메뉴 건너뛰기




Volumn 25, Issue 6, 2016, Pages 2650-2669

A comparison of imputation strategies in cluster randomized trials with missing binary outcomes

Author keywords

cluster randomized trial; missing data; multiple imputation; outcome

Indexed keywords

IVERMECTIN; MALATHION;

EID: 84995812333     PISSN: 09622802     EISSN: 14770334     Source Type: Journal    
DOI: 10.1177/0962280214530030     Document Type: Article
Times cited : (11)

References (46)
  • 2
    • 0033891962 scopus 로고    scopus 로고
    • Design and analysis issues in cluster-randomized trials of interventions against infectious diseases
    • Hayes RJ, Alexander ND, Bennett S, et al. Design and analysis issues in cluster-randomized trials of interventions against infectious diseases. Stat Methods Med Res 2000; 9: 95-116.
    • (2000) Stat Methods Med Res , vol.9 , pp. 95-116
    • Hayes, R.J.1    Alexander, N.D.2    Bennett, S.3
  • 3
    • 0035835406 scopus 로고    scopus 로고
    • Contamination in trials: Is cluster randomisation the answer?
    • Torgerson DJ,. Contamination in trials: is cluster randomisation the answer? BMJ 2001; 322: 355-357.
    • (2001) BMJ , vol.322 , pp. 355-357
    • Torgerson, D.J.1
  • 4
    • 69249138556 scopus 로고    scopus 로고
    • Facemasks and hand hygiene to prevent influenza transmission in households: A cluster randomized trial
    • Cowling BJ, Chan K-H, Fang VJ, et al. Facemasks and hand hygiene to prevent influenza transmission in households: a cluster randomized trial. Ann Intern Med 2009; 151: 437-446.
    • (2009) Ann Intern Med , vol.151 , pp. 437-446
    • Cowling, B.J.1    Chan, K.-H.2    Fang, V.J.3
  • 5
    • 1442305727 scopus 로고    scopus 로고
    • Design and analysis of group-randomized trials: A review of recent methodological developments
    • Murray DM, Varnell SP, Blitstein JL,. Design and analysis of group-randomized trials: a review of recent methodological developments. Am J Public Health 2004; 94: 423-432.
    • (2004) Am J Public Health , vol.94 , pp. 423-432
    • Murray, D.M.1    Varnell, S.P.2    Blitstein, J.L.3
  • 6
    • 68249114452 scopus 로고    scopus 로고
    • Multiple imputation for missing data in epidemiological and clinical research: Potential and pitfalls
    • Sterne JA, White IR, Carlin JB, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ 2009; 338: b2393-b2393.
    • (2009) BMJ , vol.338 , pp. b2393-b2393
    • Sterne, J.A.1    White, I.R.2    Carlin, J.B.3
  • 7
    • 49849097915 scopus 로고    scopus 로고
    • Imputation strategies for missing continuous outcomes in cluster randomized trials
    • Taljaard M, Donner A, Klar N,. Imputation strategies for missing continuous outcomes in cluster randomized trials. Biom J 2008; 50: 329-345.
    • (2008) Biom J , vol.50 , pp. 329-345
    • Taljaard, M.1    Donner, A.2    Klar, N.3
  • 8
    • 85047673373 scopus 로고    scopus 로고
    • Missing data: Our view of the state of the art
    • Schafer JL, Graham JW,. Missing data: our view of the state of the art. Psychol Methods 2002; 7: 147-177.
    • (2002) Psychol Methods , vol.7 , pp. 147-177
    • Schafer, J.L.1    Graham, J.W.2
  • 9
    • 66249128302 scopus 로고    scopus 로고
    • Missing outcomes in randomized trials: Addressing the dilemma
    • Altman DG,. Missing outcomes in randomized trials: addressing the dilemma. Open Med 2009; 3: e51-e53.
    • (2009) Open Med , vol.3 , pp. e51-e53
    • Altman, D.G.1
  • 10
    • 0033566652 scopus 로고    scopus 로고
    • Statistical principles for clinical trials (ICH E9): An introductory note on an international guideline
    • Lewis JA,. Statistical principles for clinical trials (ICH E9): an introductory note on an international guideline. Stat Med 1999; 18: 1903-1942.
    • (1999) Stat Med , vol.18 , pp. 1903-1942
    • Lewis, J.A.1
  • 11
    • 0027432633 scopus 로고
    • Intention to treat - Who should use ITT?
    • Lewis JA, Machin D,. Intention to treat-who should use ITT? Br J Cancer 1993; 68: 647-650.
    • (1993) Br J Cancer , vol.68 , pp. 647-650
    • Lewis, J.A.1    Machin, D.2
  • 12
    • 0034061095 scopus 로고    scopus 로고
