-
1
-
-
0042711018
-
On the need for time series data mining benchmarks: A survey and empirical demonstration
-
E. Keogh and S. Kasetty, "On the need for time series data mining benchmarks: A survey and empirical demonstration," Data Mining Knowl. Discovery, vol. 7, pp. 349-371, 2003.
-
(2003)
Data Mining Knowl. Discovery
, vol.7
, pp. 349-371
-
-
Keogh, E.1
Kasetty, S.2
-
2
-
-
41949141213
-
Data clustering
-
L. La Vange ed., Philadelphia, PA, USA: SIAM
-
G. Gan, C. Ma, and J. Wu, Data Clustering. Theory, Algorithms, and Applications, L. LaVange, ed., Philadelphia, PA, USA: SIAM, 2007.
-
(2007)
Theory Algorithms Applications
-
-
Gan, G.1
Ma, C.2
Wu, J.3
-
4
-
-
84877260200
-
Highly comparative time-series analysis: The empirical structure of time series and their methods
-
B. D. Fulcher, M. A. Little, and N. S. Jones, "Highly comparative time-series analysis: The empirical structure of time series and their methods," J. Roy. Soc. Interface, vol. 10, no. 83, p. 20130048, 2013.
-
(2013)
J. Roy. Soc. Interface
, vol.10
, Issue.83
, pp. 20130048
-
-
Fulcher, B.D.1
Little, M.A.2
Jones, N.S.3
-
5
-
-
84872397385
-
Experimental comparison of representation methods and distance measures for time series data
-
X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann, and E. Keogh, "Experimental comparison of representation methods and distance measures for time series data," Data Mining Knowl. Discovery, vol. 26, pp. 275-309, 2013.
-
(2013)
Data Mining Knowl. Discovery
, vol.26
, pp. 275-309
-
-
Wang, X.1
Mueen, A.2
Ding, H.3
Trajcevski, G.4
Scheuermann, P.5
Keogh, E.6
-
6
-
-
24044470614
-
Clustering of time series data-A survey
-
T. W. Liao, "Clustering of time series data-A survey," Pattern Recognit., vol. 38, no. 11, pp. 1857-1874, 2005.
-
(2005)
Pattern Recognit.
, vol.38
, Issue.11
, pp. 1857-1874
-
-
Liao, T.W.1
-
7
-
-
44649136762
-
Characteristic-based descriptors for motion sequence recognition
-
L. Wang, X. Wang, C. Leckie, and K. Ramamohanarao, "Characteristic-based descriptors for motion sequence recognition," in Proc. 12th Pacific-Asia Conf. Adv. Knowl. Discovery Data Mining, 2009, pp. 369-380.
-
(2009)
Proc. 12th Pacific-Asia Conf. Adv. Knowl Discovery Data Mining
, pp. 369-380
-
-
Wang, L.1
Wang, X.2
Leckie, C.3
Ramamohanarao, K.4
-
9
-
-
84960111929
-
Fast shapelets: A scalable algorithm for discovering time series shapelets
-
T. Rakthanmanon and E. Keogh, "Fast shapelets: A scalable algorithm for discovering time series shapelets," in Proc. SIAM Conf. Data Mining, 2013, pp. 668-676.
-
(2013)
Proc. SIAM Conf Data Mining
, pp. 668-676
-
-
Rakthanmanon, T.1
Keogh, E.2
-
10
-
-
33744973448
-
Feature-based classification of time-series data
-
Commack, NY, USA: Nova
-
A. Nanopoulos, R. Alcock, and Y. Manolopoulos, "Feature-based classification of time-series data," in Information Processing and Technology, Commack, NY, USA: Nova, 2001 pp. 49-61.
-
(2001)
Information Processing and Technology
, pp. 49-61
-
-
Nanopoulos, A.1
Alcock, R.2
Manolopoulos, Y.3
-
11
-
-
26944440613
-
Time series feature extraction for data mining using DWT and DFT
-
Philipps-Univ. Marburg, Marburg, Germany
-
F. Mörchen, "Time series feature extraction for data mining using DWT and DFT," Philipps-Univ. Marburg, Marburg, Germany, Tech. Rep. No. 33, 2003.
-
(2003)
Tech. Rep.
