메뉴 건너뛰기




Volumn 17, Issue 5, 2016, Pages 819-830

The digital revolution in phenotyping

(19)  Oellrich, Anika a   Collier, Nigel b   Groza, Tudor c   Rebholz Schuhmann, Dietrich d   Shah, Nigam e   Bodenreider, Olivier f   Boland, Mary Regina g   Georgiev, Ivo h   Liu, Hongfang i   Livingston, Kevin h   Luna, Augustin j   Mallon, Ann Marie k   Manda, Prashanti l   Robinson, Peter N m   Rustici, Gabriella b   Simon, Michelle n   Wang, Liqin o   Winnenburg, Rainer e   Dumontier, Michel e  


Author keywords

Acquisition; Interoperability; Knowledge discovery; Phenomics; Phenotypes; Semantic representation

Indexed keywords

HUMAN; INFORMATION RETRIEVAL; METHODOLOGY; PHENOTYPE; TRANSLATIONAL RESEARCH;

EID: 84995743962     PISSN: 14675463     EISSN: 14774054     Source Type: Journal    
DOI: 10.1093/bib/bbv083     Document Type: Article
Times cited : (40)

References (85)
  • 1
    • 79954986866 scopus 로고    scopus 로고
    • A new face and new challenges for Online Mendelian Inheritance in Man (OMIM)
    • Amberger J, Bocchini C, Hamosh A. A new face and new challenges for Online Mendelian Inheritance in Man (OMIM). Human Mutation 2011; 32: 564-7.
    • (2011) Human Mutation , vol.32 , pp. 564-567
    • Amberger, J.1    Bocchini, C.2    Hamosh, A.3
  • 2
    • 78651286166 scopus 로고    scopus 로고
    • The Mouse Genome Database (MGD): Premier model organism resource for mammalian genomics and genetics
    • Blake JA, Bult CJ, Kadin JA, et al. The Mouse Genome Database (MGD): premier model organism resource for mammalian genomics and genetics. Nucleic Acids Res 2011; 39: D842-8.
    • (2011) Nucleic Acids Res , vol.39 , pp. D842-D848
    • Blake, J.A.1    Bult, C.J.2    Kadin, J.A.3
  • 3
    • 58149199579 scopus 로고    scopus 로고
    • FlyBase: Enhancing Drosophila Gene Ontology annotations
    • Tweedie S, Ashburner M, Falls K, et al. FlyBase: enhancing Drosophila Gene Ontology annotations. Nucleic Acids Research 2009; 37: D555-9.
    • (2009) Nucleic Acids Research , vol.37 , pp. D555-D559
    • Tweedie, S.1    Ashburner, M.2    Falls, K.3
  • 4
    • 84876528441 scopus 로고    scopus 로고
    • ZFIN, the Zebrafish Model Organism Database: Increased support for mutants and transgenics
    • Howe DG, Bradford YM, Conlin T, et al. ZFIN, the Zebrafish Model Organism Database: increased support for mutants and transgenics. Nucleic Acids Research 2013; 41: D854-60.
    • (2013) Nucleic Acids Research , vol.41 , pp. D854-D860
    • Howe, D.G.1    Bradford, Y.M.2    Conlin, T.3
  • 6
    • 80054087451 scopus 로고    scopus 로고
    • PhenomeNET: A whole-phenome approach to disease gene discovery
    • Hoehndorf R, Schofield PN, Gkoutos GV. PhenomeNET: a whole-phenome approach to disease gene discovery. Nucleic Acids Res 2011; 39: e119.
    • (2011) Nucleic Acids Res , vol.39 , pp. e119
    • Hoehndorf, R.1    Schofield, P.N.2    Gkoutos, G.V.3
  • 7
    • 84885393730 scopus 로고    scopus 로고
    • PhenoDigm: Analyzing curated annotations to associate animal models with human diseases
    • bat025
    • Smedley D, Oellrich A, Köhler S, et al. PhenoDigm: analyzing curated annotations to associate animal models with human diseases. Database 2013; bat025.
    • (2013) Database
    • Smedley, D.1    Oellrich, A.2    Köhler, S.3
  • 8
    • 72949116593 scopus 로고    scopus 로고
    • Linking human diseases to animal models using ontology-based phenotype annotation
    • Washington NL, Haendel MA, Mungall CJ, et al. Linking human diseases to animal models using ontology-based phenotype annotation. PLoS Biol 2009; 7: e1000247.
    • (2009) PLoS Biol , vol.7 , pp. e1000247
    • Washington, N.L.1    Haendel, M.A.2    Mungall, C.J.3
  • 11
    • 33846036091 scopus 로고    scopus 로고
    • PhenomicDB: A new crossspecies genotype/phenotype resource
    • Groth P, Pavlova N, Kalev I, et al. PhenomicDB: a new crossspecies genotype/phenotype resource. Nucleic Acids Res 2007; 35: D696-9.
    • (2007) Nucleic Acids Res , vol.35 , pp. D696-D699
    • Groth, P.1    Pavlova, N.2    Kalev, I.3
  • 12
    • 21844471754 scopus 로고    scopus 로고
    • Systematic association of genes to phenotypes by genome and literature mining
    • Korbel JO, Doerks T, Jensen LJ, et al. Systematic association of genes to phenotypes by genome and literature mining. PLoS Biol 2005; 3: e134.
    • (2005) PLoS Biol , vol.3 , pp. e134
    • Korbel, J.O.1    Doerks, T.2    Jensen, L.J.3
  • 13
    • 84897694231 scopus 로고    scopus 로고
    • Mouse model phenotypes provide information about human drug targets
    • Hoehndorf R, Hiebert T, Hardy NW, et al. Mouse model phenotypes provide information about human drug targets. Bioinformatics 2013; 30: 719-25.
