메뉴 건너뛰기




Volumn 6, Issue 8, 2014, Pages 7158-7181

Polarimetric contextual classification of PolSAR images using sparse representation and superpixels

Author keywords

Image classification; Joint sparse representation; Polarimetric synthetic aperture radar (PolSAR); Sparse representation based classifier; Spatial regularization; Superpixel

Indexed keywords

CLASSIFICATION (OF INFORMATION); PATTERN RECOGNITION; PIXELS; POLARIMETERS; RADAR; SYNTHETIC APERTURE RADAR;

EID: 84997447910     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs6087158     Document Type: Article
Times cited : (83)

References (68)
  • 1
    • 4944239533 scopus 로고    scopus 로고
    • A review of polarimetry in the context of synthetic aperture radar: Concepts and information extraction
    • Touzi, R.; Boerner, W.M.; Lee, J.S.; Lueneburg, E. A review of polarimetry in the context of synthetic aperture radar: Concepts and information extraction. Can. J. Remote Sens. 2004, 30, 380-407.
    • (2004) Can. J. Remote Sens. , vol.30 , pp. 380-407
    • Touzi, R.1    Boerner, W.M.2    Lee, J.S.3    Lueneburg, E.4
  • 3
    • 0035510570 scopus 로고    scopus 로고
    • Quantitative comparison of classification capability: Fully polarimetric versus dual and single-polarization SAR
    • Lee, J.S.; Grunes, M.R.; Pottier, E. Quantitative comparison of classification capability: Fully polarimetric versus dual and single-polarization SAR. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2343-2351.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , pp. 2343-2351
    • Lee, J.S.1    Grunes, M.R.2    Pottier, E.3
  • 4
    • 0030780622 scopus 로고    scopus 로고
    • An entropy based classification scheme for land applications of polarimetric SAR
    • Cloude, S.R.; Pottier, E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 1997, 35, 68-78.
    • (1997) IEEE Trans. Geosci. Remote Sens. , vol.35 , pp. 68-78
    • Cloude, S.R.1    Pottier, E.2
  • 5
    • 0035509473 scopus 로고    scopus 로고
    • Unsupervised classification of multifrequency and fully polarimetric SAR images based on H/a/Alpha-Wishart classifier
    • Ferro-Famil, L.; Pottier, E.; Lee, J.S. Unsupervised classification of multifrequency and fully polarimetric SAR images based on H/a/Alpha-Wishart classifier. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2332-2342.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , pp. 2332-2342
    • Ferro-Famil, L.1    Pottier, E.2    Lee, J.S.3
  • 6
    • 80052327171 scopus 로고    scopus 로고
    • Unsupervised full-polarimetric SAR data segmentation as a tool for classification of agricultural areas
    • Hoekman, D.H.; Vissers, M.A.; Tran, T.N. Unsupervised full-polarimetric SAR data segmentation as a tool for classification of agricultural areas. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 402-411.
    • (2011) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. , vol.4 , pp. 402-411
    • Hoekman, D.H.1    Vissers, M.A.2    Tran, T.N.3
  • 7
    • 0029472113 scopus 로고
    • Statistical models for polarimetric data: Consequences, testing and validity
    • Quegan, S.; Rhodes, I. Statistical models for polarimetric data: Consequences, testing and validity. Int. J. Remote Sens. 1995, 16, 1183-1210.
    • (1995) Int. J. Remote Sens. , vol.16 , pp. 1183-1210
    • Quegan, S.1    Rhodes, I.2
  • 8
    • 12444252163 scopus 로고    scopus 로고
    • The polarimetric G distribution for SAR data analysis
    • Freitas, C.C.; Frery, A.C.; Correia, A.H. The polarimetric G distribution for SAR data analysis. Environmetrics 2005, 16, 13-31.
