메뉴 건너뛰기




Volumn , Issue , 2015, Pages 43-52

Image-based recommendations on styles and substitutes

Author keywords

[No Author keywords available]

Indexed keywords

SCALABILITY;

EID: 84953807236     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2766462.2767755     Document Type: Conference Paper
Times cited : (2337)

References (41)
  • 1
    • 20844435854 scopus 로고    scopus 로고
    • Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions
    • G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. TKDD, 2005.
    • (2005) TKDD
    • Adomavicius, G.1    Tuzhilin, A.2
  • 3
    • 84865622435 scopus 로고    scopus 로고
    • Personalized recommendation on dynamic content using predictive bilinear models
    • W. Chu and S.-T. Park. Personalized recommendation on dynamic content using predictive bilinear models. In WWW, 2009.
    • (2009) WWW
    • Chu, W.1    Park, S.-T.2
  • 4
    • 84877760772 scopus 로고    scopus 로고
    • Latent coincidence analysis: A hidden variable model for distance metric learning
    • M. der and L. Saul. Latent coincidence analysis: A hidden variable model for distance metric learning. In NIPS, 2012.
    • (2012) NIPS
    • Der, M.1    Saul, L.2
  • 7
    • 51949088643 scopus 로고    scopus 로고
    • Im2gps: Estimating geographic information from a single image
    • J. Hays and A. A. Efros. Im2gps: estimating geographic information from a single image. In CVPR, 2008.
    • (2008) CVPR
    • Hays, J.1    Efros, A.A.2
  • 8
    • 85162005069 scopus 로고    scopus 로고
    • Online learning for latent dirichlet allocation
    • M. D. Hoffman, D. M. Blei, and F. Bach. Online learning for latent dirichlet allocation. In In NIPS, 2010.
    • (2010) NIPS
    • Hoffman, M.D.1    Blei, D.M.2    Bach, F.3
  • 9
    • 84907031419 scopus 로고    scopus 로고
    • Style in the long tail: Discovering unique interests with latent variable models in large scale social e-commerce
    • D. J. Hu, R. Hall, and J. Attenberg. Style in the long tail: Discovering unique interests with latent variable models in large scale social e-commerce. In KDD, 2014.
    • (2014) KDD
    • Hu, D.J.1    Hall, R.2    Attenberg, J.3
  • 13
    • 84877599575 scopus 로고    scopus 로고
    • Getting the look: Clothing recognition and segmentation for automatic product suggestions in everyday photos
    • Y. Kalantidis, L. Kennedy, and L.-J. Li. Getting the look: Clothing recognition and segmentation for automatic product suggestions in everyday photos. In ICMR, 2013.
    • (2013) ICMR
    • Kalantidis, Y.1    Kennedy, L.2    Li, L.-J.3
  • 14
  • 15
    • 84866613304 scopus 로고    scopus 로고
    • Manhattan hashing for large-scale image retrieval
    • W. Kong, W.-J. Li, and M. Guo. Manhattan hashing for large-scale image retrieval. In SIGIR, 2012.
    • (2012) SIGIR
    • Kong, W.1    Li, W.-J.2    Guo, M.3
  • 17
    • 85008044987 scopus 로고    scopus 로고
    • Matrix factorization techniques for recommender systems
    • Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. Computer, 2009.
    • (2009) Computer
    • Koren, Y.1    Bell, R.2    Volinsky, C.3
  • 18
    • 77955006337 scopus 로고    scopus 로고
    • Content-based multimedia information retrieval: State of the art and challenges
    • M. S. Lew, N. Sebe, C. Djeraba, and R. Jain. Content-based multimedia information retrieval: State of the art and challenges. ACM TOMCCAP, 2006.
    • (2006) ACM TOMCCAP
    • Lew, M.S.1    Sebe, N.2    Djeraba, C.3    Jain, R.4
  • 19
    • 0037252945 scopus 로고    scopus 로고
    • Amazon.com recommendations: Item-to-item collaborative filtering
    • G. Linden, B. Smith, and J. York. Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing, 2003.
    • (2003) IEEE Internet Computing
    • Linden, G.1    Smith, B.2    York, J.3
  • 22
    • 70449580491 scopus 로고    scopus 로고
