-
1
-
-
21244445102
-
Biosynthesis of flavocoenzymes
-
Fischer M, Bacher A. 2005. Biosynthesis of flavocoenzymes. Nat Prod Rep 22: 324-350. http://dx.doi.org/10.1039/b210142b.
-
(2005)
Nat Prod Rep
, vol.22
, pp. 324-350
-
-
Fischer, M.1
Bacher, A.2
-
2
-
-
84929180230
-
Extensive identification of bacterial riboflavin transporters and their distribution across bacterial species
-
Gutiérrez-Preciado A, Torres AG, Merino E, Bonomi HR, Goldbaum FA, Garcia-Angulo VA. 2015. Extensive identification of bacterial riboflavin transporters and their distribution across bacterial species. PLoS One 10: e0126124. http://dx.doi.org/10.1371/journal.pone.0126124.
-
(2015)
PLoS One
, vol.10
-
-
Gutiérrez-Preciado, A.1
Torres, A.G.2
Merino, E.3
Bonomi, H.R.4
Goldbaum, F.A.5
Garcia-Angulo, V.A.6
-
3
-
-
77956632119
-
Canonical and ECF-type ATP-binding cassette importers in prokaryotes: diversity in modular organization and cellular functions
-
Eitinger T, Rodionov DA, Grote M, Schneider E. 2011. Canonical and ECF-type ATP-binding cassette importers in prokaryotes: diversity in modular organization and cellular functions. FEMS Microbiol Rev 35: 367. http://dx.doi.org/10.1111/j.1574-6976.2010.00230.x.
-
(2011)
FEMS Microbiol Rev
, vol.35
, pp. 367
-
-
Eitinger, T.1
Rodionov, D.A.2
Grote, M.3
Schneider, E.4
-
4
-
-
84873706571
-
Assembly and mechanism of a group II ECF transporter
-
Karpowich NK, Wang DN. 2013. Assembly and mechanism of a group II ECF transporter. Proc Natl Acad Sci U S A 110: 2534-2539. http://dx.doi.org/10.1073/pnas.1217361110.
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. 2534-2539
-
-
Karpowich, N.K.1
Wang, D.N.2
-
5
-
-
84883306665
-
Flavoproteins are potential targets for the antibiotic roseoflavin in Escherichia coli
-
Langer S, Hashimoto M, Hobl B, Mathes T, Mack M. 2013. Flavoproteins are potential targets for the antibiotic roseoflavin in Escherichia coli. J Bacteriol 195: 4037-4045. http://dx.doi.org/10.1128/JB.00646-13.
-
(2013)
J Bacteriol
, vol.195
, pp. 4037-4045
-
-
Langer, S.1
Hashimoto, M.2
Hobl, B.3
Mathes, T.4
Mack, M.5
-
6
-
-
84879541610
-
The flavoenzyme azobenzene reductase AzoR from Escherichia coli binds roseoflavin mononucleotide (RoFMN) with high affinity and is less active in its RoFMN form
-
Langer S, Nakanishi S, Mathes T, Knaus T, Binter A, Macheroux P, Mase T, Miyakawa T, Tanokura M, Mack M. 2013. The flavoenzyme azobenzene reductase AzoR from Escherichia coli binds roseoflavin mononucleotide (RoFMN) with high affinity and is less active in its RoFMN form. Biochemistry 52: 4288-4295. http://dx.doi.org/10.1021/bi400348d.
