-
1
-
-
85143576354
-
IEEE International conference on acoustics speech and signal processing (ICASSP)
-
Akl A, Valaee S (2010) Accelerometer-based gesture recognition via dynamic-time warping, affinity propagation, compressive sensing. In: 2010 IEEE International conference on acoustics speech and signal processing (ICASSP), pp 2270–2273
-
(2010)
pp 2270–2273
-
-
Akl, A.1
-
2
-
-
84877246663
-
Transformation based ensembles for time series classification. In: SDM, vol. 12. SIAM
-
Bagnall A, Davis LM, Hills J, Lines J (2012) Transformation based ensembles for time series classification. In: SDM, vol. 12. SIAM, pp 307–318
-
(2012)
pp 307–318
-
-
Bagnall, A.1
Davis, L.M.2
Hills, J.3
Lines, J.4
-
3
-
-
84894600764
-
Cid: an efficient complexity-invariant distance for time series
-
Batista G, Keogh E, Tataw O, de Souza V (2014) Cid: an efficient complexity-invariant distance for time series. Data Min Knowl Discov 28(3):634–669. doi:10.1007/s10618-013-0312-3
-
(2014)
Data Min Knowl Discov
, vol.28
, Issue.3
, pp. 634-669
-
-
Batista, G.1
Keogh, E.2
Tataw, O.3
de Souza, V.4
-
4
-
-
84958028126
-
Learned pattern similarity (LPS)
-
Baydogan MG (2013) Learned pattern similarity (LPS). homepage: www.mustafabaydogan.com/learned-pattern-similarity-lps.html
-
(2013)
homepage:
-
-
Baydogan, M.G.1
-
5
-
-
84923215420
-
Learning a symbolic representation for multivariate time series classification
-
Baydogan MG, Runger G (2014) Learning a symbolic representation for multivariate time series classification. Data Min Knowl Discov pp 1–23. doi:10.1007/s10618-014-0349-y
-
(2014)
Data Min Knowl Discov
, pp. 1-23
-
-
Baydogan, M.G.1
Runger, G.2
-
8
-
-
0347649244
-
Locally adaptive dimensionality reduction for indexing large time series databases
-
Chakrabarti K, Keogh E, Mehrotra S, Pazzani M (2002) Locally adaptive dimensionality reduction for indexing large time series databases. ACM Trans Database Syst 27(2):188–228
-
(2002)
ACM Trans Database Syst
, vol.27
, Issue.2
, pp. 188-228
-
-
Chakrabarti, K.1
Keogh, E.2
Mehrotra, S.3
Pazzani, M.4
-
9
-
-
84961811091
-
Yao X (2013) Model-based kernel for efficient time series analysis
-
ACM, New York
-
Chen H, Tang F, Tino P, Yao X (2013) Model-based kernel for efficient time series analysis. In: Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, New York, pp 392–400
-
Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining
, pp. 392-400
-
-
Chen, H.1
Tang, F.2
Tino, P.3
-
10
-
-
29844444110
-
Oria V (2005) Robust and fast similarity search for moving object trajectories
-
ACM, New York
-
Chen L, Özsu MT, Oria V (2005) Robust and fast similarity search for moving object trajectories. In: Proceedings of the 2005 ACM SIGMOD International conference on management of data, SIGMOD ’05. ACM, New York, pp 491–502. doi:10.1145/1066157.1066213
-
Proceedings of the 2005 ACM SIGMOD International conference on management of data, SIGMOD ’05
, pp. 491-502
-
-
Chen, L.1
Özsu, M.T.2
-
11
-
-
38249000982
-
Interaction, nonlinearity, and multicollinearity: implications for multiple regression
-
Cortina JM (1993) Interaction, nonlinearity, and multicollinearity: implications for multiple regression. J Manag 19(4):915–922
-
(1993)
J Manag
, vol.19
, Issue.4
, pp. 915-922
-
-
Cortina, J.M.1
-
13
-
-
84958028127
-
-
CMU (2012) Graphics Lab Motion Capture Database: Homepage
-
CMU (2012) Graphics Lab Motion Capture Database: Homepage: mocap.cs.cmu.edu
-
-
-
-
14
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30
-
(2006)
J Mach Learn Res
, vol.7
, pp. 1-30
-
-
Demšar, J.1
-
15
-
-
84867136666
-
Querying and mining of time series data: experimental comparison of representations and distance measures
-
Ding H, Trajcevski G, Scheuermann P, Wang X, Keogh E (2008) Querying and mining of time series data: experimental comparison of representations and distance measures. Proc VLDB Endow 1:1542–1552
-
(2008)
