메뉴 건너뛰기




Volumn 52, Issue , 2016, Pages 464-474

The use of airborne hyperspectral data for tree species classification in a species-rich Central European forest area

Author keywords

CARS; Hyperspectral data; PLS DA; RF; Sample selection; Spectral variable selection; SVM; Tree species classification

Indexed keywords

ACCURACY ASSESSMENT; AIRBORNE SENSING; ALGORITHM; BROAD-LEAVED FOREST; FLOODPLAIN FOREST; IMAGE CLASSIFICATION; LEAST SQUARES METHOD; SPECIES RICHNESS; SPECTRAL ANALYSIS; STAND DYNAMICS; TREE; VEGETATION CLASSIFICATION;

EID: 84997604985     PISSN: 15698432     EISSN: 1872826X     Source Type: Journal    
DOI: 10.1016/j.jag.2016.07.018     Document Type: Article
Times cited : (90)

References (76)
  • 1
    • 84898634853 scopus 로고    scopus 로고
    • Urban tree species mapping using hyperspectral and lidar data fusion
    • Alonzo, M., Bookhagen, B., Roberts, D.A., Urban tree species mapping using hyperspectral and lidar data fusion. Remote Sens. Environ. 148 (2014), 70–83, 10.1016/j.rse.2014.03.018.
    • (2014) Remote Sens. Environ. , vol.148 , pp. 70-83
    • Alonzo, M.1    Bookhagen, B.2    Roberts, D.A.3
  • 2
    • 84913553499 scopus 로고    scopus 로고
    • Quantifying forest canopy traits: imaging spectroscopy versus field survey
    • Asner, G.P., Martin, R.E., Anderson, C.B., Knapp, D.E., Quantifying forest canopy traits: imaging spectroscopy versus field survey. Remote Sens. Environ. 158 (2015), 15–27, 10.1016/j.rse.2014.11.011.
    • (2015) Remote Sens. Environ. , vol.158 , pp. 15-27
    • Asner, G.P.1    Martin, R.E.2    Anderson, C.B.3    Knapp, D.E.4
  • 3
    • 4143064738 scopus 로고    scopus 로고
    • Methodology for hyperspectral band selection
    • Bajcsy, P., Groves, P., Methodology for hyperspectral band selection. Photogramm. Eng. Remote Sens. 70:7 (2004), 793–802, 10.14358/PERS.70.7.793.
    • (2004) Photogramm. Eng. Remote Sens. , vol.70 , Issue.7 , pp. 793-802
    • Bajcsy, P.1    Groves, P.2
  • 4
    • 84898061860 scopus 로고    scopus 로고
    • Improving remote species identification through efficient training data collection
    • Baldeck, C., Asner, G., Improving remote species identification through efficient training data collection. Remote Sens. 6:4 (2014), 2682–2698, 10.3390/rs6042682.
    • (2014) Remote Sens. , vol.6 , Issue.4 , pp. 2682-2698
    • Baldeck, C.1    Asner, G.2
  • 5
    • 0037350844 scopus 로고    scopus 로고
    • Partial least squares for discrimination
    • Barker, M., Rayens, W., Partial least squares for discrimination. J. Chemom. 17:3 (2003), 166–173, 10.1002/cem.785.
    • (2003) J. Chemom. , vol.17 , Issue.3 , pp. 166-173
    • Barker, M.1    Rayens, W.2
  • 6
    • 0022578473 scopus 로고
    • Comparison between X-ray crystallographic data and physicochemical parameters with respect to their information about the calcium channel antagonist activity of 4-phenyl-1,4-dihydropyridines
    • Berntsson, P., Wold, S., Comparison between X-ray crystallographic data and physicochemical parameters with respect to their information about the calcium channel antagonist activity of 4-phenyl-1,4-dihydropyridines. Quant. Struct.-Act. Relat. 5:2 (1986), 45–50, 10.1002/qsar.19860050202.
    • (1986) Quant. Struct.-Act. Relat. , vol.5 , Issue.2 , pp. 45-50
    • Berntsson, P.1    Wold, S.2
  • 7
    • 79959687454 scopus 로고    scopus 로고
    • Helmholtz interdisciplinary graduate school for environmental research (HIGRADE)
    • Bissinger, V., Kolditz, O., Helmholtz interdisciplinary graduate school for environmental research (HIGRADE). Gaia 1 (2008), 71–73.
