메뉴 건너뛰기




Volumn 26, Issue 12, 2014, Pages 3026-3037

Highly comparative feature-based time-series classification

Author keywords

classification; data mining; Time series analysis

Indexed keywords

DATA MINING;

EID: 84910104155     PISSN: 10414347     EISSN: None     Source Type: Journal    
DOI: 10.1109/TKDE.2014.2316504     Document Type: Article
Times cited : (334)

References (42)
  • 1
    • 0042711018 scopus 로고    scopus 로고
    • On the need for time series data mining benchmarks: A survey and empirical demonstration
    • E. Keogh and S. Kasetty, "On the need for time series data mining benchmarks: A survey and empirical demonstration," Data Mining Knowl. Discovery, vol. 7, pp. 349-371, 2003.
    • (2003) Data Mining Knowl. Discovery , vol.7 , pp. 349-371
    • Keogh, E.1    Kasetty, S.2
  • 2
    • 41949141213 scopus 로고    scopus 로고
    • Data clustering
    • L. La Vange ed., Philadelphia, PA, USA: SIAM
    • G. Gan, C. Ma, and J. Wu, Data Clustering. Theory, Algorithms, and Applications, L. LaVange, ed., Philadelphia, PA, USA: SIAM, 2007.
    • (2007) Theory Algorithms Applications
    • Gan, G.1    Ma, C.2    Wu, J.3
  • 4
    • 84877260200 scopus 로고    scopus 로고
    • Highly comparative time-series analysis: The empirical structure of time series and their methods
    • B. D. Fulcher, M. A. Little, and N. S. Jones, "Highly comparative time-series analysis: The empirical structure of time series and their methods," J. Roy. Soc. Interface, vol. 10, no. 83, p. 20130048, 2013.
    • (2013) J. Roy. Soc. Interface , vol.10 , Issue.83 , pp. 20130048
    • Fulcher, B.D.1    Little, M.A.2    Jones, N.S.3
  • 5
    • 84872397385 scopus 로고    scopus 로고
    • Experimental comparison of representation methods and distance measures for time series data
    • X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann, and E. Keogh, "Experimental comparison of representation methods and distance measures for time series data," Data Mining Knowl. Discovery, vol. 26, pp. 275-309, 2013.
    • (2013) Data Mining Knowl. Discovery , vol.26 , pp. 275-309
    • Wang, X.1    Mueen, A.2    Ding, H.3    Trajcevski, G.4    Scheuermann, P.5    Keogh, E.6
  • 6
    • 24044470614 scopus 로고    scopus 로고
    • Clustering of time series data-A survey
    • T. W. Liao, "Clustering of time series data-A survey," Pattern Recognit., vol. 38, no. 11, pp. 1857-1874, 2005.
    • (2005) Pattern Recognit. , vol.38 , Issue.11 , pp. 1857-1874
    • Liao, T.W.1
  • 9
    • 84960111929 scopus 로고    scopus 로고
    • Fast shapelets: A scalable algorithm for discovering time series shapelets
    • T. Rakthanmanon and E. Keogh, "Fast shapelets: A scalable algorithm for discovering time series shapelets," in Proc. SIAM Conf. Data Mining, 2013, pp. 668-676.
    • (2013) Proc. SIAM Conf Data Mining , pp. 668-676
    • Rakthanmanon, T.1    Keogh, E.2
  • 11
    • 26944440613 scopus 로고    scopus 로고
    • Time series feature extraction for data mining using DWT and DFT
    • Philipps-Univ. Marburg, Marburg, Germany
    • F. Mörchen, "Time series feature extraction for data mining using DWT and DFT," Philipps-Univ. Marburg, Marburg, Germany, Tech. Rep. No. 33, 2003.
    • (2003) Tech. Rep. , Issue.33
    • Mörchen, F.1
  • 12
    • 33749012790 scopus 로고    scopus 로고
    • Characteristic-based clustering for time series data
    • X. Wang, K. Smith, and R. Hyndman, "Characteristic-based clustering for time series data," Data Mining Knowl. Discovery, vol. 13, pp. 335-364, 2006.
    • (2006) Data Mining Knowl. Discovery , vol.13 , pp. 335-364
    • Wang, X.1    Smith, K.2    Hyndman, R.3
  • 13
    • 49749089314 scopus 로고    scopus 로고
    • Structure-based statistical features and multivariate time series clustering
    • X. Wang, A. Wirth, and L. Wang, "Structure-based statistical features and multivariate time series clustering," in Proc. IEEE Int. Conf. Data Mining, 2007, pp. 351-360.
    • (2007) Proc. IEEE Int. Conf Data Mining , pp. 351-360
    • Wang, X.1    Wirth, A.2    Wang, L.3
  • 14
    • 84876948280 scopus 로고    scopus 로고
    • A time series forest for classification and feature extraction
    • H. Deng, G. Runger, E. Tuv, and M. Vladimir, "A time series forest for classification and feature extraction," Inf. Sci., vol. 239, pp. 142-153, 2013.
    • (2013) Inf. Sci. , vol.239 , pp. 142-153
    • Deng, H.1    Runger, G.2    Tuv, E.3    Vladimir, M.4
  • 17
    • 0242479804 scopus 로고    scopus 로고
    • Generalized feature extraction for structural pattern recognition in time-series data
    • Pittsburgh, PA, USA
    • R. T. Olszweski, "Generalized feature extraction for structural pattern recognition in time-series data," Ph.D. dissertation, School Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA, USA, 2001.
    • (2001) Ph.D. Dissertation School Comput. Sci., Carnegie Mellon Univ.
    • Olszweski, R.T.1
  • 19
    • 24644461330 scopus 로고    scopus 로고
    • Computer vision classification of leaves from Swedish trees