    • (2005) Environmetrics , vol.16 , pp. 13-31
    • Freitas, C.C.1    Frery, A.C.2    Correia, A.H.3
  • 9
    • 0030104487 scopus 로고    scopus 로고
    • A review of target decomposition theorems in radar polarimetry
    • Cloude, S.R.; Pottier, E. A review of target decomposition theorems in radar polarimetry. IEEE Trans. Geosci. Remote Sens. 1996, 34, 498-518.
    • (1996) IEEE Trans. Geosci. Remote Sens. , vol.34 , pp. 498-518
    • Cloude, S.R.1    Pottier, E.2
  • 10
    • 0028562850 scopus 로고
    • Classification of multi-look polarimetric SAR imagery based on complex Wishart distribution
    • Lee, J.S.; Grunes, M.R.; Kwok, R. Classification of multi-look polarimetric SAR imagery based on complex Wishart distribution. Int. J. Remote Sens. 1994, 15, 2299-2311.
    • (1994) Int. J. Remote Sens. , vol.15 , pp. 2299-2311
    • Lee, J.S.1    Grunes, M.R.2    Kwok, R.3
  • 11
    • 80053575630 scopus 로고    scopus 로고
    • Automated non-Gaussian clustering of polarimetric synthetic aperture radar images
    • Doulgeris, A.; Anfinsen, S.; Eltoft, T. Automated non-Gaussian clustering of polarimetric synthetic aperture radar images. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3665-3676.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , pp. 3665-3676
    • Doulgeris, A.1    Anfinsen, S.2    Eltoft, T.3
  • 13
    • 0037243887 scopus 로고    scopus 로고
    • A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data
    • Conradsen, K.; Nielsen, A.; Schou, J.; Skriver, H. A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 4-19.
    • (2003) IEEE Trans. Geosci. Remote Sens. , vol.41 , pp. 4-19
    • Conradsen, K.1    Nielsen, A.2    Schou, J.3    Skriver, H.4
  • 14
    • 42449128774 scopus 로고    scopus 로고
    • Segmentation of multi-look fully polarimetric SAR images based on Wishart distribution and MRF
    • Wu, Y.; Ji, K.; Yu, W.; Su, Y. Segmentation of multi-look fully polarimetric SAR images based on Wishart distribution and MRF. Proc. SPIE 2007, 6748, 674813:1-674813:9.
    • (2007) Proc. SPIE , vol.6748 , pp. 6748131-6748139
    • Wu, Y.1    Ji, K.2    Yu, W.3    Su, Y.4
  • 15
    • 55649085304 scopus 로고    scopus 로고
    • Region-based classification of polarimetric SAR images using Wishart MRF
    • Wu, Y.; Ji, K.; Yu, W.; Su, Y. Region-based classification of polarimetric SAR images using Wishart MRF. IEEE Geosci. Remote Sens. Lett. 2008, 5, 668-672.
    • (2008) IEEE Geosci. Remote Sens. Lett. , vol.5 , pp. 668-672
    • Wu, Y.1    Ji, K.2    Yu, W.3    Su, Y.4
  • 16
    • 33746539610 scopus 로고    scopus 로고
    • Polarimetric image segmentation via maximum-likelihood approximation and efficient multiphase level-sets
    • Ayed, I.B.; Mitiche, A.; Belhadj, Z. Polarimetric image segmentation via maximum-likelihood approximation and efficient multiphase level-sets. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 1493-1500.
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell. , vol.28 , pp. 1493-1500
    • Ayed, I.B.1    Mitiche, A.2    Belhadj, Z.3
  • 17
    • 84901493267 scopus 로고    scopus 로고
    • Land cover classification for polarimetric SAR images based on mixture models
    • Gao, W.; Yang, J.; Ma, W. Land cover classification for polarimetric SAR images based on mixture models. Remote Sens. 2014, 6, 3770-3790.