    • (2008) Gaia , vol.1 , pp. 71-73
    • Bissinger, V.1    Kolditz, O.2
  • 8
    • 33947429082 scopus 로고    scopus 로고
    • Tree species mapping with airborne hyper-spectral MIVIS data. The Ticino Park study case
    • Boschetti, M., Boschetti, L., Oliveri, S., Casati, L., Canova, I., Tree species mapping with airborne hyper-spectral MIVIS data. The Ticino Park study case. Int. J. Remote Sens. 28:6 (2007), 1251–1261, 10.1080/01431160600928542.
    • (2007) Int. J. Remote Sens. , vol.28 , Issue.6 , pp. 1251-1261
    • Boschetti, M.1    Boschetti, L.2    Oliveri, S.3    Casati, L.4    Canova, I.5
  • 9
    • 20444448822 scopus 로고    scopus 로고
    • PLS dimension reduction for classification with microarray data
    • Boulesteix, A.-L., PLS dimension reduction for classification with microarray data. Stat. Appl. Genet. Mol. Biol. 3:1 (2004), 1–30, 10.2202/1544-6115.1075.
    • (2004) Stat. Appl. Genet. Mol. Biol. , vol.3 , Issue.1 , pp. 1-30
    • Boulesteix, A.-L.1
  • 10
    • 0035478854 scopus 로고    scopus 로고
    • Breiman, L., Machine Learning 45:1 (2001), 5–32, 10.1023/A:1010933404324.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 11
    • 84876438839 scopus 로고    scopus 로고
    • Fusion of full-waveform lidar and imaging spectroscopy remote sensing data for the characterization of forest stands
    • Buddenbaum, H., Seeling, S., Hill, J., Fusion of full-waveform lidar and imaging spectroscopy remote sensing data for the characterization of forest stands. Int. J. Remote Sens. 34:13 (2013), 4511–4524, 10.1080/01431161.2013.776721.
    • (2013) Int. J. Remote Sens. , vol.34 , Issue.13 , pp. 4511-4524
    • Buddenbaum, H.1    Seeling, S.2    Hill, J.3
  • 12
    • 43949125818 scopus 로고    scopus 로고
    • Evaluation of Random Forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery
    • Chan, J.C.-W., Paelinckx, D., Evaluation of Random Forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sens. Environ. 112:6 (2008), 2999–3011, 10.1016/j.rse.2008.02.011.
    • (2008) Remote Sens. Environ. , vol.112 , Issue.6 , pp. 2999-3011
    • Chan, J.C.-W.1    Paelinckx, D.2
  • 13
    • 77950530973 scopus 로고    scopus 로고
    • Sparse partial least squares classification for high dimensional data
    • Chung, D., Keles, S., Sparse partial least squares classification for high dimensional data. Stat. Appl. Genet. Mol. Biol., 9(1), 2010, 10.2202/1544-6115.1492.
    • (2010) Stat. Appl. Genet. Mol. Biol. , vol.9 , Issue.1
    • Chung, D.1    Keles, S.2
  • 14
    • 21444447781 scopus 로고    scopus 로고
    • Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales
    • Clark, M., Roberts, D., Clark, D., Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales. Remote Sens. Environ. 96:3–4 (2005), 375–398, 10.1016/j.rse.2005.03.009.
    • (2005) Remote Sens. Environ. , vol.96 , Issue.3-4 , pp. 375-398
    • Clark, M.1    Roberts, D.2    Clark, D.3
  • 16
    • 84859928062 scopus 로고    scopus 로고
    • Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data
    • Dalponte, M., Bruzzone, L., Gianelle, D., Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data. Remote Sens. Environ. 123 (2012), 258–270, 10.1016/j.rse.2012.03.013.
    • (2012) Remote Sens. Environ. , vol.123 , pp. 258-270
    • Dalponte, M.1    Bruzzone, L.2    Gianelle, D.3
  • 19
    • 0842297336 scopus 로고    scopus 로고
    • The effects of vegetation phenology on endmember selection and species mapping in southern California chaparral
    • Dennison, P.E., Roberts, D.A., The effects of vegetation phenology on endmember selection and species mapping in southern California chaparral. Remote Sens. Environ. 87:2–3 (2003), 295–309, 10.1016/j.rse.2003.07.001.