Proc VLDB Endow
, vol.1
, pp. 1542-1552
-
-
Ding, H.1
Trajcevski, G.2
Scheuermann, P.3
Wang, X.4
Keogh, E.5
-
16
-
-
84958028128
-
-
Frank A, Asuncion A (2010) UCI machine learning repository
-
Frank A, Asuncion A (2010) UCI machine learning repository. http://archive.ics.uci.edu/ml
-
-
-
-
17
-
-
0001837148
-
A comparison of alternative tests of significance for the problem of m rankings
-
Friedman M (1940) A comparison of alternative tests of significance for the problem of m rankings. Ann Math Stat 11(1):86–92. http://www.jstor.org/stable/2235971
-
(1940)
Ann Math Stat
, vol.11
, Issue.1
, pp. 86-92
-
-
Friedman, M.1
-
18
-
-
78649672225
-
A review on time series data mining
-
Fu T (2011) A review on time series data mining. Eng Appl Artif Intell 24:164–181
-
(2011)
Eng Appl Artif Intell
, vol.24
, pp. 164-181
-
-
Fu, T.1
-
20
-
-
84875058969
-
-
Geurts P (2001) Pattern extraction for time series classification. Principles of data mining and knowledge discovery. Lecture Notes in Computer Science, vol 2168. Springer, Berlin, pp 115–127
-
Springer, Berlin
, pp. 115-127
-
-
-
23
-
-
85013808225
-
-
Han J, Kamber M, (2001) Data mining: concepts and techniques. The Morgan Kaufmann Series In Data Management Systems. Elsevier Books, Oxford
-
Han J, Kamber M, (2001) Data mining: concepts and techniques. The Morgan Kaufmann Series In Data Management Systems. Elsevier Books, Oxford. http://books.google.com/books?id=6hkR_ixby08C
-
-
-
-
25
-
-
84896489839
-
Classification of time series by shapelet transformation
-
Hills J, Lines J, Baranauskas E, Mapp J, Bagnall A (2014) Classification of time series by shapelet transformation. Data Min Knowl Discov 28(4):851–881. doi:10.1007/s10618-013-0322-1
-
(2014)
Data Min Knowl Discov
, vol.28
, Issue.4
, pp. 851-881
-
-
Hills, J.1
Lines, J.2
Baranauskas, E.3
Mapp, J.4
Bagnall, A.5
-
26
-
-
0033289037
-
Using the fisher kernel method to detect remote protein homologies
-
Jaakkola T, Diekhans M, Haussler D (1999) Using the fisher kernel method to detect remote protein homologies. In: ISMB vol. 99, pp 149–158
-
(1999)
ISMB
, vol.99
, pp. 149-158
-
-
Jaakkola, T.1
Diekhans, M.2
Haussler, D.3
-
27
-
-
18544365764
-
Probability product kernels
-
Jebara T, Kondor R, Howard A (2004) Probability product kernels. J Mach Learn Res 5:819–844. http://dl.acm.org/citation.cfm?id=1005332.1016786
-
(2004)
J Mach Learn Res
, vol.5
, pp. 819-844
-
-
Jebara, T.1
Kondor, R.2
Howard, A.3
-
28
-
-
79957533818
-
-
Jeong YS, Jeong MK, Omitaomu OA, (2011) Weighted dynamic time warping for time series classification. Pattern Recognit 44(9): 2231–2240. Computer Analysis of Images and Patterns
-
Jeong YS, Jeong MK, Omitaomu OA, (2011) Weighted dynamic time warping for time series classification. Pattern Recognit 44(9): 2231–2240. doi:10.1016/j.patcog.2010.09.022. http://www.sciencedirect.com/science/article/pii/S003132031000484X. Computer Analysis of Images and Patterns
-
-
-
-
29
-
-
0042711018
-
On the need for time series data mining benchmarks: a survey and empirical demonstration
-
Keogh E, Kasetty S (2003) On the need for time series data mining benchmarks: a survey and empirical demonstration. Data Min Knowl Discov 7(4):349–371
-
(2003)
Data Min Knowl Discov
, vol.7
, Issue.4
, pp. 349-371
-
-
Keogh, E.1
Kasetty, S.2
-
30
-
-
34548547034
-
Fu A (2005) HOT SAX: efficiently finding the most unusual time series subsequence
-
IEEE Computer Society, Washington, DC
-
Keogh E, Lin J, Fu A (2005) HOT SAX: efficiently finding the most unusual time series subsequence. In: Proceedings of the fifth IEEE international conference on data mining, ICDM ’05. IEEE Computer Society, Washington, DC, pp 226–233
-
Proceedings of the fifth IEEE international conference on data mining, ICDM ’05
, pp. 226-233
-
-
Keogh, E.1
Lin, J.2
-
31
-
-
85003961474
-