    • (2014) Remote Sens. , vol.6 , pp. 3770-3790
    • Gao, W.1    Yang, J.2    Ma, W.3
  • 18
    • 79957654930 scopus 로고    scopus 로고
    • Application of the matrix-variate Mellin transform to analysis of polarimetric radar images
    • Anfinsen, S.; Eltoft, T. Application of the matrix-variate Mellin transform to analysis of polarimetric radar images. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2281-2781.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , pp. 2281-2781
    • Anfinsen, S.1    Eltoft, T.2
  • 19
    • 79957636618 scopus 로고    scopus 로고
    • Goodness-of-fit tests for multilook polarimetric radar data based on the Mellin transform
    • 2764-2295
    • Anfinsen, S.; Doulgeris, A.; Eltoft, T. Goodness-of-fit tests for multilook polarimetric radar data based on the Mellin transform. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2764-2295.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49
    • Anfinsen, S.1    Doulgeris, A.2    Eltoft, T.3
  • 20
    • 0024479436 scopus 로고
    • Unsupervised classification of scattering behavior using radar polarimetry data
    • Van Zyl, J.J. Unsupervised classification of scattering behavior using radar polarimetry data. IEEE Trans. Geosci. Remote Sens. 1989, 27, 36-45.
    • (1989) IEEE Trans. Geosci. Remote Sens. , vol.27 , pp. 36-45
    • Van Zyl, J.J.1
  • 21
    • 2442616341 scopus 로고    scopus 로고
    • Unsupervised terrain classification preserving polarimetric scattering characteristics
    • Lee, J.S.; Grunes, M.R.; Pottier, E.; Ferro-Famil, L. Unsupervised terrain classification preserving polarimetric scattering characteristics. IEEE Trans. Geosci. Remote Sens. 2004, 42, 722-731.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , pp. 722-731
    • Lee, J.S.1    Grunes, M.R.2    Pottier, E.3    Ferro-Famil, L.4
  • 22
    • 84868154291 scopus 로고    scopus 로고
    • Polarimetric decomposition analysis of ALOS PALSAR observation data before and after a landslide event
    • Yonezawa, C.; Watanabe, M.; Saito, G. Polarimetric decomposition analysis of ALOS PALSAR observation data before and after a landslide event. Remote Sens. 2012, 4, 2314-2328.
    • (2012) Remote Sens. , vol.4 , pp. 2314-2328
    • Yonezawa, C.1    Watanabe, M.2    Saito, G.3
  • 23
    • 0003692412 scopus 로고
    • Phenomenological Theory of Radar Targets
    • Ph.D. Dissertation, Delft University, Delft, The Netherlands
    • Huynen, J.R. Phenomenological Theory of Radar Targets. Ph.D. Dissertation, Delft University, Delft, The Netherlands, 1970.
    • (1970)
    • Huynen, J.R.1
  • 26
    • 0025469297 scopus 로고
    • New decomposition of the radar target scattering matrix
    • Krogager, E. New decomposition of the radar target scattering matrix. Electron. Lett. 1990, 26, 1525-1527.
    • (1990) Electron. Lett. , vol.26 , pp. 1525-1527
    • Krogager, E.1
  • 28
    • 80052682753 scopus 로고    scopus 로고
    • Polarimetric SAR image classification using multifeatures combination and extremely randomized clustering forests
    • Zou, T.Y.; Yang, W.; Dai, D.X.; Sun, H. Polarimetric SAR image classification using multifeatures combination and extremely randomized clustering forests. EURASIP J. Adv. Signal Process. 2010, 2010, 465612:1-465612:9.
    • (2010) EURASIP J. Adv. Signal Process. , vol.2010 , pp. 4656121-4656129
    • Zou, T.Y.1    Yang, W.2    Dai, D.X.3    Sun, H.4
  • 29
    • 84855417591 scopus 로고    scopus 로고
    • Laplacian eigenmaps based polarimetric dimensionality reduction for SAR image classification
    • Tu, S.T.; Chen, J.Y.; Yang, W.; Sun, H. Laplacian eigenmaps based polarimetric dimensionality reduction for SAR image classification. IEEE Trans. Geosci. Remote Sens. 2012, 50, 170-179.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , pp. 170-179
    • Tu, S.T.1    Chen, J.Y.2    Yang, W.3    Sun, H.4
  • 30
    • 84869504062 scopus 로고    scopus 로고
    • Supervised graph embedding for polarimetric SAR image classification
    • Shi, L.; Zhang, L.; Yang, J. Supervised graph embedding for polarimetric SAR image classification. IEEE Geosci. Remote Sens. Lett. 2013, 10, 216-220.