    • (2003) Remote Sens. Environ. , vol.87 , Issue.2-3 , pp. 295-309
    • Dennison, P.E.1    Roberts, D.A.2
  • 20
    • 84920084218 scopus 로고    scopus 로고
    • Extraction of plant physiological status from hyperspectral signatures using machine learning methods
    • Doktor, D., Lausch, A., Spengler, D., Thurner, M., Extraction of plant physiological status from hyperspectral signatures using machine learning methods. Remote Sens. 6:12 (2014), 12247–12274, 10.3390/rs61212247.
    • (2014) Remote Sens. , vol.6 , Issue.12 , pp. 12247-12274
    • Doktor, D.1    Lausch, A.2    Spengler, D.3    Thurner, M.4
  • 21
    • 84908666269 scopus 로고    scopus 로고
    • An efficient, multi-layered crown delineation algorithm for mapping individual tree structure across multiple ecosystems
    • Duncanson, L.I., Cook, B.D., Hurtt, G.C., Dubayah, R.O., An efficient, multi-layered crown delineation algorithm for mapping individual tree structure across multiple ecosystems. Remote Sens. Environ. 154 (2014), 378–386, 10.1016/j.rse.2013.07.044.
    • (2014) Remote Sens. Environ. , vol.154 , pp. 378-386
    • Duncanson, L.I.1    Cook, B.D.2    Hurtt, G.C.3    Dubayah, R.O.4
  • 24
    • 84928672637 scopus 로고    scopus 로고
    • Multi-method ensemble selection of spectral bands related to leaf biochemistry
    • Feilhauer, H., Asner, G.P., Martin, R.E., Multi-method ensemble selection of spectral bands related to leaf biochemistry. Remote Sens. Environ. 164 (2015), 57–65, 10.1016/j.rse.2015.03.033.
    • (2015) Remote Sens. Environ. , vol.164 , pp. 57-65
    • Feilhauer, H.1    Asner, G.P.2    Martin, R.E.3
  • 25
    • 84961880766 scopus 로고    scopus 로고
    • Mapping tree species in tropical seasonal semi-deciduous forests with hyperspectral and multispectral data
    • Ferreira, M.P., Zortea, M., Zanotta, D.C., Shimabukuro, Y.E., de Souza Filho, Carlos Roberto, Mapping tree species in tropical seasonal semi-deciduous forests with hyperspectral and multispectral data. Remote Sens. Environ. 179 (2016), 66–78, 10.1016/j.rse.2016.03.021.
    • (2016) Remote Sens. Environ. , vol.179 , pp. 66-78
    • Ferreira, M.P.1    Zortea, M.2    Zanotta, D.C.3    Shimabukuro, Y.E.4    de Souza Filho, C.R.5
  • 27
    • 84897585667 scopus 로고    scopus 로고
    • A framework for mapping tree species combining hyperspectral and LiDAR data. Role of selected classifiers and sensor across three spatial scales
    • Ghosh, A., Fassnacht, F.E., Joshi, P.K., Koch, B., A framework for mapping tree species combining hyperspectral and LiDAR data. Role of selected classifiers and sensor across three spatial scales. Int. J. Appl. Earth Obs. Geoinf. 26 (2014), 49–63, 10.1016/j.jag.2013.05.017.
    • (2014) Int. J. Appl. Earth Obs. Geoinf. , vol.26 , pp. 49-63
    • Ghosh, A.1    Fassnacht, F.E.2    Joshi, P.K.3    Koch, B.4
  • 29
    • 0344074641 scopus 로고    scopus 로고
    • Conifer species recognition. An exploratory analysis of in situ hyperspectral data
    • Gong, P., Conifer species recognition. An exploratory analysis of in situ hyperspectral data. Remote Sens. Environ. 62:2 (1997), 189–200, 10.1016/S0034-4257(97)00094-1.
    • (1997) Remote Sens. Environ. , vol.62 , Issue.2 , pp. 189-200
    • Gong, P.1
  • 30
    • 47249127189 scopus 로고    scopus 로고
    • A comparison of satellite hyperspectral and multispectral remote sensing imagery for improved classification and mapping of vegetation
    • Govender, M., Chetty, K., Naiken, V., Bulcock, H., A comparison of satellite hyperspectral and multispectral remote sensing imagery for improved classification and mapping of vegetation. Water SA 34:2 (2008), 147–154.
    • (2008) Water SA , vol.34 , Issue.2 , pp. 147-154
    • Govender, M.1    Chetty, K.2    Naiken, V.3    Bulcock, H.4
  • 31
    • 84901018651 scopus 로고    scopus 로고
    • A comparative investigation of modern feature selection and classification approaches for the analysis of mass spectrometry data
    • Gromski, P.S., Xu, Y., Correa, E., Ellis, D.I., Turner, M.L., Goodacre, R., A comparative investigation of modern feature selection and classification approaches for the analysis of mass spectrometry data. Anal. Chim. Acta 829 (2014), 1–8, 10.1016/j.aca.2014.03.039.
