메뉴 건너뛰기




Volumn 31, Issue 3, 2017, Pages 606-660

The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances

Author keywords

Elastic distance measures; Shapelets; Time series classification; Time series similarity

Indexed keywords

TIME SERIES;

EID: 84996721530     PISSN: 13845810     EISSN: 1573756X     Source Type: Journal    
DOI: 10.1007/s10618-016-0483-9     Document Type: Article
Times cited : (1317)

References (50)
  • 1
    • 84904555167 scopus 로고    scopus 로고
    • A run length transformation for discriminating between auto regressive time series
    • Bagnall A, Janacek G (2014) A run length transformation for discriminating between auto regressive time series. J Classif 31:154–178
    • (2014) J Classif , vol.31 , pp. 154-178
    • Bagnall, A.1    Janacek, G.2
  • 2
    • 85018004932 scopus 로고    scopus 로고
    • Bagnall A, Bostrom A, Lines J
    • Bagnall A, Bostrom A, Lines J The UEA TSC codebase. https://bitbucket.org/TonyBagnall/time-series-classification
    • The UEA TSC codebase.
  • 3
    • 85018012748 scopus 로고    scopus 로고
    • Bagnall A, Lines J, Bostrom A, Keogh E
    • Bagnall A, Lines J, Bostrom A, Keogh E The UCR/UEA TSC archive. http://timeseriesclassification.com
    • The UCR/UEA TSC archive.
  • 4
    • 84939221419 scopus 로고    scopus 로고
    • Time-series classification with COTE: the collective of transformation-based ensembles
    • Bagnall A, Lines J, Hills J, Bostrom A (2015) Time-series classification with COTE: the collective of transformation-based ensembles. IEEE Trans Knowl Data Eng 27:2522–2535
    • (2015) IEEE Trans Knowl Data Eng , vol.27 , pp. 2522-2535
    • Bagnall, A.1    Lines, J.2    Hills, J.3    Bostrom, A.4
  • 5
    • 84894600764 scopus 로고    scopus 로고
    • CID: an efficient complexity-invariant distance measure for time series
    • Batista G, Keogh E, Tataw O, deSouza V (2014) CID: an efficient complexity-invariant distance measure for time series. Data Min Knowl Discov 28(3):634–669
    • (2014) Data Min Knowl Discov , vol.28 , Issue.3 , pp. 634-669
    • Batista, G.1    Keogh, E.2    Tataw, O.3    deSouza, V.4
  • 6
    • 84957940893 scopus 로고    scopus 로고
    • Time series representation and similarity based on local autopatterns
    • Baydogan M, Runger G (2016) Time series representation and similarity based on local autopatterns. Data Min Knowl Discov 30(2):476–509
    • (2016) Data Min Knowl Discov , vol.30 , Issue.2 , pp. 476-509
    • Baydogan, M.1    Runger, G.2
  • 8
    • 84962407167 scopus 로고    scopus 로고
    • Should we really use post-hoc tests based on mean-ranks?
    • Benavoli A, Corani G, Mangili F (2016) Should we really use post-hoc tests based on mean-ranks? J Mach Learn Res 17:1–10
    • (2016) J Mach Learn Res , vol.17 , pp. 1-10
    • Benavoli, A.1    Corani, G.2    Mangili, F.3
  • 10
    • 0347649244 scopus 로고    scopus 로고
    • Locally adaptive dimensionality reduction for indexing large time series databases
    • Chakrabarti K, Keogh E, Mehrotra S, Pazzani M (2002) Locally adaptive dimensionality reduction for indexing large time series databases. ACM Trans Database Syst 27(2):188–228
    • (2002) ACM Trans Database Syst , vol.27 , Issue.2 , pp. 188-228
    • Chakrabarti, K.1    Keogh, E.2    Mehrotra, S.3    Pazzani, M.4
  • 13
    • 38049149222 scopus 로고    scopus 로고
    • Chen Y, Keogh E, Hu B, Begum N, Bagnall A, Mueen A, Batista G
    • Chen Y, Keogh E, Hu B, Begum N, Bagnall A, Mueen A, Batista G (2015) The UCR time series classification archive. http://www.cs.ucr.edu/~eamonn/time_series_data/
    • (2015) The UCR time series classification archive.
  • 14
    • 35748959377 scopus 로고    scopus 로고
    • Time series clustering and classification by the autoregressive metric
    • Corduas M, Piccolo D (2008) Time series clustering and classification by the autoregressive metric. Comput Stat Data Anal 52(4):1860–1872
    • (2008) Comput Stat Data Anal , vol.52 , Issue.4 , pp. 1860-1872
    • Corduas, M.1    Piccolo, D.2