    • (2013) IEEE Geosci. Remote Sens. Lett. , vol.10 , pp. 216-220
    • Shi, L.1    Zhang, L.2    Yang, J.3
  • 31
    • 84870840688 scopus 로고    scopus 로고
    • Improving Wishart classification of polarimetric SAR data using the hopfield neural network optimization approach
    • Pajares, G.; López-Martínez, C.; Sánchez-Lladó, F.J.; Molina, í. Improving Wishart classification of polarimetric SAR data using the hopfield neural network optimization approach. Remote Sens. 2012, 4, 3571-3595.
    • (2012) Remote Sens. , vol.4 , pp. 3571-3595
    • Pajares, G.1    López-Martínez, C.2    Sánchez-Lladó, F.J.3    Molina, í.4
  • 34
    • 77952717202 scopus 로고    scopus 로고
    • Sparse representation for computer vision and pattern recognition
    • Wright, J.; Ma, Y.; Mairal, J.; Sapiro, G.; Huang, T.S.; Yan, S.C. Sparse representation for computer vision and pattern recognition. Proc. IEEE 2010, 98, 1031-1044.
    • (2010) Proc. IEEE , vol.98 , pp. 1031-1044
    • Wright, J.1    Ma, Y.2    Mairal, J.3    Sapiro, G.4    Huang, T.S.5    Yan, S.C.6
  • 36
    • 33751379736 scopus 로고    scopus 로고
    • Image denoising via sparse and redundant representations over learned dictionaries
    • Elad, M.; Aharon, M. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 2006, 15, 3736-3745.
    • (2006) IEEE Trans. Image Process. , vol.15 , pp. 3736-3745
    • Elad, M.1    Aharon, M.2
  • 37
    • 69949128613 scopus 로고    scopus 로고
    • L1 unmixing and its application to hyperspectral image enhancement
    • Guo, Z.; Wittman, T.; Osher, S. L1 unmixing and its application to hyperspectral image enhancement. Proc SPIE 2009, 7334, doi:10.1117/12.818245.
    • (2009) Proc SPIE , vol.7334
    • Guo, Z.1    Wittman, T.2    Osher, S.3
  • 38
    • 84869491579 scopus 로고    scopus 로고
    • An overview and comparison of smooth labeling methods for land-cover classification
    • Schindler, K. An overview and comparison of smooth labeling methods for land-cover classification. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4534-4545.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , pp. 4534-4545
    • Schindler, K.1
  • 39
    • 84899967600 scopus 로고    scopus 로고
    • Advances in spectral-spatial classification of hyperspectral images
    • Fauvel, M.; Tarabalka, Y.; Benediktsson, J.A. Advances in spectral-spatial classification of hyperspectral images. Proc. IEEE 2013, 101, 652-675.
    • (2013) Proc. IEEE , vol.101 , pp. 652-675
    • Fauvel, M.1    Tarabalka, Y.2    Benediktsson, J.A.3
  • 40
    • 84947648698 scopus 로고    scopus 로고
    • Land-cover mapping by Markov modeling of spatial-contextual information in very-high-resolution remote sensing images
    • Moser, G.; Serpico, S.; Benediktsson, J.A. Land-cover mapping by Markov modeling of spatial-contextual information in very-high-resolution remote sensing images. Proc. IEEE 2013, 101, 631-651.