    • (2014) Anal. Chim. Acta , vol.829 , pp. 1-8
    • Gromski, P.S.1    Xu, Y.2    Correa, E.3    Ellis, D.I.4    Turner, M.L.5    Goodacre, R.6
  • 33
    • 84908668641 scopus 로고    scopus 로고
    • Modeling canopy height in a savanna ecosystem using spaceborne lidar waveforms
    • Gwenzi, D., Lefsky, M.A., Modeling canopy height in a savanna ecosystem using spaceborne lidar waveforms. Remote Sens. Environ. 154 (2014), 338–344, 10.1016/j.rse.2013.11.024.
    • (2014) Remote Sens. Environ. , vol.154 , pp. 338-344
    • Gwenzi, D.1    Lefsky, M.A.2
  • 34
    • 84994431664 scopus 로고    scopus 로고
    • raster: Geographic Data Analysis and Modeling. R package version 2. 4-15
    • Hijmans, R.J., raster: Geographic Data Analysis and Modeling. R package version 2. 4-15. 2015 http://CRAN.R-project.org/package=raster.
    • (2015)
    • Hijmans, R.J.1
  • 35
    • 77949435300 scopus 로고    scopus 로고
    • Mapping tree species in temperate deciduous woodland using time-series multi-spectral data
    • Hill, R.A., Wilson, A.K., George, M., Hinsley, S.A., Mapping tree species in temperate deciduous woodland using time-series multi-spectral data. Appl. Veg. Sci. 13:1 (2010), 86–99, 10.1111/j.1654-109X.2009.01053.x.
    • (2010) Appl. Veg. Sci. , vol.13 , Issue.1 , pp. 86-99
    • Hill, R.A.1    Wilson, A.K.2    George, M.3    Hinsley, S.A.4
  • 36
    • 78650221221 scopus 로고    scopus 로고
    • Differentiation of walnut wood species and steam treatment using ATR-FTIR and partial least squares discriminant analysis (PLS-DA)
    • Hobro, A.J., Kuligowski, J., Döll, M., Lendl, B., Differentiation of walnut wood species and steam treatment using ATR-FTIR and partial least squares discriminant analysis (PLS-DA). Anal. Bioanal. Chem. 398:6 (2010), 2713–2722, 10.1007/s00216-010-4199-1.
    • (2010) Anal. Bioanal. Chem. , vol.398 , Issue.6 , pp. 2713-2722
    • Hobro, A.J.1    Kuligowski, J.2    Döll, M.3    Lendl, B.4
  • 37
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Hughes, G., On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inform. Theory 14:1 (1968), 55–63, 10.1109/TIT.1968.1054102.
    • (1968) IEEE Trans. Inform. Theory , vol.14 , Issue.1 , pp. 55-63
    • Hughes, G.1
  • 38
    • 84870760985 scopus 로고    scopus 로고
    • Tree species classification with random forest using very high spatial resolution 8-band worldView-2 satellite data
    • Immitzer, M., Atzberger, C., Koukal, T., Tree species classification with random forest using very high spatial resolution 8-band worldView-2 satellite data. Remote Sens. 4:12 (2012), 2661–2693, 10.3390/rs4092661.
    • (2012) Remote Sens. , vol.4 , Issue.12 , pp. 2661-2693
    • Immitzer, M.1    Atzberger, C.2    Koukal, T.3
  • 39
    • 77956884950 scopus 로고    scopus 로고
    • Assessing the utility of airborne hyperspectral and LiDAR data for species distribution mapping in the coastal Pacific Northwest, Canada
    • Jones, T.G., Coops, N.C., Sharma, T., Assessing the utility of airborne hyperspectral and LiDAR data for species distribution mapping in the coastal Pacific Northwest, Canada. Remote Sens. Environ. 114:12 (2010), 2841–2852, 10.1016/j.rse.2010.07.002.