  • 15
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30
    • (2006) J Mach Learn Res , vol.7 , pp. 1-30
    • Demšar, J.1
  • 16
    • 84876948280 scopus 로고    scopus 로고
    • A time series forest for classification and feature extraction
    • Deng H, Runger G, Tuv E, Vladimir M (2013) A time series forest for classification and feature extraction. Inf Sci 239:142–153
    • (2013) Inf Sci , vol.239 , pp. 142-153
    • Deng, H.1    Runger, G.2    Tuv, E.3    Vladimir, M.4
  • 18
    • 84876979115 scopus 로고    scopus 로고
    • Department for Environment, Food and Rural Affairs (DEFRA
    • Energy Saving Trust (2012) Powering the nation. Department for Environment, Food and Rural Affairs (DEFRA)
    • (2012) Powering the nation
  • 19
    • 84910104155 scopus 로고    scopus 로고
    • Highly comparative feature-based time-series classification
    • Fulcher B, Jones N (2014) Highly comparative feature-based time-series classification. IEEE Trans Knowl Data Eng 26(12):3026–3037
    • (2014) IEEE Trans Knowl Data Eng , vol.26 , Issue.12 , pp. 3026-3037
    • Fulcher, B.1    Jones, N.2
  • 20
    • 58149287952 scopus 로고    scopus 로고
    • An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons
    • García S, Herrera F (2008) An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons. J Mach Learn Res 9:2677–2694
    • (2008) J Mach Learn Res , vol.9 , pp. 2677-2694
    • García, S.1    Herrera, F.2
  • 22
    • 84872404670 scopus 로고    scopus 로고
    • Using derivatives in time series classification
    • Górecki T, Łuczak M (2013) Using derivatives in time series classification. Data Min Knowl Discov 26(2):310–331
    • (2013) Data Min Knowl Discov , vol.26 , Issue.2 , pp. 310-331
    • Górecki, T.1    Łuczak, M.2
  • 23
    • 84897412314 scopus 로고    scopus 로고
    • Non-isometric transforms in time series classification using DTW
    • Górecki T, Łuczak M (2014) Non-isometric transforms in time series classification using DTW. Knowl-Based Syst 61:98–108
    • (2014) Knowl-Based Syst , vol.61 , pp. 98-108
    • Górecki, T.1    Łuczak, M.2
  • 27
    • 84976825385 scopus 로고
    • Algorithms for the longest common subsequence problem
    • Hirschberg D (1977) Algorithms for the longest common subsequence problem. J ACM 24(4):664–675
    • (1977) J ACM , vol.24 , Issue.4 , pp. 664-675
    • Hirschberg, D.1
  • 28
    • 10844268926 scopus 로고    scopus 로고
    • Automatic segmentation of diatom images for classification
    • Jalba A, Wilkinson M, Roerdink J (2004) Automatic segmentation of diatom images for classification. Microsc Res Tech 65:72–85
    • (2004) Microsc Res Tech , vol.65 , pp. 72-85
    • Jalba, A.1    Wilkinson, M.2    Roerdink, J.3
  • 29
    • 79957533818 scopus 로고    scopus 로고
    • Weighted dynamic time warping for time series classification
    • Jeong Y, Jeong M, Omitaomu O (2011) Weighted dynamic time warping for time series classification. Pattern Recogn 44:2231–2240
    • (2011) Pattern Recogn , vol.44 , pp. 2231-2240
    • Jeong, Y.1    Jeong, M.2    Omitaomu, O.3
  • 30
    • 84958052891 scopus 로고    scopus 로고
    • Using dynamic time warping distances as features for improved time series classification
    • Kate R (2016) Using dynamic time warping distances as features for improved time series classification. Data Min Knowl Discov 30(2):283–312
    • (2016) Data Min Knowl Discov , vol.30 , Issue.2 , pp. 283-312
    • Kate, R.1
  • 31
    • 0042711018 scopus 로고    scopus 로고
    • On the need for time series data mining benchmarks: a survey and empirical demonstration
    • Keogh E, Kasetty S (2003) On the need for time series data mining benchmarks: a survey and empirical demonstration. Data Min Knowl Discov 7(4):349–371
    • (2003) Data Min Knowl Discov , vol.7 , Issue.4 , pp. 349-371
    • Keogh, E.1    Kasetty, S.2
  • 32
    • 34548093287 scopus 로고    scopus 로고
    • Experiencing SAX: a novel symbolic representation of time series