    • Statistical considerations in the intent-to-treat principle
    • Lachin JM,. Statistical considerations in the intent-to-treat principle. Control Clin Trials 2000; 21: 526-526.
    • (2000) Control Clin Trials , vol.21 , pp. 526
    • Lachin, J.M.1
  • 13
    • 79955417678 scopus 로고    scopus 로고
    • Strategy for intention to treat analysis in randomised trials with missing outcome data
    • White IR, Horton NJ, Carpenter J, et al. Strategy for intention to treat analysis in randomised trials with missing outcome data. BMJ 2011; 342: d40-d40.
    • (2011) BMJ , vol.342 , pp. d40-d40
    • White, I.R.1    Horton, N.J.2    Carpenter, J.3
  • 14
    • 77949368548 scopus 로고    scopus 로고
    • Oral ivermectin versus malathion lotion for difficult-to-treat head lice
    • Chosidow O, Giraudeau B, Cottrell J, et al. Oral ivermectin versus malathion lotion for difficult-to-treat head lice. N Engl J Med 2010; 362: 896-905.
    • (2010) N Engl J Med , vol.362 , pp. 896-905
    • Chosidow, O.1    Giraudeau, B.2    Cottrell, J.3
  • 15
    • 0037151796 scopus 로고    scopus 로고
    • Post-randomisation exclusions: The intention to treat principle and excluding patients from analysis
    • Fergusson D, Aaron SD, Guyatt G, et al. Post-randomisation exclusions: the intention to treat principle and excluding patients from analysis. BMJ 2002; 325: 652-654.
    • (2002) BMJ , vol.325 , pp. 652-654
    • Fergusson, D.1    Aaron, S.D.2    Guyatt, G.3
  • 16
    • 34249682530 scopus 로고    scopus 로고
    • Accounting for expected attrition in the planning of community intervention trials
    • Taljaard M, Donner A, Klar N,. Accounting for expected attrition in the planning of community intervention trials. Stat Med 2007; 26: 2615-2628.
    • (2007) Stat Med , vol.26 , pp. 2615-2628
    • Taljaard, M.1    Donner, A.2    Klar, N.3
  • 17
    • 77649173768 scopus 로고
    • Longitudinal data analysis using generalized linear models
    • Liang KY, Zeger SL,. Longitudinal data analysis using generalized linear models. Biometrika 1986; 73: 13-22.
    • (1986) Biometrika , vol.73 , pp. 13-22
    • Liang, K.Y.1    Zeger, S.L.2
  • 18
    • 0033892142 scopus 로고    scopus 로고
    • Analysis of dichotomous outcome data for community intervention studies
    • Bellamy SL, Gibberd R, Hancock L, et al. Analysis of dichotomous outcome data for community intervention studies. Stat Methods Med Res 2000; 9: 135-159.
    • (2000) Stat Methods Med Res , vol.9 , pp. 135-159
    • Bellamy, S.L.1    Gibberd, R.2    Hancock, L.3
  • 19
    • 1642400145 scopus 로고    scopus 로고
    • CONSORT statement: Extension to cluster randomised trials
    • Campbell MK, Elbourne DR, Altman DG,. CONSORT statement: extension to cluster randomised trials. BMJ 2004; 328: 702-708.
    • (2004) BMJ , vol.328 , pp. 702-708
    • Campbell, M.K.1    Elbourne, D.R.2    Altman, D.G.3
  • 20
    • 0344097409 scopus 로고    scopus 로고
    • Estimating intraclass correlation for binary data
    • Ridout MS, Demétrio CG, Firth D,. Estimating intraclass correlation for binary data. Biometrics 1999; 55: 137-148.
    • (1999) Biometrics , vol.55 , pp. 137-148
    • Ridout, M.S.1    Demétrio, C.G.2    Firth, D.3
  • 22
    • 84856206744 scopus 로고    scopus 로고
    • Dealing with missing outcome data in randomized trials and observational studies
    • Groenwold RH, Donders AR, Roes KC, et al. Dealing with missing outcome data in randomized trials and observational studies. Am J Epidemiol 2012; 175: 210-217.
    • (2012) Am J Epidemiol , vol.175 , pp. 210-217
    • Groenwold, R.H.1    Donders, A.R.2    Roes, K.C.3
  • 24
    • 84972537494 scopus 로고
    • Multiple-imputation inferences with uncongenial sources of input
    • Meng XL,. Multiple-imputation inferences with uncongenial sources of input. Statist Sci 1994; 9: 538-558.
    • (1994) Statist Sci , vol.9 , pp. 538-558
    • Meng, X.L.1
  • 25
    • 34347396774 scopus 로고    scopus 로고
    • Multiple imputation: Current perspectives
    • Kenward MG, Carpenter J,. Multiple imputation: current perspectives. Stat Methods Med Res 2007; 16: 199-218.
    • (2007) Stat Methods Med Res , vol.16 , pp. 199-218