, Issue.33
-
-
Mörchen, F.1
-
12
-
-
33749012790
-
Characteristic-based clustering for time series data
-
X. Wang, K. Smith, and R. Hyndman, "Characteristic-based clustering for time series data," Data Mining Knowl. Discovery, vol. 13, pp. 335-364, 2006.
-
(2006)
Data Mining Knowl. Discovery
, vol.13
, pp. 335-364
-
-
Wang, X.1
Smith, K.2
Hyndman, R.3
-
13
-
-
49749089314
-
Structure-based statistical features and multivariate time series clustering
-
X. Wang, A. Wirth, and L. Wang, "Structure-based statistical features and multivariate time series clustering," in Proc. IEEE Int. Conf. Data Mining, 2007, pp. 351-360.
-
(2007)
Proc. IEEE Int. Conf Data Mining
, pp. 351-360
-
-
Wang, X.1
Wirth, A.2
Wang, L.3
-
14
-
-
84876948280
-
A time series forest for classification and feature extraction
-
H. Deng, G. Runger, E. Tuv, and M. Vladimir, "A time series forest for classification and feature extraction," Inf. Sci., vol. 239, pp. 142-153, 2013.
-
(2013)
Inf. Sci.
, vol.239
, pp. 142-153
-
-
Deng, H.1
Runger, G.2
Tuv, E.3
Vladimir, M.4
-
16
-
-
38049149222
-
-
[Online]. Available
-
E. Keogh, Q. Zhu, B. Hu, H. Y., X. Xi, L. Wei, and C. A. Ratanamahatana. (2011). The UCR time series classification/clustering homepage [Online]. Available: www.cs.ucr.edu/eamonn/time-series-data/
-
(2011)
The UCR Time Series Classification/clustering Homepage
-
-
Keogh, E.1
Zhu, Q.2
Hu, B.3
Xi, X.4
Wei, L.5
Ratanamahatana, C.A.6
-
17
-
-
0242479804
-
Generalized feature extraction for structural pattern recognition in time-series data
-
Pittsburgh, PA, USA
-
R. T. Olszweski, "Generalized feature extraction for structural pattern recognition in time-series data," Ph.D. dissertation, School Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA, USA, 2001.
-
(2001)
Ph.D. Dissertation School Comput. Sci., Carnegie Mellon Univ.
-
-
Olszweski, R.T.1
-
18
-
-
0036993130
-
Genetic algorithms and support vector machines for time series classification
-
D. Eads, D. Hill, S. Davis, S. Perkins, J. Ma, R. Porter, and J. Theiler, "Genetic algorithms and support vector machines for time series classification," Proc. SPIE, Appl. Sci. Neural Netw., Fuzzy Syst., Evol. Comput. V, vol. 4787, pp. 74-85, 2002.
-
(2002)
Proc. SPIE, Appl. Sci. Neural Netw., Fuzzy Syst., Evol. Comput. V
, vol.4787
, pp. 74-85
-
-
Eads, D.1
Hill, D.2
Davis, S.3
Perkins, S.4
Ma, J.5
Porter, R.6
Theiler, J.7
-
19
-
-
24644461330
-
Computer vision classification of leaves from Swedish trees
-
Linköping Univ.
-
O. J. O. Söderkvist, "Computer vision classification of leaves from Swedish trees," Master's thesis, Dept. Elect. Eng., Linköping Univ., 2001.
-
(2001)
Master's Thesis, Dept. Elect. Eng.
-
-
Söderkvist, O.J.O.1
-
20
-
-
33749571730
-
Semi-supervised time series classification
-
New York, NY, USA
-
L. Wei and E. Keogh, "Semi-supervised time series classification," in Proc. 12th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, New York, NY, USA, 2006, vol. 20 no. 23, pp. 748-753.
-
(2006)
Proc. 12th ACM SIGKDD Int. Conf. Knowl Discovery Data Mining
, vol.20
, Issue.23
, pp. 748-753
-
-
Wei, L.1
Keogh, E.2
-
21
-
-
0000286376
-
Using dynamic time warping to find patterns in time series
-
D. Berndt and J. Clifford, "Using dynamic time warping to find patterns in time series," in Proc. Knowl. Discovery Data Mining Workshop, Seattle, WA, USA, 1994, vol. 10 no. 16, pp. 359-370.