    • (2010) Remote Sens. Environ. , vol.114 , Issue.12 , pp. 2841-2852
    • Jones, T.G.1    Coops, N.C.2    Sharma, T.3
  • 40
    • 0035124583 scopus 로고    scopus 로고
    • A comparison of multispectral and multitemporal information in high spatial resolution imagery for classification of individual tree species in a temperate hardwood forest
    • Key, T., Warner, T.A., McGraw, J.B., Fajvan, M.A., A comparison of multispectral and multitemporal information in high spatial resolution imagery for classification of individual tree species in a temperate hardwood forest. Remote Sens. Environ. 75:1 (2001), 100–112, 10.1016/S0034-4257(00)00159-0.
    • (2001) Remote Sens. Environ. , vol.75 , Issue.1 , pp. 100-112
    • Key, T.1    Warner, T.A.2    McGraw, J.B.3    Fajvan, M.A.4
  • 41
    • 67650369751 scopus 로고    scopus 로고
    • Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration
    • Li, H., Liang, Y., Xu, Q., Cao, D., Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Anal. Chim. Acta 648:1 (2009), 77–84, 10.1016/j.aca.2009.06.046.
    • (2009) Anal. Chim. Acta , vol.648 , Issue.1 , pp. 77-84
    • Li, H.1    Liang, Y.2    Xu, Q.3    Cao, D.4
  • 42
    • 84929346514 scopus 로고    scopus 로고
    • Classification of tree species in overstorey canopy of subtropical forest using QuickBird images
    • Lin, C., Popescu, S.C., Thomson, G., Tsogt, K., Chang, C.-I., Classification of tree species in overstorey canopy of subtropical forest using QuickBird images. PLoS One, 10(5), 2015, e0125554, 10.1371/journal.pone.0125554.
    • (2015) PLoS One , vol.10 , Issue.5 , pp. e0125554
    • Lin, C.1    Popescu, S.C.2    Thomson, G.3    Tsogt, K.4    Chang, C.-I.5
  • 43
    • 0033863908 scopus 로고    scopus 로고
    • Indicators of biodiversity for ecologically sustainable forest management
    • Lindenmayer, D.B., Margules, C.R., Botkin, D.B., Indicators of biodiversity for ecologically sustainable forest management. Conserv. Biol. 14:4 (2000), 941–950, 10.1046/j.1523-1739.2000.98533.x.
    • (2000) Conserv. Biol. , vol.14 , Issue.4 , pp. 941-950
    • Lindenmayer, D.B.1    Margules, C.R.2    Botkin, D.B.3
  • 44
    • 84865407521 scopus 로고    scopus 로고
    • A review of variable selection methods in Partial Least Squares Regression
    • Mehmood, T., Liland, K.H., Snipen, L., Sæbø, S., A review of variable selection methods in Partial Least Squares Regression. Chemom. Intell. Lab. 118 (2012), 62–69, 10.1016/j.chemolab.2012.07.010.
    • (2012) Chemom. Intell. Lab. , vol.118 , pp. 62-69
    • Mehmood, T.1    Liland, K.H.2    Snipen, L.3    Sæbø, S.4
  • 45
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Melgani, F., Bruzzone, L., Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 42:8 (2004), 1778–1790, 10.1109/TGRS.2004.831865.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 46
    • 68949140728 scopus 로고    scopus 로고
    • A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data
    • Menze, B.H., Kelm, B.M., Masuch, R., Himmelreich, U., Bachert, P., Petrich, W., Hamprecht, F.A., A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data. BMC Bioinform., 10, 2009, 213, 10.1186/1471-2105-10-213.
    • (2009) BMC Bioinform. , vol.10 , pp. 213
    • Menze, B.H.1    Kelm, B.M.2    Masuch, R.3    Himmelreich, U.4    Bachert, P.5    Petrich, W.6    Hamprecht, F.A.7
  • 47
    • 84892410940 scopus 로고    scopus 로고
    • e1071: Misc Functions of the Department of Statistics (e1071), TU Wien. R package version 1. 6-2
    • Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F., e1071: Misc Functions of the Department of Statistics (e1071), TU Wien. R package version 1. 6-2. 2014 http://CRAN.R-project.org/package=e1071.
    • (2014)
    • Meyer, D.1    Dimitriadou, E.2    Hornik, K.3    Weingessel, A.4    Leisch, F.5
  • 48
    • 33747352303 scopus 로고    scopus 로고
    • A conditioned Latin hypercube method for sampling in the presence of ancillary information
    • Minasny, B., McBratney, A.B., A conditioned Latin hypercube method for sampling in the presence of ancillary information. Comput. Geosci. 32:9 (2006), 1378–1388, 10.1016/j.cageo.2005.12.009.