    • (2013) Proc. IEEE , vol.101 , pp. 631-651
    • Moser, G.1    Serpico, S.2    Benediktsson, J.A.3
  • 41
    • 14644412366 scopus 로고    scopus 로고
    • Classification of hyperspectral data from urban areas based on extended morphological profiles
    • Benediktsson, J.A.; Palmason, J.A.; Sveinsson, J.R. Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans. Geosci. Remote Sens. 2005, 43, 480-491.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , pp. 480-491
    • Benediktsson, J.A.1    Palmason, J.A.2    Sveinsson, J.R.3
  • 42
    • 70350655559 scopus 로고    scopus 로고
    • Classification of very high spatial resolution imagery using mathematical morphology and support vector machines
    • Tuia, D.; Pacifici, F.; Kanevski, M.; Emery, W.J. Classification of very high spatial resolution imagery using mathematical morphology and support vector machines. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3866-3879.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , pp. 3866-3879
    • Tuia, D.1    Pacifici, F.2    Kanevski, M.3    Emery, W.J.4
  • 43
    • 79955521136 scopus 로고    scopus 로고
    • Classification of hyperspectral images by using extended morphological attribute profiles and independent component analysis
    • Mura, M.D.; Villa, A.; Benediktsson, J.A.; Chanussot, J.; Bruzzone, L. Classification of hyperspectral images by using extended morphological attribute profiles and independent component analysis. IEEE Geosci. Remote Sens. Lett. 2011, 8, 542-546.
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , pp. 542-546
    • Mura, M.D.1    Villa, A.2    Benediktsson, J.A.3    Chanussot, J.4    Bruzzone, L.5
  • 44
    • 80053571096 scopus 로고    scopus 로고
    • Hyperspectral image classification using dictionary-based sparse representation
    • Chen, Y.; Nasrabadi, N.; Tran, T. Hyperspectral image classification using dictionary-based sparse representation. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3973-3985.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , pp. 3973-3985
    • Chen, Y.1    Nasrabadi, N.2    Tran, T.3
  • 45
    • 84991825642 scopus 로고    scopus 로고
    • A nonlocal weighted joint sparse representation classification method for hyperspectral imagery
    • PP
    • Zhang, H.; Li, J.; Huang, Y.; Zhang, L. A nonlocal weighted joint sparse representation classification method for hyperspectral imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, PP, 1-10.
    • (2013) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. , pp. 1-10
    • Zhang, H.1    Li, J.2    Huang, Y.3    Zhang, L.4
  • 49
    • 61349174704 scopus 로고    scopus 로고
    • Robust higher order potentials for enforcing label consistency
    • Kohli, P.; Ladicky, L.; Torr, P. Robust higher order potentials for enforcing label consistency. Int. J. Comput. Vis. 2009, 82, 302-324.
    • (2009) Int. J. Comput. Vis. , vol.82 , pp. 302-324
    • Kohli, P.1    Ladicky, L.2    Torr, P.3
  • 50
    • 78650905163 scopus 로고    scopus 로고
    • Graph-based feature selection for object-oriented classification in VHR airborne imagery
    • Chen, X.; Fang, T.; Huo, H.; Li, D. Graph-based feature selection for object-oriented classification in VHR airborne imagery. IEEE Trans. Geosci. Remote Sens. 2011, 49, 353-365.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , pp. 353-365
    • Chen, X.1    Fang, T.2    Huo, H.3    Li, D.4
  • 51
    • 84863427020 scopus 로고    scopus 로고
    • MPM SAR image segmentation using feature extraction and context model
    • Hou, B.; Zhang, X.; Li, N. MPM SAR image segmentation using feature extraction and context model. IEEE Geosci. Remote Sens. Lett. 2012, 9, 1041-1045.