-
(1994)
Proc. Knowl. Discovery Data Mining Workshop, Seattle, WA, USA
, vol.10
, Issue.16
, pp. 359-370
-
-
Berndt, D.1
Clifford, J.2
-
22
-
-
0033640646
-
Statistical pattern recognition: A review
-
Jan
-
A. K. Jain, R. P. W. Duin, and J. Mao, "Statistical pattern recognition: a review," IEEE Trans. Pattern. Anal. Mach. Intell., vol. 22, no. 1, pp. 4-37, Jan. 2000.
-
(2000)
IEEE Trans. Pattern. Anal. Mach. Intell.
, vol.22
, Issue.1
, pp. 4-37
-
-
Jain, A.K.1
Duin, R.P.W.2
Mao, J.3
-
23
-
-
33745561205
-
An introduction to variable and feature selection
-
I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," J. Mach. Learn. Res., vol. 3, pp. 1157-1182, 2003.
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
24
-
-
85130930958
-
Causal feature selection
-
Boca Raton, FL, USA: CRC
-
I. Guyon, C. Aliferis, and A. Elisseeff, "Causal feature selection," in Computational Methods of Feature Selection Data Mining and Knowledge Discovery Series, Boca Raton, FL, USA: CRC, 2007 pp. 63-85.
-
(2007)
Computational Methods of Feature Selection Data Mining and Knowledge Discovery Series
, pp. 63-85
-
-
Guyon, I.1
Aliferis, C.2
Elisseeff, A.3
-
25
-
-
0001287271
-
Regression shrinkage and selection via the lasso
-
R. Tibshirani, "Regression shrinkage and selection via the lasso," J. Roy. Statist. Soc. Ser. B (Statist. Methodol.), vol. 58, no. 1, pp. 267- 288, 1996.
-
(1996)
J. Roy. Statist. Soc. Ser. B (Statist. Methodol.)
, vol.58
, Issue.1
, pp. 267-288
-
-
Tibshirani, R.1
-
26
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, "Gene selection for cancer classification using support vector machines," Mach. Learn., vol. 46, no. 1, pp. 389-422, 2002.
-
(2002)
Mach. Learn.
, vol.46
, Issue.1
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
27
-
-
0003684449
-
-
2nd ed. New York, NY, USA: Springer
-
T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction., 2nd ed. New York, NY, USA: Springer, 2009.
-
(2009)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
28
-
-
2942525700
-
Making time-series classification more accurate using learned constraints
-
C. A. Ratanamahatana and E. Keogh, "Making time-series classification more accurate using learned constraints," in Proc. SIAM Int. Conf. Data Mining, 2004, pp. 11-22.
-
(2004)
Proc. SIAM Int. Conf. Data Mining
, pp. 11-22
-
-
Ratanamahatana, C.A.1
Keogh, E.2
-
29
-
-
84902259826
-
Multivariate temporal classification by windowed wavelet decomposition and recurrent neural networks
-
Interface,Washington DC, USA
-
D. Roverso, "Multivariate temporal classification by windowed wavelet decomposition and recurrent neural networks," in Proc. 3rd ANS Int. Top. Meet. Nucl. Plant Instrum., Control Human-Mach. Interface,Washington, DC, USA, 2000, vol. 20.
-
(2000)
Proc. 3rd ANS Int. Top. Meet. Nucl. Plant Instrum., Control Human-Mach
, vol.20
-
-
Roverso, D.1
-
30
-
-
0345792394
-
Surrogate time series
-
T. Schreiber and A. Schmitz, "Surrogate time series," in Physica D, vol. 142, 2000, nos. 3/4, pp. 346-382.
-
(2000)
Physica D
, vol.142
, Issue.3-4
, pp. 346-382
-
-
Schreiber, T.1
Schmitz, A.2
-
31
-
-
0031700345
-
Control chart pattern recognition using a new type of self-organizing neural network
-
D. T. Pham and A. B. Chan, "Control chart pattern recognition using a new type of self-organizing neural network," in Proc. Inst. Mech. Eng. Part I-J. Syst. Control Eng., vol. 212, no. 2, 1998, pp. 115-127.
-
(1998)
Proc. Inst. Mech. Eng. Part I-J. Syst. Control Eng.
, vol.212
, Issue.2
, pp. 115-127
-
-
Pham, D.T.1
Chan, A.B.2
-
32
-
-
33745320873
-
Content-based image retrieval: Plant species identification
-
Corvallis, OR, USA
-
A. Gandhi, "Content-based image retrieval: Plant species identification," Master's thesis, Dept. Comput. Sci., Oregon State Univ., Corvallis, OR, USA, 2002.