LB_Keogh supports exact indexing of shapes under rotation invariance with arbitrary representations and distance measures. In: Proceedings of the 32nd international conference on very large data bases, VLDB ’06. VLDB Endowment
-
Keogh E, Wei L, Xi X, Lee SH, Vlachos M (2006) LB_Keogh supports exact indexing of shapes under rotation invariance with arbitrary representations and distance measures. In: Proceedings of the 32nd international conference on very large data bases, VLDB ’06. VLDB Endowment, pp 882–893
-
(2006)
pp 882–893
-
-
Keogh, E.1
Wei, L.2
Xi, X.3
Lee, S.H.4
Vlachos, M.5
-
32
-
-
84958028133
-
The UCR time series classification/clustering
-
Keogh E, Zhu Q, Hu BYH, Xi X, Wei L, Ratanamahatana CA (2011) The UCR time series classification/clustering. homepage:www.cs.ucr.edu/~eamonn/time_series_data/
-
(2011)
homepage:www.cs.ucr.edu/~eamonn/time_series_data/
-
-
Keogh, E.1
Zhu, Q.2
Hu, B.Y.H.3
Xi, X.4
Wei, L.5
Ratanamahatana, C.A.6
-
33
-
-
35248838963
-
Derivative dynamic time warping. In: SDM, vol. 1. SIAM
-
Keogh EJ, Pazzani MJ (2001) Derivative dynamic time warping. In: SDM, vol. 1. SIAM, pp 5–7
-
(2001)
pp 5–7
-
-
Keogh, E.J.1
Pazzani, M.J.2
-
34
-
-
78149481812
-
Spatial representation for efficient sequence classification. In: 2010 20th International conference on pattern recognition (ICPR)
-
Kuksa P, Pavlovic V (2010) Spatial representation for efficient sequence classification. In: 2010 20th International conference on pattern recognition (ICPR), pp 3320–3323
-
(2010)
pp 3320–3323
-
-
Kuksa, P.1
Pavlovic, V.2
-
35
-
-
33645688167
-
Partial elastic matching of time series. In: Fifth IEEE international conference on data mining
-
Latecki L, Megalooikonomou V, Wang Q, Lakaemper R, Ratanamahatana C, Keogh E (2005) Partial elastic matching of time series. In: Fifth IEEE international conference on data mining, pp 701–704
-
(2005)
pp 701–704
-
-
Latecki, L.1
Megalooikonomou, V.2
Wang, Q.3
Lakaemper, R.4
Ratanamahatana, C.5
Keogh, E.6
-
36
-
-
24044470614
-
Clustering of time series data-a survey
-
Liao TW (2005) Clustering of time series data-a survey. Pattern Recogn 38(11):1857–1874. doi:10.1016/j.patcog.2005.01.025
-
(2005)
Pattern Recogn
, vol.38
, Issue.11
, pp. 1857-1874
-
-
Liao, T.W.1
-
37
-
-
33745781710
-
Chiu B (2003) A symbolic representation of time series, with implications for streaming algorithms
-
ACM Press, New York
-
Lin J, Keogh E, Lonardi S, Chiu B (2003) A symbolic representation of time series, with implications for streaming algorithms. In: Proceedings of the 8th ACM SIGMOD workshop on research issues in data mining and knowledge discovery. ACM Press, New York, pp 2–11
-
Proceedings of the 8th ACM SIGMOD workshop on research issues in data mining and knowledge discovery
, pp. 2-11
-
-
Lin, J.1
Keogh, E.2
Lonardi, S.3
-
38
-
-
34548093287
-
Experiencing SAX: a novel symbolic representation of time series
-
Lin J, Keogh E, Wei L, Lonardi S (2007) Experiencing SAX: a novel symbolic representation of time series. Data Min Knowl Discov 15:107–144
-
(2007)
Data Min Knowl Discov
, vol.15
, pp. 107-144
-
-
Lin, J.1
Keogh, E.2
Wei, L.3
Lonardi, S.4
-
39
-
-
84868624588
-
Rotation-invariant similarity in time series using bag-of-patterns representation
-
Lin J, Khade R, Li Y (2012) Rotation-invariant similarity in time series using bag-of-patterns representation. J Intell Inf Syst 39(2):287–315
-
(2012)
J Intell Inf Syst
, vol.39
, Issue.2
, pp. 287-315
-
-
Lin, J.1
Khade, R.2
Li, Y.3
-
40
-
-
84939218581
-
Time series classification with ensembles of elastic distance measures
-
Lines J, Bagnall A (2014) Time series classification with ensembles of elastic distance measures. Data Min Knowl Discov 29(3):565–592. doi:10.1007/s10618-014-0361-2
-
(2014)
Data Min Knowl Discov
, vol.29
, Issue.3
, pp. 565-592
-
-
Lines, J.1
Bagnall, A.2
-
41
-
-
70349303537
-
-