    • (2006) Comput. Geosci. , vol.32 , Issue.9 , pp. 1378-1388
    • Minasny, B.1    McBratney, A.B.2
  • 49
    • 79951950272 scopus 로고    scopus 로고
    • Support vector machines in remote sensing. A review
    • Mountrakis, G., Im, J., Ogole, C., Support vector machines in remote sensing. A review. ISPRS J. Photogramm. Remote Sens. 66:3 (2011), 247–259, 10.1016/j.isprsjprs.2010.11.001.
    • (2011) ISPRS J. Photogramm. Remote Sens. , vol.66 , Issue.3 , pp. 247-259
    • Mountrakis, G.1    Im, J.2    Ogole, C.3
  • 50
    • 0038620211 scopus 로고    scopus 로고
    • Prediction of clinical outcome with microarray data: a partial least squares discriminant analysis (PLS-DA) approach
    • Pérez-Enciso, M., Tenenhaus, M., Prediction of clinical outcome with microarray data: a partial least squares discriminant analysis (PLS-DA) approach. Hum. Genet. 112:5–6 (2003), 581–592, 10.1007/s00439-003-0921-9.
    • (2003) Hum. Genet. , vol.112 , Issue.5-6 , pp. 581-592
    • Pérez-Enciso, M.1    Tenenhaus, M.2
  • 51
    • 13344278660 scopus 로고    scopus 로고
    • Random forest classifier for remote sensing classification
    • Pal, M., Random forest classifier for remote sensing classification. Int. J. Remote Sens. 26:1 (2005), 217–222, 10.1080/01431160412331269698.
    • (2005) Int. J. Remote Sens. , vol.26 , Issue.1 , pp. 217-222
    • Pal, M.1
  • 52
    • 84874785808 scopus 로고    scopus 로고
    • Commercial tree species discrimination using airborne AISA Eagle hyperspectral imagery and partial least squares discriminant analysis (PLS-DA) in KwaZulu–Natal, South Africa
    • Peerbhay, K.Y., Mutanga, O., Ismail, R., Commercial tree species discrimination using airborne AISA Eagle hyperspectral imagery and partial least squares discriminant analysis (PLS-DA) in KwaZulu–Natal, South Africa. ISPRS J. Photogramm. Remote Sens. 79 (2013), 19–28, 10.1016/j.isprsjprs.2013.01.013.
    • (2013) ISPRS J. Photogramm. Remote Sens. , vol.79 , pp. 19-28
    • Peerbhay, K.Y.1    Mutanga, O.2    Ismail, R.3
  • 53
    • 84920667207 scopus 로고    scopus 로고
    • Does simultaneous variable selection and dimension reduction improve the classification of Pinus forest species?
    • Peerbhay, K.Y., Mutanga, O., Ismail, R., Does simultaneous variable selection and dimension reduction improve the classification of Pinus forest species?. J. Appl. Remote Sens., 8, 2014, 085194, 10.1117/1.jrs.8.085194.
    • (2014) J. Appl. Remote Sens. , vol.8 , pp. 085194
    • Peerbhay, K.Y.1    Mutanga, O.2    Ismail, R.3
  • 55
    • 79956324768 scopus 로고    scopus 로고
    • Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment
    • Pontius, R.G., Millones, M., Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment. Int. J. Remote Sens. 32:15 (2011), 4407–4429, 10.1080/01431161.2011.552923.
    • (2011) Int. J. Remote Sens. , vol.32 , Issue.15 , pp. 4407-4429
    • Pontius, R.G.1    Millones, M.2
  • 56
    • 0028667905 scopus 로고
    • How unique are spectral signatures?
    • Price, J.C., How unique are spectral signatures?. Remote Sens. Environ. 49:3 (1994), 181–186, 10.1016/0034-4257(94)90013-2.
    • (1994) Remote Sens. Environ. , vol.49 , Issue.3 , pp. 181-186
    • Price, J.C.1
  • 58
    • 84948743266 scopus 로고    scopus 로고
    • Atmospheric/Topographic Correction for Airborne Imagery DLR report DLR-IB 565-02/11, Wessling, Germany
    • Richter, R., Schläpfer, D., 2011. Atmospheric/Topographic Correction for Airborne Imagery DLR report DLR-IB 565-02/11, Wessling, Germany.
    • (2011)
    • Richter, R.1    Schläpfer, D.2
  • 61
    • 84866370140 scopus 로고    scopus 로고
    • clhs: a R package for conditioned Latin hypercube sampling R package version 0 5-5
    • Roudier, P., clhs: a R package for conditioned Latin hypercube sampling R package version 0 5-5. 2011 http://CRAN.R-project.org/package=clhs.