    • A new baseline for image annotation
    • A. Makadia, V. Pavlovic, and S. Kumar. A new baseline for image annotation. In ECCV. 2008.
    • (2008) ECCV
    • Makadia, A.1    Pavlovic, V.2    Kumar, S.3
  • 24
    • 33749244569 scopus 로고    scopus 로고
    • Content-boosted collaborative filtering for improved recommendations
    • P. Melville, R. J. Mooney, and R. Nagarajan. Content-boosted collaborative filtering for improved recommendations. In AAAI, 2002.
    • (2002) AAAI
    • Melville, P.1    Mooney, R.J.2    Nagarajan, R.3
  • 27
    • 84883058687 scopus 로고    scopus 로고
    • The knowing camera 2: Recognizing and annotating places-of-interest in smartphone photos
    • P. Peng, L. Shou, K. Chen, G. Chen, and S. Wu. The knowing camera 2: Recognizing and annotating places-of-interest in smartphone photos. In SIGIR, 2014.
    • (2014) SIGIR
    • Peng, P.1    Shou, L.2    Chen, K.3    Chen, G.4    Wu, S.5
  • 28
    • 0036989477 scopus 로고    scopus 로고
    • Methods and metrics for cold-start recommendations
    • A. Schein, A. Popescul, L. Ungar, and D. Pennock. Methods and metrics for cold-start recommendations. In SIGIR, 2002.
    • (2002) SIGIR
    • Schein, A.1    Popescul, A.2    Ungar, L.3    Pennock, D.4
  • 29
    • 84904564432 scopus 로고    scopus 로고
    • Prism: Concept-preserving social image search results summarization
    • B.-S. Seah, S. Bhowmick, and A. Sun. Prism: Concept-preserving social image search results summarization. In SIGIR, 2014.
    • (2014) SIGIR
    • Seah, B.-S.1    Bhowmick, S.2    Sun, A.3
  • 33
    • 84904541910 scopus 로고    scopus 로고
    • Learning similarity functions for topic detection in online reputation monitoring
    • D. Spina and J. Gonzalo. Learning similarity functions for topic detection in online reputation monitoring. In SIGIR, 2014.
    • (2014) SIGIR
    • Spina, D.1    Gonzalo, J.2
  • 34
    • 54749092170 scopus 로고    scopus 로고
    • 80 million tiny images: A large data set for nonparametric object and scene recognition
    • A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny images: A large data set for nonparametric object and scene recognition. IEEE Trans. on PAMI, 2008.
    • (2008) IEEE Trans. on PAMI
    • Torralba, A.1    Fergus, R.2    Freeman, W.T.3
  • 35
    • 84864062501 scopus 로고    scopus 로고
    • Large margin component analysis
    • L. Torresani and K. Chih Lee. Large margin component analysis. In NIPS, 2007.
    • (2007) NIPS
    • Torresani, L.1    Chih Lee, K.2
  • 37
    • 84904537012 scopus 로고    scopus 로고
    • Learning to personalize trending image search suggestion
    • C.-C. Wu, T. Mei, W. Hsu, and Y. Rui. Learning to personalize trending image search suggestion. In SIGIR, 2014.
    • (2014) SIGIR
    • Wu, C.-C.1    Mei, T.2    Hsu, W.3    Rui, Y.4
  • 38
    • 84866607239 scopus 로고    scopus 로고
    • Boosting multi-kernel locality-sensitive hashing for scalable image retrieval
    • H. Xia, P. Wu, S. Hoi, and R. Jin. Boosting multi-kernel locality-sensitive hashing for scalable image retrieval. In SIGIR, 2012.
    • (2012) SIGIR
    • Xia, H.1    Wu, P.2    Hoi, S.3    Jin, R.4
  • 40
    • 84898779488 scopus 로고    scopus 로고
    • Paper doll parsing: Retrieving similar styles to parse clothing items
    • K. Yamaguchi, M. H. Kiapour, and T. L. Berg. Paper doll parsing: Retrieving similar styles to parse clothing items. In ICCV, 2013.
    • (2013) ICCV
    • Yamaguchi, K.1    Kiapour, M.H.2    Berg, T.L.3
  • 41
    • 80052119372 scopus 로고    scopus 로고
    • Functional matrix factorizations for cold-start recommendation
    • K. Zhou, S.-H. Yang, and H. Zha. Functional matrix factorizations for cold-start recommendation. In SIGIR, 2011.
    • (2011) SIGIR
    • Zhou, K.1    Yang, S.-H.2    Zha, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.