-
(2013)
Biochemistry
, vol.52
, pp. 4288-4295
-
-
Langer, S.1
Nakanishi, S.2
Mathes, T.3
Knaus, T.4
Binter, A.5
Macheroux, P.6
Mase, T.7
Miyakawa, T.8
Tanokura, M.9
Mack, M.10
-
7
-
-
84866891749
-
A highly specialized flavin mononucleotide riboswitch responds differently to similar ligands and confers roseoflavin resistance to Streptomyces davawensis
-
Pedrolli DB, Matern A, Wang J, Ester M, Siedler K, Breaker R, Mack M. 2012. A highly specialized flavin mononucleotide riboswitch responds differently to similar ligands and confers roseoflavin resistance to Streptomy- ces davawensis. Nucleic Acids Res 40: 8662-8673. http://dx.doi.org/10.1093/nar/gks616.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 8662-8673
-
-
Pedrolli, D.B.1
Matern, A.2
Wang, J.3
Ester, M.4
Siedler, K.5
Breaker, R.6
Mack, M.7
-
8
-
-
0018716780
-
Flavokinase and FAD synthetase from Bacillus subtilis specific for reduced flavins
-
Kearney EB, Goldenberg J, Lipsick J, Perl M. 1979. Flavokinase and FAD synthetase from Bacillus subtilis specific for reduced flavins. J Biol Chem 254: 9551-9557.
-
(1979)
J Biol Chem
, vol.254
, pp. 9551-9557
-
-
Kearney, E.B.1
Goldenberg, J.2
Lipsick, J.3
Perl, M.4
-
9
-
-
77957672648
-
Archaeal RibL: a new FAD synthetase that is air sensitive
-
Mashhadi Z, Xu H, Grochowski LL, White RH. 2010. Archaeal RibL: a new FAD synthetase that is air sensitive. Biochemistry 49: 8748 -8755. http://dx.doi.org/10.1021/bi100817q.
-
(2010)
Biochemistry
, vol.49
, pp. 8748-8755
-
-
Mashhadi, Z.1
Xu, H.2
Grochowski, L.L.3
White, R.H.4
-
10
-
-
0034161331
-
Flavoenzymes: diverse catalysts with recurrent features
-
Fraaije MW, Mattevi A. 2000. Flavoenzymes: diverse catalysts with recurrent features. Trends Biochem Sci 25: 126 -132. http://dx.doi.org/10.1016/S0968-0004(99)01533-9.
-
(2000)
Trends Biochem Sci
, vol.25
, pp. 126-132
-
-
Fraaije, M.W.1
Mattevi, A.2
-
11
-
-
79960570256
-
Flavogenomics-a genomic and structural view of flavin-dependent proteins
-
Macheroux P, Kappes B, Ealick SE. 2011. Flavogenomics-a genomic and structural view of flavin-dependent proteins. FEBS J 278: 2625-2634. http://dx.doi.org/10.1111/j.1742-4658.2011.08202.x.
-
(2011)
FEBS J
, vol.278
, pp. 2625-2634
-
-
Macheroux, P.1
Kappes, B.2
Ealick, S.E.3
-
12
-
-
68049100110
-
Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli
-
Bennett BD, Kimball EH, Gao M, Osterhout R, Van Dien SJ, Rabinow- itz JD. 2009. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat Chem Biol 5: 593-599. http://dx.doi.org/10.1038/nchembio.186.
-
(2009)
Nat Chem Biol
, vol.5
, pp. 593-599
-
-
Bennett, B.D.1
Kimball, E.H.2
Gao, M.3
Osterhout, R.4
Van Dien, S.J.5
Rabinowitz, J.D.6
-
13
-
-
0016136492
-
Lett: Roseoflavin, a new antimicrobial pigment from Streptomyces
-
Otani S, Takatsu M, Nakano M, Kasai S, Miura R. 1974. Lett: Roseoflavin, a new antimicrobial pigment from Streptomyces. J Antibiot (Tokyo) 27: 88-89. http://dx.doi.org/10.7164/antibiotics.27.88.
-
(1974)
J Antibiot (Tokyo)
, vol.27
, pp. 88-89
-
-
Otani, S.1
Takatsu, M.2
Nakano, M.3
Kasai, S.4
Miura, R.5
-
14
-
-
84963818743
-
Identification of the key enzyme of roseoflavin biosynthesis
-
Schwarz J, Konjik V, Jankowitsch F, Sandhoff R, Mack M. 2016. Identification of the key enzyme of roseoflavin biosynthesis. Angew Chem Int Ed Engl 55: 6103-6106. http://dx.doi.org/10.1002/anie.201600581.