Liu J, Wang Z, Zhong L, Wickramasuriya J, Vasudevan V (2009) uWave: Accelerometer-based personalized gesture recognition and its applications. IEEE International conference on pervasive computing and communications, pp 1–9
-
Liu J, Wang Z, Zhong L, Wickramasuriya J, Vasudevan V (2009) uWave: Accelerometer-based personalized gesture recognition and its applications. IEEE International conference on pervasive computing and communications, pp 1–9
-
-
-
-
42
-
-
0001920729
-
Similarity metric learning for a variable-kernel classifier
-
Lowe DG (1995) Similarity metric learning for a variable-kernel classifier. Neural Comput 7(1):72–85
-
(1995)
Neural Comput
, vol.7
, Issue.1
, pp. 72-85
-
-
Lowe, D.G.1
-
43
-
-
62249218289
-
Time warp edit distance with stiffness adjustment for time series matching
-
Marteau PF (2009) Time warp edit distance with stiffness adjustment for time series matching. IEEE Trans Pattern Anal Mach Intell 31(2):306–318. doi:10.1109/TPAMI.2008.76
-
(2009)
IEEE Trans Pattern Anal Mach Intell
, vol.31
, Issue.2
, pp. 306-318
-
-
Marteau, P.F.1
-
45
-
-
84958028138
-
-
Olszewski RT (2012). Accessed June 10
-
Olszewski RT (2012)http://www.cs.cmu.edu/~bobski/. Accessed June 10
-
-
-
-
46
-
-
84976901305
-
R: A language and environment for statistical computing. R Foundation for Statistical Computing
-
R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.http://www.R-project.org/
-
(2014)
Vienna.http://www.R-project.org/
-
-
Core Team, R.1
-
47
-
-
84866037385
-
Keogh E (2012) Searching and mining trillions of time series subsequences under dynamic time warping
-
ACM, New York
-
Rakthanmanon T, Campana B, Mueen A, Batista G, Westover B, Zhu Q, Zakaria J, Keogh E (2012) Searching and mining trillions of time series subsequences under dynamic time warping. In: Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’12. ACM, New York, pp 262–270
-
Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’12
, pp. 262-270
-
-
Rakthanmanon, T.1
Campana, B.2
Mueen, A.3
Batista, G.4
Westover, B.5
Zhu, Q.6
Zakaria, J.7
-
50
-
-
80052682880
-
Mining time series data
-
Maimon O, Rokach L, (eds), Springer, Berlin
-
Ratanamahatana CA, Lin J, Gunopulos D, Keogh E, Vlachos M, Das G (2010) Mining time series data. In: Maimon O, Rokach L (eds) Data mining and knowledge discovery handbook. Springer, Berlin, pp 1049–1077
-
(2010)
Data mining and knowledge discovery handbook
, pp. 1049-1077
-
-
Ratanamahatana, C.A.1
Lin, J.2
Gunopulos, D.3
Keogh, E.4
Vlachos, M.5
Das, G.6
-
52
-
-
84897584209
-
The move-split-merge metric for time series
-
Stefan A, Athitsos V, Das G (2013) The move-split-merge metric for time series. IEEE Trans Knowl Data Eng 25(6):1425–1438. doi:10.1109/TKDE.2012.88
-
(2013)
IEEE Trans Knowl Data Eng
, vol.25
, Issue.6
, pp. 1425-1438
-
-
Stefan, A.1
Athitsos, V.2
Das, G.3
-
53
-
-
84899426344
-
-
Sübakan YC, Kurt B, Cemgil AT, Sankur B (2014) Probabilistic sequence clustering with spectral learning. Dig Signal Process 29(0):1–19
-
Sübakan YC, Kurt B, Cemgil AT, Sankur B (2014) Probabilistic sequence clustering with spectral learning. Dig Signal Process 29(0):1–19. doi:10.1016/j.dsp.2014.02.014. http://www.sciencedirect.com/science/article/pii/S1051200414000517
-
-
-
-
54
-
-
70349811563
-
Time series analysis with multiple resolutions
-
Wang Q, Megalooikonomou V, Faloutsos C (2010) Time series analysis with multiple resolutions. Inf Syst 35(1):56–74
-
(2010)
Inf Syst
, vol.35
, Issue.1
, pp. 56-74
-
-
Wang, Q.1
Megalooikonomou, V.2
Faloutsos, C.3
-
55
-
-
84872397385
-
Experimental comparison of representation methods and distance measures for time series data
-
Wang X, Mueen A, Ding H, Trajcevski G, Scheuermann P, Keogh E (2013) Experimental comparison of representation methods and distance measures for time series data. Data Min Knowl Discov 26(2):275–309
-
(2013)
Data Min Knowl Discov
, vol.26
, Issue.2
, pp. 275-309
-
-
Wang, X.1
Mueen, A.2
Ding, H.3
Trajcevski, G.4
Scheuermann, P.5
Keogh, E.6
|