    • Kenward, M.G.1    Carpenter, J.2
  • 26
    • 0024502084 scopus 로고
    • Surrogate endpoints in clinical trials: Cardiovascular diseases
    • Wittes J, Lakatos E, Probstfield J,. Surrogate endpoints in clinical trials: cardiovascular diseases. Stat Med 1989; 8: 415-425.
    • (1989) Stat Med , vol.8 , pp. 415-425
    • Wittes, J.1    Lakatos, E.2    Probstfield, J.3
  • 28
    • 0347089309 scopus 로고    scopus 로고
    • Deviations from the population-averaged versus cluster-specific relationship for clustered binary data
    • Ten Have TR, Ratcliffe SJ, Reboussin BA, et al. Deviations from the population-averaged versus cluster-specific relationship for clustered binary data. Stat Methods Med Res 2004; 13: 3-16.
    • (2004) Stat Methods Med Res , vol.13 , pp. 3-16
    • Ten Have, T.R.1    Ratcliffe, S.J.2    Reboussin, B.A.3
  • 29
    • 76749124428 scopus 로고    scopus 로고
    • Birmingham: National Institute for Health Research, Publication RM03/JH17/MK accessed 14 March 2014
    • Carpenter JR and Kenward MG. Missing data in randomised controlled trials-a practical guide. Birmingham: National Institute for Health Research, Publication RM03/JH17/MK, http://www.pcpoh.bham.ac.uk/publichealth/methodology/projects/RM03-JH17-MK.shtml (2008, accessed 14 March 2014).
    • (2008) Missing Data in Randomised Controlled Trials - A Practical Guide
    • Carpenter, J.R.1    Kenward, M.G.2
  • 30
    • 33847711413 scopus 로고    scopus 로고
    • Robustness of a multivariate normal approximation for imputation of incomplete binary data
    • Bernaards CA, Belin TR, Schafer JL,. Robustness of a multivariate normal approximation for imputation of incomplete binary data. Stat Med 2007; 26: 1368-1382.
    • (2007) Stat Med , vol.26 , pp. 1368-1382
    • Bernaards, C.A.1    Belin, T.R.2    Schafer, J.L.3
  • 31
    • 0036017469 scopus 로고    scopus 로고
    • Computational strategies for multivariate linear mixed-effects models with missing values
    • Schafer JL, Yucel RM,. Computational strategies for multivariate linear mixed-effects models with missing values. J Comput Graph Stat 2002; 11: 437-457.
    • (2002) J Comput Graph Stat , vol.11 , pp. 437-457
    • Schafer, J.L.1    Yucel, R.M.2
  • 32
    • 84950918760 scopus 로고
    • Multiple imputation for interval estimation from simple random samples with ignorable nonresponse
    • Rubin DB, Schenker N,. Multiple imputation for interval estimation from simple random samples with ignorable nonresponse. J Am Stat Assoc 1986; 81: 366-374.
    • (1986) J Am Stat Assoc , vol.81 , pp. 366-374
    • Rubin, D.B.1    Schenker, N.2
  • 33
    • 0029157096 scopus 로고
    • A multiple imputation strategy for clinical trials with truncation of patient data
    • Lavori PW, Dawson R, Shera D,. A multiple imputation strategy for clinical trials with truncation of patient data. Stat Med 1995; 14: 1913-1925.
    • (1995) Stat Med , vol.14 , pp. 1913-1925
    • Lavori, P.W.1    Dawson, R.2    Shera, D.3
  • 34
    • 84880319391 scopus 로고    scopus 로고
    • Propensity scores used for analysis of cluster randomized trials with selection bias: A simulation study
    • Leyrat C, Caille A, Donner A, et al. Propensity scores used for analysis of cluster randomized trials with selection bias: a simulation study. Stat Med 2013; 32: 3357-3372.
    • (2013) Stat Med , vol.32 , pp. 3357-3372
    • Leyrat, C.1    Caille, A.2    Donner, A.3
  • 35
    • 18344392070 scopus 로고    scopus 로고
    • Determinants of the intracluster correlation coefficient in cluster randomized trials: The case of implementation research
    • Campbell MK, Fayers PM, Grimshaw JM,. Determinants of the intracluster correlation coefficient in cluster randomized trials: the case of implementation research. Clin Trials 2005; 2: 99-107.
    • (2005) Clin Trials , vol.2 , pp. 99-107
    • Campbell, M.K.1    Fayers, P.M.2    Grimshaw, J.M.3
  • 36
    • 13844298031 scopus 로고    scopus 로고
    • Intraclass correlation coefficient and outcome prevalence are associated in clustered binary data