-
(2016)
Angew Chem Int Ed Engl
, vol.55
, pp. 6103-6106
-
-
Schwarz, J.1
Konjik, V.2
Jankowitsch, F.3
Sandhoff, R.4
Mack, M.5
-
15
-
-
80055078421
-
A novel N,N-8-amino-8-demethyl-D-riboflavin dimethyltransferase (RosA) catalyzing the two terminal steps of roseoflavin biosynthesis in Streptomyces davawensis
-
Jankowitsch F, Kuhm C, Kellner R, Kalinowski J, Pelzer S, Macheroux P, Mack M. 2011. A novel N,N-8-amino-8-demethyl-D-riboflavin dimethyltransferase (RosA) catalyzing the two terminal steps of roseoflavin biosynthesis in Streptomyces davawensis. J Biol Chem 286: 38275-38285. http://dx.doi.org/10.1074/jbc.M111.292300.
-
(2011)
J Biol Chem
, vol.286
, pp. 38275-38285
-
-
Jankowitsch, F.1
Kuhm, C.2
Kellner, R.3
Kalinowski, J.4
Pelzer, S.5
Macheroux, P.6
Mack, M.7
-
16
-
-
84960864079
-
Structural and kinetic studies on RosA, the enzyme catalysing the methylation of8-demethyl-8-amino-D-riboflavin to the antibiotic roseoflavin
-
Tongsook C, Uhl MK, Jankowitsch F, Mack M, Gruber K, Macheroux P. 2016. Structural and kinetic studies on RosA, the enzyme catalysing the methylation of8-demethyl-8-amino-D-riboflavin to the antibiotic roseo- flavin. FEBS J 283: 1531-1549. http://dx.doi.org/10.1111/febs.13690.
-
(2016)
FEBS J
, vol.283
, pp. 1531-1549
-
-
Tongsook, C.1
Uhl, M.K.2
Jankowitsch, F.3
Mack, M.4
Gruber, K.5
Macheroux, P.6
-
17
-
-
79960081500
-
The riboflavin analog roseoflavin targets an FMN-riboswitch and blocks Listeria monocytogenes growth, but also stimulates virulence gene-expression and infection
-
Mansjö M, Johansson J. 2011. The riboflavin analog roseoflavin targets an FMN-riboswitch and blocks Listeria monocytogenes growth, but also stimulates virulence gene-expression and infection. RNA Biol 8: 674-680. http://dx.doi.org/10.4161/rna.8.4.15586.
-
(2011)
RNA Biol
, vol.8
, pp. 674-680
-
-
Mansjö, M.1
Johansson, J.2
-
18
-
-
80555149405
-
The antibiotics roseoflavin and 8-demethyl-8-amino-riboflavin from Streptomyces davawensis are metabolized by human flavokinase and human FAD synthetase
-
Pedrolli DB, Nakanishi S, Barile M, Mansurova M, Carmona EC, Lux A, Gartner W, Mack M. 2011. The antibiotics roseoflavin and 8-demethyl-8-amino-riboflavin from Streptomyces davawensis are metabolized by human flavokinase and human FAD synthetase. Biochem Pharmacol 82: 1853-1859. http://dx.doi.org/10.1016/j.bcp.2011.08.029.
-
(2011)
Biochem Pharmacol
, vol.82
, pp. 1853-1859
-
-
Pedrolli, D.B.1
Nakanishi, S.2
Barile, M.3
Mansurova, M.4
Carmona, E.C.5
Lux, A.6
Gartner, W.7
Mack, M.8
-
20
-
-
84914696651
-
The pCri System: a vector collection for recombinant protein expression and purification
-
Goulas T, Cuppari A, Garcia-Castellanos R, Snipas S, Glockshuber R, Arolas JL, Gomis-Ruth FX. 2014. The pCri System: a vector collection for recombinant protein expression and purification. PLoS One 9: e112643. http://dx.doi.org/10.1371/journal.pone.0112643.
