Ardi, Matiisen, Tambet, Kodelja, Dorian, Ku-zovkin, Ilya, Korjus, Kristjan, Aru, Juhan, Aru, Jaan, and Vicente, Raul. Multiagent cooperation and competition with deep reinforcement learning. ArXiv: 1511.08779, 2015.
-
(2015)
Multiagent Cooperation and Competition with Deep Reinforcement Learning
-
-
Tampuu, A.1
Matiisen, T.2
Kodelja, D.3
Ku-Zovkin, I.4
Korjus, K.5
Aru, J.6
Aru, J.7
Vicente, R.8
-
23
-
-
0004196515
-
-
Technical Report CMU-CS-03-107, School of Computer Science, Carnegie Mellon University
-
Uther, William and Veloso, Manuela. Adversarial reinforcement learning. Technical Report CMU-CS-03-107, School of Computer Science, Carnegie Mellon University, 2003.
-
(2003)
Adversarial Reinforcement Learning
-
-
Uther, W.1
Veloso, M.2
-
25
-
-
84998964869
-
-
ArXiv: 1507.01273
-
Zhang, Marvin, McCarthy, Zoe, Finn, Chelsea, Levine, Sergey, and Abbeel, Pieter. Learning deep neural network policies with continuous memory states. ArXiv: 1507.01273, 2015.
-
(2015)
Learning Deep Neural Network Policies with Continuous Memory States
-
-
Zhang, M.1
McCarthy, Z.2
Finn, C.3
Levine, S.4
Abbeel, P.5
|