    • Gulliford MC, Adams G, Ukoumunne OC, et al. Intraclass correlation coefficient and outcome prevalence are associated in clustered binary data. J Clin Epidemiol 2005; 58: 246-251.
    • (2005) J Clin Epidemiol , vol.58 , pp. 246-251
    • Gulliford, M.C.1    Adams, G.2    Ukoumunne, O.C.3
  • 37
    • 33845891920 scopus 로고    scopus 로고
    • The design of simulation studies in medical statistics
    • Burton A, Altman DG, Royston P, et al. The design of simulation studies in medical statistics. Stat Med 2006; 25: 4279-4292.
    • (2006) Stat Med , vol.25 , pp. 4279-4292
    • Burton, A.1    Altman, D.G.2    Royston, P.3
  • 38
    • 0001586045 scopus 로고
    • Ramifications of a population model for κ as a coefficient of reliability
    • Kraemer H,. Ramifications of a population model for κ as a coefficient of reliability. Psychometrika 1979; 44: 461-472.
    • (1979) Psychometrika , vol.44 , pp. 461-472
    • Kraemer, H.1
  • 39
    • 84867329071 scopus 로고    scopus 로고
    • Dichotomizing a continuous outcome in cluster randomized trials: Impact on power
    • Caille A, Leyrat C, Giraudeau B,. Dichotomizing a continuous outcome in cluster randomized trials: impact on power. Stat Med 2012; 31: 2822-2832.
    • (2012) Stat Med , vol.31 , pp. 2822-2832
    • Caille, A.1    Leyrat, C.2    Giraudeau, B.3
  • 40
    • 0032960273 scopus 로고    scopus 로고
    • Multiple imputation: A primer
    • Schafer JL,. Multiple imputation: a primer. Stat Methods Med Res 1999; 8: 3-15.
    • (1999) Stat Methods Med Res , vol.8 , pp. 3-15
    • Schafer, J.L.1
  • 41
    • 34347372013 scopus 로고    scopus 로고
    • A comparison of imputation techniques for handling missing predictor values in a risk model with a binary outcome
    • Ambler G, Omar RZ, Royston P,. A comparison of imputation techniques for handling missing predictor values in a risk model with a binary outcome. Stat Methods Med Res 2007; 16: 277-298.
    • (2007) Stat Methods Med Res , vol.16 , pp. 277-298
    • Ambler, G.1    Omar, R.Z.2    Royston, P.3
  • 42
    • 79953212978 scopus 로고    scopus 로고
    • Comparisons of methods for analysis of repeated binary responses with missing data
    • Liu FG, Zhan X,. Comparisons of methods for analysis of repeated binary responses with missing data. J Biopharm Stat 2011; 21: 371-392.
    • (2011) J Biopharm Stat , vol.21 , pp. 371-392
    • Liu, F.G.1    Zhan, X.2
  • 43
    • 79951550022 scopus 로고    scopus 로고
    • Imputation strategies for missing binary outcomes in cluster randomized trials
    • Ma J, Akhtar-Danesh N, Dolovich L, et al. Imputation strategies for missing binary outcomes in cluster randomized trials. BMC Med Res Methodol 2011; 11: 18-18.
    • (2011) BMC Med Res Methodol , vol.11 , pp. 18
    • Ma, J.1    Akhtar-Danesh, N.2    Dolovich, L.3
  • 44
    • 84872570626 scopus 로고    scopus 로고
    • Comparison of population-averaged and cluster-specific models for the analysis of cluster randomized trials with missing binary outcomes: A simulation study
    • Ma J, Raina P, Beyene J, et al. Comparison of population-averaged and cluster-specific models for the analysis of cluster randomized trials with missing binary outcomes: a simulation study. BMC Med Res Methodol 2013; 13: 9-9.
    • (2013) BMC Med Res Methodol , vol.13 , pp. 9
    • Ma, J.1    Raina, P.2    Beyene, J.3
  • 45
    • 34547524022 scopus 로고    scopus 로고
    • A comparison of the statistical power of different methods for the analysis of cluster randomization trials with binary outcomes
    • Austin PC,. A comparison of the statistical power of different methods for the analysis of cluster randomization trials with binary outcomes. Stat Med 2007; 26: 3550-3565.
    • (2007) Stat Med , vol.26 , pp. 3550-3565
    • Austin, P.C.1
  • 46
    • 78651256743 scopus 로고    scopus 로고
    • Multiple imputation using chained equations: Issues and guidance for practice
    • White IR, Royston P, Wood AM,. Multiple imputation using chained equations: issues and guidance for practice. Stat Med 2011; 30: 377-399.
    • (2011) Stat Med , vol.30 , pp. 377-399
    • White, I.R.1    Royston, P.2    Wood, A.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.