-
(2014)
PLoS One
, vol.9
-
-
Goulas, T.1
Cuppari, A.2
Garcia-Castellanos, R.3
Snipas, S.4
Glockshuber, R.5
Arolas, J.L.6
Gomis-Ruth, F.X.7
-
21
-
-
67650474303
-
The RFN riboswitch of Bacillus subtilis is a target for the antibiotic roseoflavin produced by Streptomyces davawensis
-
Ott E, Stolz J, Lehmann M, Mack M. 2009. The RFN riboswitch of Bacillus subtilis is a target for the antibiotic roseoflavin produced by Streptomyces davawensis. RNA Biol 6: 276-280. http://dx.doi.org/10.4161/rna.6.3.8342.
-
(2009)
RNA Biol
, vol.6
, pp. 276-280
-
-
Ott, E.1
Stolz, J.2
Lehmann, M.3
Mack, M.4
-
22
-
-
0030894214
-
A chemically defined minimal medium for the optimal culture of Listeria
-
Phan-Thanh L, Gormon T. 1997. A chemically defined minimal medium for the optimal culture of Listeria. Int J Food Microbiol 35: 91-95. http://dx.doi.org/10.1016/S0168-1605(96)01205-6.
-
(1997)
Int J Food Microbiol
, vol.35
, pp. 91-95
-
-
Phan-Thanh, L.1
Gormon, T.2
-
23
-
-
84892879385
-
Bacterial flavin mononucleotide riboswitches as targets for flavin analogs
-
Pedrolli DB, Mack M. 2014. Bacterial flavin mononucleotide riboswitches as targets for flavin analogs. Methods Mol Biol 1103: 165-176. http://dx.doi.org/10.1007/978-1-62703-730-3_13.
-
(2014)
Methods Mol Biol
, vol.1103
, pp. 165-176
-
-
Pedrolli, D.B.1
Mack, M.2
-
24
-
-
84872758293
-
Optimisation of over-expression in E coli and biophysical characterisation of human membrane protein synaptogyrin 1
-
Löw C, Jegerschöld C, Kovermann M, Moberg P, Nordlund P. 2012. Optimisation of over-expression in E. coli and biophysical characterisation of human membrane protein synaptogyrin 1. PLoS One 7: e38244. http://dx.doi.org/10.1371/joumal.pone.0038244.
-
(2012)
PLoS One
, vol.7
-
-
Löw, C.1
Jegerschöld, C.2
Kovermann, M.3
Moberg, P.4
Nordlund, P.5
-
25
-
-
84936846548
-
ATP binding drives substrate capture in an ECF transporter by a release-and-catch mechanism
-
Karpowich NK, Song JM, Cocco N, Wang DN. 2015. ATP binding drives substrate capture in an ECF transporter by a release-and-catch mechanism. Nat Struct Mol Biol 22: 565-571. http://dx.doi.org/10.1038/nsmb.3040.
-
(2015)
Nat Struct Mol Biol
, vol.22
, pp. 565-571
-
-
Karpowich, N.K.1
Song, J.M.2
Cocco, N.3
Wang, D.N.4
-
26
-
-
0031882942
-
Regulation of riboflavin biosynthesis in Bacillus subtilis is affected by the activity of the flavokinase/flavin adenine dinucleotide synthetase encoded by ribC
-
Mack M, van Loon AP, Hohmann HP. 1998. Regulation of riboflavin biosynthesis in Bacillus subtilis is affected bythe activity of the flavokinase/ flavin adenine dinucleotide synthetase encoded by ribC. J Bacteriol 180: 950-955.