    • (2012) IEEE Geosci. Remote Sens. Lett. , vol.9 , pp. 1041-1045
    • Hou, B.1    Zhang, X.2    Li, N.3
  • 52
    • 73249143874 scopus 로고    scopus 로고
    • Segmentation and classification of polarimetric SAR data using spectral graph partitioning
    • Ersahin, K.; Cumming, I.G.; Ward, R.K. Segmentation and classification of polarimetric SAR data using spectral graph partitioning. IEEE Trans. Geosci. Remote Sens. 2010, 48, 164-174.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , pp. 164-174
    • Ersahin, K.1    Cumming, I.G.2    Ward, R.K.3
  • 53
    • 84872956983 scopus 로고    scopus 로고
    • Superpixel-based classification with an adaptive number of classes for polarimetric SAR images
    • Liu, B.; Hu, H.; Wang, H.; Wang, K.; Liu, X.; Yu, X. Superpixel-based classification with an adaptive number of classes for polarimetric SAR images. IEEE Trans. Geosci. Remote Sens. 2013, 51, 907-924.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , pp. 907-924
    • Liu, B.1    Hu, H.2    Wang, H.3    Wang, K.4    Liu, X.5    Yu, X.6
  • 56
    • 64649083745 scopus 로고    scopus 로고
    • Signal recovery from random measurements via orthogonal matching pursuit
    • Tropp, J.; Gilbert, A. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 2007, 53, 4655-4666.
    • (2007) IEEE Trans. Inf. Theory , vol.53 , pp. 4655-4666
    • Tropp, J.1    Gilbert, A.2
  • 57
    • 33646365077 scopus 로고    scopus 로고
    • For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution
    • Donoho, D. For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution. Commun. Pure Appl. Math. 2006, 59, 797-829.
    • (2006) Commun. Pure Appl. Math. , vol.59 , pp. 797-829
    • Donoho, D.1
  • 58
    • 33947416035 scopus 로고    scopus 로고
    • Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Trans
    • Candes, E.; Tao, T. Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Trans. Inf. Theory 2006, 52, 5406-5425.
    • (2006) Inf. Theory , vol.52 , pp. 5406-5425
    • Candes, E.1    Tao, T.2
  • 60
    • 84879044578 scopus 로고    scopus 로고
    • Fast l1-minimization algorithms for robust face recognition
    • Yang, A.Y.; Zhou, Z. Fast l1-minimization algorithms for robust face recognition. IEEE Trans. Image Process. 2013, 22, 3234-3246.
    • (2013) IEEE Trans. Image Process. , vol.22 , pp. 3234-3246
    • Yang, A.Y.1    Zhou, Z.2
  • 61
    • 0026172104 scopus 로고
    • Watersheds in digital spaces: An efficient algorithm based on immersion simulations
    • Vincent, L.; Soille, P. Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 1991, 13, 583-598.
    • (1991) IEEE Trans. Pattern Anal. Mach. Intell. , vol.13 , pp. 583-598
    • Vincent, L.1    Soille, P.2
  • 63
    • 67949115614 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques
    • Tarabalka, Y.; Benediktsson, J.A.; Chanussot, J. Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2973-2987.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , pp. 2973-2987
    • Tarabalka, Y.1    Benediktsson, J.A.2    Chanussot, J.3
  • 65
    • 23844477225 scopus 로고    scopus 로고
    • Sparse solutions to linear inverse problems with multiple measurement vectors
    • Cotter, S.F.; Rao, B.D.; Engan, K.; Kreutz-Delgado, K. Sparse solutions to linear inverse problems with multiple measurement vectors. IEEE Trans. Signal Process. 2005, 53, 2477-2488.
    • (2005) IEEE Trans. Signal Process. , vol.53 , pp. 2477-2488
    • Cotter, S.F.1    Rao, B.D.2    Engan, K.3    Kreutz-Delgado, K.4
  • 66
    • 79952039898 scopus 로고    scopus 로고
    • Surveying and comparing simultaneous sparse approximation (or group lasso) algorithms
    • Rakotomamonjy, A. Surveying and comparing simultaneous sparse approximation (or group lasso) algorithms. Signal Process. 2011, 91, 1505-1526.
    • (2011) Signal Process. , vol.91 , pp. 1505-1526
    • Rakotomamonjy, A.1
  • 67
    • 4344598245 scopus 로고    scopus 로고
    • An experimental comparison of mincut/max-flow algorithms for energy minimization in vision
    • Boykov, Y.; Kolmogorov, V. An experimental comparison of mincut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 26, 1124-1137.
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell. , vol.26 , pp. 1124-1137
    • Boykov, Y.1    Kolmogorov, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.