    • Lin J, Keogh E, Li W, Lonardi S (2007) Experiencing SAX: a novel symbolic representation of time series. Data Min Knowl Discov 15(2):107–144
    • (2007) Data Min Knowl Discov , vol.15 , Issue.2 , pp. 107-144
    • Lin, J.1    Keogh, E.2    Li, W.3    Lonardi, S.4
  • 33
    • 84868624588 scopus 로고    scopus 로고
    • Rotation-invariant similarity in time series using bag-of-patterns representation
    • Lin J, Khade R, Li Y (2012) Rotation-invariant similarity in time series using bag-of-patterns representation. J Intell Inf Syst 39(2):287–315
    • (2012) J Intell Inf Syst , vol.39 , Issue.2 , pp. 287-315
    • Lin, J.1    Khade, R.2    Li, Y.3
  • 34
    • 84939218581 scopus 로고    scopus 로고
    • Time series classification with ensembles of elastic distance measures
    • Lines J, Bagnall A (2015) Time series classification with ensembles of elastic distance measures. Data Min Knowl Discov 29:565–592
    • (2015) Data Min Knowl Discov , vol.29 , pp. 565-592
    • Lines, J.1    Bagnall, A.2
  • 35
    • 0034340199 scopus 로고    scopus 로고
    • Clusters of time series
    • Maharaj EA (2000) Clusters of time series. J Classif 17:297–314
    • (2000) J Classif , vol.17 , pp. 297-314
    • Maharaj, E.A.1
  • 36
    • 62249218289 scopus 로고    scopus 로고
    • Time warp edit distance with stiffness adjustment for time series matching
    • Marteau P (2009) Time warp edit distance with stiffness adjustment for time series matching. IEEE Trans Pattern Anal Mach Intell 31(2):306–318
    • (2009) IEEE Trans Pattern Anal Mach Intell , vol.31 , Issue.2 , pp. 306-318
    • Marteau, P.1
  • 42
    • 22544442515 scopus 로고    scopus 로고
    • Support vector machines of interval-based features for time series classification
    • Rodríguez J, Alonso C, Maestro J (2005) Support vector machines of interval-based features for time series classification. Knowl-Based Syst 18:171–178
    • (2005) Knowl-Based Syst , vol.18 , pp. 171-178
    • Rodríguez, J.1    Alonso, C.2    Maestro, J.3
  • 43
    • 84942428644 scopus 로고    scopus 로고
    • The BOSS is concerned with time series classification in the presence of noise
    • Schäfer P (2015) The BOSS is concerned with time series classification in the presence of noise. Data Min Knowl Discov 29(6):1505–1530
    • (2015) Data Min Knowl Discov , vol.29 , Issue.6 , pp. 1505-1530
    • Schäfer, P.1
  • 46
    • 84898995769 scopus 로고    scopus 로고
    • Clustering sequences with hidden Markov models
    • Smyth P (1997) Clustering sequences with hidden Markov models. Adv Neural Inf Process Syst 9:648–654
    • (1997) Adv Neural Inf Process Syst , vol.9 , pp. 648-654
    • Smyth, P.1
  • 47
    • 84897584209 scopus 로고    scopus 로고
    • The move-split-merge metric for time series
    • Stefan A, Athitsos V, Das G (2013) The move-split-merge metric for time series. IEEE Trans Knowl Data Eng 25(6):1425–1438
    • (2013) IEEE Trans Knowl Data Eng , vol.25 , Issue.6 , pp. 1425-1438
    • Stefan, A.1    Athitsos, V.2    Das, G.3
  • 48
    • 84872397385 scopus 로고    scopus 로고
    • Experimental comparison of representation methods and distance measures for time series data
    • Wang X, Mueen A, Ding H, Trajcevski G, Scheuermann P, Keogh E (2013) Experimental comparison of representation methods and distance measures for time series data. Data Min Knowl Discov 26(2):275–309
    • (2013) Data Min Knowl Discov , vol.26 , Issue.2 , pp. 275-309
    • Wang, X.1    Mueen, A.2    Ding, H.3    Trajcevski, G.4    Scheuermann, P.5    Keogh, E.6
  • 49
    • 78651360823 scopus 로고    scopus 로고
    • Time series shapelets: a novel technique that allows accurate, interpretable and fast classification
    • Ye L, Keogh E (2011) Time series shapelets: a novel technique that allows accurate, interpretable and fast classification. Data Min Knowl Discov 22(1–2):149–182
    • (2011) Data Min Knowl Discov , vol.22 , Issue.1-2 , pp. 149-182
    • Ye, L.1    Keogh, E.2
  • 50


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.