-
(1998)
J Bacteriol
, vol.180
, pp. 950-955
-
-
Mack, M.1
van Loon, A.P.2
Hohmann, H.P.3
-
27
-
-
77953810360
-
Oligomeric state in the crystal structure of modular FAD synthetase provides insights into its sequential catalysis in prokaryotes
-
Herguedas B, Martinez-Julvez M, Frago S, Medina M, Hermoso JA. 2010. Oligomeric state in the crystal structure of modular FAD synthetase provides insights into its sequential catalysis in prokaryotes. J Mol Biol 400: 218-230. http://dx.doi.org/10.1016/j.jmb.2010.05.018.
-
(2010)
J Mol Biol
, vol.400
, pp. 218-230
-
-
Herguedas, B.1
Martinez-Julvez, M.2
Frago, S.3
Medina, M.4
Hermoso, J.A.5
-
28
-
-
33846114132
-
BRENDA, AMENDA and FRENDA: the enzyme information system in 2007
-
Barthelmes J, Ebeling C, Chang A, Schomburg I, Schomburg D. 2007. BRENDA, AMENDA and FRENDA: the enzyme information system in 2007. Nucleic Acids Res 35: D511-D514. http://dx.doi.org/10.1093/nar/gkl972.
-
(2007)
Nucleic Acids Res
, vol.35
, pp. D511-D514
-
-
Barthelmes, J.1
Ebeling, C.2
Chang, A.3
Schomburg, I.4
Schomburg, D.5
-
29
-
-
84860715141
-
Comparative transcriptomics of pathogenic and non-pathogenic Listeria species
-
Wurtzel O, Sesto N, Mellin JR, Karunker I, Edelheit S, Becavin C, Archambaud C, Cossart P, Sorek R. 2012. Comparative transcriptomics of pathogenic and non-pathogenic Listeria species. Mol Syst Biol 8: 583. http://dx.doi.org/10.1038/msb.2012.11.
-
(2012)
Mol Syst Biol
, vol.8
, pp. 583
-
-
Wurtzel, O.1
Sesto, N.2
Mellin, J.R.3
Karunker, I.4
Edelheit, S.5
Becavin, C.6
Archambaud, C.7
Cossart, P.8
Sorek, R.9
-
30
-
-
0037100667
-
Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation
-
Vitreschak AG, Rodionov DA, Mironov AA, Gelfand MS. 2002. Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation. Nucleic Acids Res 30: 3141-3151. http://dx.doi.org/10.1093/nar/gkf433.
-
(2002)
Nucleic Acids Res
, vol.30
, pp. 3141-3151
-
-
Vitreschak, A.G.1
Rodionov, D.A.2
Mironov, A.A.3
Gelfand, M.S.4
-
31
-
-
84939257837
-
The ribB FMN riboswitch from Escherichia coli operates at the transcriptional and translational level and regulates riboflavin biosynthesis
-
Pedrolli D, Langer S, Hobl B, Schwarz J, Hashimoto M, Mack M. 2015. The ribB FMN riboswitch from Escherichia coli operates at the transcriptional and translational level and regulates riboflavin biosynthesis. FEBS J 282: 3230-3242. http://dx.doi.org/10.1111/febs.13226.
-
(2015)
FEBS J
, vol.282
, pp. 3230-3242
-
-
Pedrolli, D.1
Langer, S.2
Hobl, B.3
Schwarz, J.4
Hashimoto, M.5
Mack, M.6
-
32
-
-
79958034240
-
The intracellular sRNA transcriptome of Listeria monocytogenes during growth in macrophages
-
Mraheil MA, Billion A, Mohamed W, Mukherjee K, Kuenne C, Pischimarov J, Krawitz C, Retey J, Hartsch T, Chakraborty T, Hain T. 2011. The intracellular sRNA transcriptome of Listeria monocytogenes during growth in macrophages. Nucleic Acids Res 39: 4235-4248. http://dx.doi.org/10.1093/nar/gkr033.