-
(2002)
Master's Thesis, Dept. Comput. Sci., Oregon State Univ.
-
-
Gandhi, A.1
-
33
-
-
33749260341
-
Fast time series classification using numerosity reduction
-
X. Xi, E. Keogh, C. Shelton, L. Wei, and C. A. Ratanamahatana, "Fast time series classification using numerosity reduction," in Proc. 23rd Int. Conf. Mach. Learn., 2006, pp. 1033-1040.
-
(2006)
Proc. 23rd Int. Conf. Mach. Learn.
, pp. 1033-1040
-
-
Xi, X.1
Keogh, E.2
Shelton, C.3
Wei, L.4
Ratanamahatana, C.A.5
-
34
-
-
0031118203
-
No free lunch theorems for optimization
-
D. Wolpert and W. Macready, "No free lunch theorems for optimization," IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67-82, 1997.
-
(1997)
IEEE Trans. Evol. Comput.
, vol.1
, Issue.1
, pp. 67-82
-
-
Wolpert, D.1
Macready, W.2
-
35
-
-
84866037385
-
Searching and mining trillions of time series subsequences under dynamic time warping
-
T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover, Q. Zhu, J. Zakaria, and E. Keogh, "Searching and mining trillions of time series subsequences under dynamic time warping," in Proc. 18th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2012, pp. 262-270.
-
(2012)
Proc. 18th ACM SIGKDD Int. Conf. Knowl Discovery Data Mining
, pp. 262-270
-
-
Rakthanmanon, T.1
Campana, B.2
Mueen, A.3
Batista, G.4
Westover, B.5
Zhu, Q.6
Zakaria, J.7
Keogh, E.8
-
36
-
-
84867136666
-
Querying and mining of time series data: Experimental comparison of representations and distance measures
-
H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh, "Querying and mining of time series data: Experimental comparison of representations and distance measures," Proc. VLDB Endowment, vol. 1, pp. 1542-1552, 2008.
-
(2008)
Proc. VLDB Endowment
, vol.1
, pp. 1542-1552
-
-
Ding, H.1
Trajcevski, G.2
Scheuermann, P.3
Wang, X.4
Keogh, E.5
-
37
-
-
0347649244
-
Locally adaptive dimensionality reduction for indexing large time series databases
-
K. Chakrabarti, E. Keogh, S. Mehrotra, and M. Pazzani, "Locally adaptive dimensionality reduction for indexing large time series databases," ACM Trans. Database Syst., vol. 27, pp. 188-228, 2002.
-
(2002)
ACM Trans. Database Syst.
, vol.27
, pp. 188-228
-
-
Chakrabarti, K.1
Keogh, E.2
Mehrotra, S.3
Pazzani, M.4
-
39
-
-
34548093287
-
Experiencing SAX: A novel symbolic representation of time series
-
J. Lin, E. Keogh, L. Wei, and S. Lonardi, "Experiencing SAX: A novel symbolic representation of time series," Data Mining Knowl. Discovery, vol. 15, no. 2, pp. 107-144, 2007.
-
(2007)
Data Mining Knowl. Discovery
, vol.15
, Issue.2
, pp. 107-144
-
-
Lin, J.1
Keogh, E.2
Wei, L.3
Lonardi, S.4
-
41
-
-
84866041459
-
A complexity-invariant distance measure for time series
-
G. E. Batista, X. Wang, and E. J. Keogh, "A complexity-invariant distance measure for time series," in Proc. SIAM Int. Conf. Data Mining, vol. 31, 2011, pp. 699-710.
-
(2011)
Proc. SIAM Int. Conf. Data Mining
, vol.31
, pp. 699-710
-
-
Batista, G.E.1
Wang, X.2
Keogh, E.J.3
-
42
-
-
0027786660
-
Characteristics of hand tremor time series
-
J. Timmer, C. Gantert, G. Deuschl, and J. Honerkamp, "Characteristics of hand tremor time series," Biol. Cybern., vol. 70, no. 1, pp. 75-80, 1993.
-
(1993)
Biol. Cybern.
, vol.70
, Issue.1
, pp. 75-80
-
-
Timmer, J.1
Gantert, C.2
Deuschl, G.3
Honerkamp, J.4
|