    • (2011)
    • Roudier, P.1
  • 62
    • 84939223647 scopus 로고    scopus 로고
    • Comparing the effect of preprocessing transformations on methods of land-use classification derived from spectral soil measurements
    • Rozenstein, O., Paz-Kagan, T., Salbach, C., Karnieli, A., Comparing the effect of preprocessing transformations on methods of land-use classification derived from spectral soil measurements. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8:6 (2015), 2393–2404, 10.1109/JSTARS.2014.2371920.
    • (2015) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. , vol.8 , Issue.6 , pp. 2393-2404
    • Rozenstein, O.1    Paz-Kagan, T.2    Salbach, C.3    Karnieli, A.4
  • 63
    • 0036330345 scopus 로고    scopus 로고
    • Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages
    • Sims, D.A., Gamon, J.A., Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 81:2–3 (2002), 337–354, 10.1016/S0034-4257(02)00010-X.
    • (2002) Remote Sens. Environ. , vol.81 , Issue.2-3 , pp. 337-354
    • Sims, D.A.1    Gamon, J.A.2
  • 64
    • 84878146470 scopus 로고    scopus 로고
    • Multi-temporal hyperspectral mixture analysis and feature selection for invasive species mapping in rainforests
    • Somers, B., Asner, G.P., Multi-temporal hyperspectral mixture analysis and feature selection for invasive species mapping in rainforests. Remote Sens. Environ. 136 (2013), 14–27, 10.1016/j.rse.2013.04.006.
    • (2013) Remote Sens. Environ. , vol.136 , pp. 14-27
    • Somers, B.1    Asner, G.P.2
  • 65
    • 79954622955 scopus 로고    scopus 로고
    • Endmember variability in spectral mixture analysis. a review
    • Somers, B., Asner, G.P., Tits, L., Coppin, P., Endmember variability in spectral mixture analysis. a review. Remote Sens. Environ. 115:7 (2011), 1603–1616, 10.1016/j.rse.2011.03.003.
    • (2011) Remote Sens. Environ. , vol.115 , Issue.7 , pp. 1603-1616
    • Somers, B.1    Asner, G.P.2    Tits, L.3    Coppin, P.4
  • 66
    • 84906659286 scopus 로고    scopus 로고
    • A new spectral variable selection pattern using competitive adaptive reweighted sampling combined with successive projections algorithm
    • Tang, G., Huang, Y., Tian, K., Song, X., Yan, H., Hu, J., Xiong, Y., Min, S., A new spectral variable selection pattern using competitive adaptive reweighted sampling combined with successive projections algorithm. Analyst 139:19 (2014), 4894–4902, 10.1039/c4an00837e.
    • (2014) Analyst , vol.139 , Issue.19 , pp. 4894-4902
    • Tang, G.1    Huang, Y.2    Tian, K.3    Song, X.4    Yan, H.5    Hu, J.6    Xiong, Y.7    Min, S.8
  • 67
    • 84878372022 scopus 로고    scopus 로고
    • Urban vegetation classification. Benefits of multitemporal RapidEye satellite data
    • Tigges, J., Lakes, T., Hostert, P., Urban vegetation classification. Benefits of multitemporal RapidEye satellite data. Remote Sens. Environ. 136 (2013), 66–75, 10.1016/j.rse.2013.05.001.
    • (2013) Remote Sens. Environ. , vol.136 , pp. 66-75
    • Tigges, J.1    Lakes, T.2    Hostert, P.3
  • 68
    • 0003969585 scopus 로고
    • Estimation of Dependences Based on Empirical Data
    • Nauka Moscow
    • Vapnik, V., Estimation of Dependences Based on Empirical Data. 1979, Nauka, Moscow.
    • (1979)
    • Vapnik, V.1
  • 69
    • 36448952292 scopus 로고    scopus 로고
    • Remote sensing techniques for forest parameter assessment. Multispectral classification and linear spectral mixture analysis
    • Vohland, M., Stoffels, J., Hau, C., Schüler, G., Remote sensing techniques for forest parameter assessment. Multispectral classification and linear spectral mixture analysis. Silva Fenn. 41:3 (2007), 441–456, 10.14214/sf.471.