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 4235-4248
-
-
Mraheil, M.A.1
Billion, A.2
Mohamed, W.3
Mukherjee, K.4
Kuenne, C.5
Pischimarov, J.6
Krawitz, C.7
Retey, J.8
Hartsch, T.9
Chakraborty, T.10
Hain, T.11
-
33
-
-
79958022433
-
Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers
-
Abbas CA, Sibirny AA. 2011. Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers. Microbiol Mol Biol Rev 75: 321-360. http://dx.doi.org/10.1128/MMBR.00030-10.
-
(2011)
Microbiol Mol Biol Rev
, vol.75
, pp. 321-360
-
-
Abbas, C.A.1
Sibirny, A.A.2
-
34
-
-
58149490653
-
A novel class of modular transporters for vitamins in prokaryotes
-
Rodionov DA, Hebbeln P, Eudes A, ter Beek J, Rodionova IA, Erkens GB, Slotboom DJ, Gelfand MS, Osterman AL, Hanson AD, Eitinger T. 2009. A novel class of modular transporters for vitamins in prokaryotes. J Bacteriol 191: 42-51. http://dx.doi.org/10.1128/JB.01208-08.
-
(2009)
J Bacteriol
, vol.191
, pp. 42-51
-
-
Rodionov, D.A.1
Hebbeln, P.2
Eudes, A.3
ter Beek, J.4
Rodionova, I.A.5
Erkens, G.B.6
Slotboom, D.J.7
Gelfand, M.S.8
Osterman, A.L.9
Hanson, A.D.10
Eitinger, T.11
-
35
-
-
84870667907
-
Genome sequence of the bacterium Streptomyces davawensis JCM 4913 and heterologous production of the unique antibiotic roseoflavin
-
Jankowitsch F, Schwarz J, Ruckert C, Gust B, Szczepanowski R, Blom J, Pelzer S, Kalinowski J, Mack M. 2012. Genome sequence of the bacterium Streptomyces davawensis JCM 4913 and heterologous production of the unique antibiotic roseoflavin. J Bacteriol 194: 6818 -6827. http://dx.doi.org/10.1128/JB.01592-12.
-
(2012)
J Bacteriol
, vol.194
, pp. 6818-6827
-
-
Jankowitsch, F.1
Schwarz, J.2
Ruckert, C.3
Gust, B.4
Szczepanowski, R.5
Blom, J.6
Pelzer, S.7
Kalinowski, J.8
Mack, M.9
-
36
-
-
39749093132
-
The bifunctional flavokinase/flavin adenine dinucleotide synthetase from Streptomyces davawensis produces inactive flavin cofactors and is not involved in resistance to the antibiotic roseoflavin
-
Grill S, Busenbender S, Pfeiffer M, Kohler U, Mack M. 2008. The bifunctional flavokinase/flavin adenine dinucleotide synthetase from Streptomyces davawensis produces inactive flavin cofactors and is not involved in resistance to the antibiotic roseoflavin. J Bacteriol 190: 1546 - 1553. http://dx.doi.org/10.1128/JB.01586-07.
-
(2008)
J Bacteriol
, vol.190
, pp. 1546-1553
-
-
Grill, S.1
Busenbender, S.2
Pfeiffer, M.3
Kohler, U.4
Mack, M.5
-
37
-
-
77957896272
-
Evolutionary divergence of chloroplast FAD synthetase proteins
-
Yruela I, Arilla-Luna S, Medina M, Contreras-Moreira B. 2010. Evolutionary divergence ofchloroplast FAD synthetase proteins. BMC Evol Biol 10: 311. http://dx.doi.org/10.1186/1471-2148-10-311.