    • Linköping Univ.
    • O. J. O. Söderkvist, "Computer vision classification of leaves from Swedish trees," Master's thesis, Dept. Elect. Eng., Linköping Univ., 2001.
    • (2001) Master's Thesis, Dept. Elect. Eng.
    • Söderkvist, O.J.O.1
  • 23
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," J. Mach. Learn. Res., vol. 3, pp. 1157-1182, 2003.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 25
  • 26
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, "Gene selection for cancer classification using support vector machines," Mach. Learn., vol. 46, no. 1, pp. 389-422, 2002.
    • (2002) Mach. Learn. , vol.46 , Issue.1 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 28
    • 2942525700 scopus 로고    scopus 로고
    • Making time-series classification more accurate using learned constraints
    • C. A. Ratanamahatana and E. Keogh, "Making time-series classification more accurate using learned constraints," in Proc. SIAM Int. Conf. Data Mining, 2004, pp. 11-22.
    • (2004) Proc. SIAM Int. Conf. Data Mining , pp. 11-22
    • Ratanamahatana, C.A.1    Keogh, E.2
  • 29
    • 84902259826 scopus 로고    scopus 로고
    • Multivariate temporal classification by windowed wavelet decomposition and recurrent neural networks
    • Interface,Washington DC, USA
    • D. Roverso, "Multivariate temporal classification by windowed wavelet decomposition and recurrent neural networks," in Proc. 3rd ANS Int. Top. Meet. Nucl. Plant Instrum., Control Human-Mach. Interface,Washington, DC, USA, 2000, vol. 20.
    • (2000) Proc. 3rd ANS Int. Top. Meet. Nucl. Plant Instrum., Control Human-Mach , vol.20
    • Roverso, D.1
  • 30
    • 0345792394 scopus 로고    scopus 로고
    • Surrogate time series
    • T. Schreiber and A. Schmitz, "Surrogate time series," in Physica D, vol. 142, 2000, nos. 3/4, pp. 346-382.
    • (2000) Physica D , vol.142 , Issue.3-4 , pp. 346-382
    • Schreiber, T.1    Schmitz, A.2
  • 31
    • 0031700345 scopus 로고    scopus 로고
    • Control chart pattern recognition using a new type of self-organizing neural network
    • D. T. Pham and A. B. Chan, "Control chart pattern recognition using a new type of self-organizing neural network," in Proc. Inst. Mech. Eng. Part I-J. Syst. Control Eng., vol. 212, no. 2, 1998, pp. 115-127.
    • (1998) Proc. Inst. Mech. Eng. Part I-J. Syst. Control Eng. , vol.212 , Issue.2 , pp. 115-127
    • Pham, D.T.1    Chan, A.B.2
  • 34
    • 0031118203 scopus 로고    scopus 로고
    • No free lunch theorems for optimization
    • D. Wolpert and W. Macready, "No free lunch theorems for optimization," IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67-82, 1997.
    • (1997) IEEE Trans. Evol. Comput. , vol.1 , Issue.1 , pp. 67-82
    • Wolpert, D.1    Macready, W.2
  • 36
    • 84867136666 scopus 로고    scopus 로고
    • Querying and mining of time series data: Experimental comparison of representations and distance measures
    • H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh, "Querying and mining of time series data: Experimental comparison of representations and distance measures," Proc. VLDB Endowment, vol. 1, pp. 1542-1552, 2008.
    • (2008) Proc. VLDB Endowment , vol.1 , pp. 1542-1552
    • Ding, H.1    Trajcevski, G.2    Scheuermann, P.3    Wang, X.4    Keogh, E.5
  • 37
    • 0347649244 scopus 로고    scopus 로고
    • Locally adaptive dimensionality reduction for indexing large time series databases
    • K. Chakrabarti, E. Keogh, S. Mehrotra, and M. Pazzani, "Locally adaptive dimensionality reduction for indexing large time series databases," ACM Trans. Database Syst., vol. 27, pp. 188-228, 2002.
    • (2002) ACM Trans. Database Syst. , vol.27 , pp. 188-228
    • Chakrabarti, K.1    Keogh, E.2    Mehrotra, S.3    Pazzani, M.4
  • 39
    • 34548093287 scopus 로고    scopus 로고
    • Experiencing SAX: A novel symbolic representation of time series
    • J. Lin, E. Keogh, L. Wei, and S. Lonardi, "Experiencing SAX: A novel symbolic representation of time series," Data Mining Knowl. Discovery, vol. 15, no. 2, pp. 107-144, 2007.
    • (2007) Data Mining Knowl. Discovery , vol.15 , Issue.2 , pp. 107-144
    • Lin, J.1    Keogh, E.2    Wei, L.3    Lonardi, S.4
  • 41
    • 84866041459 scopus 로고    scopus 로고
    • A complexity-invariant distance measure for time series
    • G. E. Batista, X. Wang, and E. J. Keogh, "A complexity-invariant distance measure for time series," in Proc. SIAM Int. Conf. Data Mining, vol. 31, 2011, pp. 699-710.
    • (2011) Proc. SIAM Int. Conf. Data Mining , vol.31 , pp. 699-710
    • Batista, G.E.1    Wang, X.2    Keogh, E.J.3
  • 42
    • 0027786660 scopus 로고
    • Characteristics of hand tremor time series
    • J. Timmer, C. Gantert, G. Deuschl, and J. Honerkamp, "Characteristics of hand tremor time series," Biol. Cybern., vol. 70, no. 1, pp. 75-80, 1993.
    • (1993) Biol. Cybern. , vol.70 , Issue.1 , pp. 75-80
    • Timmer, J.1    Gantert, C.2    Deuschl, G.3    Honerkamp, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.