    • (2007) Silva Fenn. , vol.41 , Issue.3 , pp. 441-456
    • Vohland, M.1    Stoffels, J.2    Hau, C.3    Schüler, G.4
  • 70
    • 44649176419 scopus 로고    scopus 로고
    • The seasonal effect on tree species classification in an urban environment using hyperspectral data LiDAR, and an object-oriented approach
    • Voss, M., Sugumaran, R., The seasonal effect on tree species classification in an urban environment using hyperspectral data LiDAR, and an object-oriented approach. Sensors 8:5 (2008), 3020–3036, 10.3390/s8053020.
    • (2008) Sensors , vol.8 , Issue.5 , pp. 3020-3036
    • Voss, M.1    Sugumaran, R.2
  • 71
    • 77958101917 scopus 로고    scopus 로고
    • Potential of digital sensors for land cover and tree species classifications—a case study in the framework of the DGPF-project
    • Waser, L.T., Klonus, S., Ehlers, M., Küchler, M., Jung, A., Potential of digital sensors for land cover and tree species classifications—a case study in the framework of the DGPF-project. Photogramm. Fernerkund. Geoinf. 2010:2 (2010), 141–156, 10.1127/1432-8364/2010/0046.
    • (2010) Photogramm. Fernerkund. Geoinf. , vol.2010 , Issue.2 , pp. 141-156
    • Waser, L.T.1    Klonus, S.2    Ehlers, M.3    Küchler, M.4    Jung, A.5
  • 72
    • 0001681052 scopus 로고
    • The collinearity problem in linear regression the partial least squares (PLS) approach to generalized inverses
    • Wold, S., Ruhe, A., Wold, H., Dunn, W.J. III, The collinearity problem in linear regression the partial least squares (PLS) approach to generalized inverses. SIAM J. Sci. Stat. Comput. 5:3 (1984), 735–743, 10.1137/0905052.
    • (1984) SIAM J. Sci. Stat. Comput. , vol.5 , Issue.3 , pp. 735-743
    • Wold, S.1    Ruhe, A.2    Wold, H.3    Dunn, W.J.4
  • 73
    • 0035965476 scopus 로고    scopus 로고
    • PLS-regression. A basic tool of chemometrics
    • Wold, S., Sjöström, M., Eriksson, L., PLS-regression. A basic tool of chemometrics. Chemom. Intell. Lab. 58:2 (2001), 109–130, 10.1016/S0169-7439(01)00155-1.
    • (2001) Chemom. Intell. Lab. , vol.58 , Issue.2 , pp. 109-130
    • Wold, S.1    Sjöström, M.2    Eriksson, L.3
  • 74
    • 84867417056 scopus 로고    scopus 로고
    • A comparison of three field sampling methods to estimate soil carbon content
    • Worsham, L., Markewitz, D., Nibbelink, N.P., West, L.T., A comparison of three field sampling methods to estimate soil carbon content. For. Sci. 58:5 (2012), 513–522, 10.5849/forsci.11-084.
    • (2012) For. Sci. , vol.58 , Issue.5 , pp. 513-522
    • Worsham, L.1    Markewitz, D.2    Nibbelink, N.P.3    West, L.T.4
  • 75
    • 84890439287 scopus 로고    scopus 로고
    • A strategy that iteratively retains informative variables for selecting optimal variable subset in multivariate calibration
    • Yun, Y.-H., Wang, W.-T., Tan, M.-L., Liang, Y.-Z., Li, H.-D., Cao, D.-S., Lu, H.-M., Xu, Q.-S., A strategy that iteratively retains informative variables for selecting optimal variable subset in multivariate calibration. Anal. Chim. Acta 807 (2014), 36–43, 10.1016/j.aca.2013.11.032.
    • (2014) Anal. Chim. Acta , vol.807 , pp. 36-43
    • Yun, Y.-H.1    Wang, W.-T.2    Tan, M.-L.3    Liang, Y.-Z.4    Li, H.-D.5    Cao, D.-S.6    Lu, H.-M.7    Xu, Q.-S.8
  • 76
    • 84904287664 scopus 로고    scopus 로고
    • Accurate mapping of forest types using dense seasonal Landsat time-series
    • Zhu, X., Liu, D., Accurate mapping of forest types using dense seasonal Landsat time-series. ISPRS J. Photogramm. Remote Sens. 96 (2014), 1–11, 10.1016/j.isprsjprs.2014.06.012.
    • (2014) ISPRS J. Photogramm. Remote Sens. , vol.96 , pp. 1-11
    • Zhu, X.1    Liu, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.