-
(2010)
BMC Evol Biol
, vol.10
, pp. 311
-
-
Yruela, I.1
Arilla-Luna, S.2
Medina, M.3
Contreras-Moreira, B.4
-
38
-
-
84946926580
-
A dual control mechanism synchronizes riboflavin and sulphur metabolism in Bacillus subtilis
-
Pedrolli DB, Kuhm C, Sevin DC, Vockenhuber MP, Sauer U, Suess B, Mack M. 2015. A dual control mechanism synchronizes riboflavin and sulphur metabolism in Bacillus subtilis. Proc Natl Acad Sci U S A 112: 14054-14059. http://dx.doi.org/10.1073/pnas.1515024112.
-
(2015)
Proc Natl Acad Sci U S A
, vol.112
, pp. 14054-14059
-
-
Pedrolli, D.B.1
Kuhm, C.2
Sevin, D.C.3
Vockenhuber, M.P.4
Sauer, U.5
Suess, B.6
Mack, M.7
-
39
-
-
84948768567
-
Structural insights into the synthesis of FMN in prokaryotic organisms
-
Herguedas B, Lans I, Sebastian M, Hermoso JA, Martinez-Julvez M, Medina M. 2015. Structural insights into the synthesis of FMN in prokaryotic organisms. Acta Crystallogr D Biol Crystallogr 71: 2526 -2542. http://dx.doi.org/10.1107/S1399004715019641.
-
(2015)
Acta Crystallogr D Biol Crystallogr
, vol.71
, pp. 2526-2542
-
-
Herguedas, B.1
Lans, I.2
Sebastian, M.3
Hermoso, J.A.4
Martinez-Julvez, M.5
Medina, M.6
-
40
-
-
0033989718
-
In vitro activity of riboflavin against the human malaria parasite Plasmodium falciparum
-
Akompong T, Ghori N, Haldar K. 2000. In vitro activity of riboflavin against the human malaria parasite Plasmodium falciparum. Antimicrob Agents Chemother 44: 88-96. http://dx.doi.org/10.1128/AAC.44.1.88-96.2000.
-
(2000)
Antimicrob Agents Chemother
, vol.44
, pp. 88-96
-
-
Akompong, T.1
Ghori, N.2
Haldar, K.3
-
41
-
-
84877822573
-
Riboflavin analogs as antiinfectives: occurrence, mode of action, metabolism and resistance
-
Pedrolli DB, Jankowitsch F, Schwarz J, Langer S, Nakanishi S, Frei E, Mack M. 2013. Riboflavin analogs as antiinfectives: occurrence, mode of action, metabolism and resistance. Curr Pharm Des 19: 2552-2560. http://dx.doi.org/10.2174/1381612811319140006.
-
(2013)
Curr Pharm Des
, vol.19
, pp. 2552-2560
-
-
Pedrolli, D.B.1
Jankowitsch, F.2
Schwarz, J.3
Langer, S.4
Nakanishi, S.5
Frei, E.6
Mack, M.7
-
42
-
-
84921439422
-
Natural riboflavin analogs
-
Pedrolli DB, Jankowitsch F, Schwarz J, Langer S, Nakanishi S, Mack M. 2014. Natural riboflavin analogs. Methods Mol Biol 1146: 41-63. http://dx.doi.org/10.1007/978-1-4939-0452-5_3.
-
(2014)
Methods Mol Biol
, vol.1146
, pp. 41-63
-
-
Pedrolli, D.B.1
Jankowitsch, F.2
Schwarz, J.3
Langer, S.4
Nakanishi, S.5
Mack, M.6
-
43
-
-
84873728613
-
The characterization of internal promoters in the Bacillus subtilis riboflavin biosynthesis operon
-
(In Russian.)
-
Skliarova SA, Kreneva RA, Perumov DA, Mironov AS. 2012. The characterization ofinternal promoters in the Bacillus subtilis riboflavin biosynthesis operon. Genetika 48: 1133-1141. (In Russian.)
-
(2012)
Genetika
, vol.48
, pp. 1133-1141
-
-
Skliarova, S.A.1
Kreneva, R.A.2
Perumov, D.A.3
Mironov, A.S.4
|