    • (2013) Bioinformatics , vol.30 , pp. 719-725
    • Hoehndorf, R.1    Hiebert, T.2    Hardy, N.W.3
  • 14
    • 76149120425 scopus 로고    scopus 로고
    • A side effect resource to capture phenotypic effects of drugs
    • Kuhn M, Campillos M, Letunic I, et al. A side effect resource to capture phenotypic effects of drugs. Mol Syst Biol 2010; 6: 343.
    • (2010) Mol Syst Biol , vol.6 , pp. 343
    • Kuhn, M.1    Campillos, M.2    Letunic, I.3
  • 15
    • 84898815541 scopus 로고    scopus 로고
    • Dose-specific adverse drug reaction identification in electronic patient records: Temporal data mining in an inpatient psychiatric population
    • Eriksson R, Werge T, Jensen LJ, et al. Dose-specific adverse drug reaction identification in electronic patient records: temporal data mining in an inpatient psychiatric population. Drug Safety 2014; 37: 237-7.
    • (2014) Drug Safety , vol.37 , pp. 237-237
    • Eriksson, R.1    Werge, T.2    Jensen, L.J.3
  • 16
    • 84879468407 scopus 로고    scopus 로고
    • Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data. eng
    • Lasko TA, Denny JC, Levy MA. Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data. eng. PLoS One 2013; 8: e66341.
    • (2013) PLoS One , vol.8 , pp. e66341
    • Lasko, T.A.1    Denny, J.C.2    Levy, M.A.3
  • 17
    • 84960123355 scopus 로고    scopus 로고
    • Clustering longitudinal clinical marker trajectories from electronic health data: Applications to phenotyping and endotype discovery
    • Austin, Texas, USA
    • Schulam P, Wigley F, Saria S. Clustering longitudinal clinical marker trajectories from electronic health data: applications to phenotyping and endotype discovery. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, Texas, USA, 2015.
    • (2015) Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence
    • Schulam, P.1    Wigley, F.2    Saria, S.3
  • 20
    • 84861306656 scopus 로고    scopus 로고
    • 500000 fish phenotypes: The new informatics landscape for evolutionary and developmental biology of the vertebrate skeleton
    • Mabee P, Balhoff JP, Dahdul WM, et al. 500000 fish phenotypes: The new informatics landscape for evolutionary and developmental biology of the vertebrate skeleton. J Appl Ichthyol 2012; 28: 300-5.
    • (2012) J Appl Ichthyol , vol.28 , pp. 300-305
    • Mabee, P.1    Balhoff, J.P.2    Dahdul, W.M.3
  • 21
    • 84884684255 scopus 로고    scopus 로고
    • Toward knowledge support for analysis and interpretation of complex traits
    • Collier N, Oellrich A, Groza T. Toward knowledge support for analysis and interpretation of complex traits. Genome Biol 2013; 14: 214.
    • (2013) Genome Biol , vol.14 , pp. 214
    • Collier, N.1    Oellrich, A.2    Groza, T.3
  • 22
    • 84867331444 scopus 로고    scopus 로고
    • The Mammalian Phenotype Ontology as a unifying standard for experimental and high-throughput phenotyping data
    • Smith CL, Eppig JT. The Mammalian Phenotype Ontology as a unifying standard for experimental and high-throughput phenotyping data. Mamm Genome 2013; 23: 653-68.
    • (2013) Mamm Genome , vol.23 , pp. 653-668
    • Smith, C.L.1    Eppig, J.T.2
  • 23
    • 84891749517 scopus 로고    scopus 로고
    • The Human Phenotype Ontology project: Linking molecular biology and disease through phenotype data
    • Köhler S, Doelken SC, Mungall CJ, et al. The Human Phenotype Ontology project: linking molecular biology and disease through phenotype data. Nucleic Acids Res 2014; 42: D966-74.
    • (2014) Nucleic Acids Res , vol.42 , pp. D966-D974
    • Köhler, S.1    Doelken, S.C.2    Mungall, C.J.3
  • 25
    • 0021355168 scopus 로고
    • A computerised data base for the diagnosis of rare dysmorphic syndromes
    • Winter RM, Baraitser M, Douglas JM. A computerised data base for the diagnosis of rare dysmorphic syndromes. J Med Genet 1984; 21: 121-3.
    • (1984) J Med Genet , vol.21 , pp. 121-123
    • Winter, R.M.1    Baraitser, M.2    Douglas, J.M.3
  • 26
    • 0034069495 scopus 로고    scopus 로고
    • Gene Ontology: Tool for the unification of biology
    • Botstein D, Cherry JM, Ashburner M, et al. Gene Ontology: tool for the unification of biology. Nat Genet 2000; 25: 25-9.
    • (2000) Nat Genet , vol.25 , pp. 25-29
    • Botstein, D.1    Cherry, J.M.2    Ashburner, M.3
  • 27
    • 84869772444 scopus 로고    scopus 로고
    • three ontologies to define phenotype measurement data
    • Hancock JM. Commentary on Shimoyama et al. (2012): three ontologies to define phenotype measurement data. Front Genet 2014; 5.
    • (2012) Front Genet , pp. 5
    • Hancock Commentary on Shimoyama, J.M.1
  • 28
    • 84938797712 scopus 로고    scopus 로고
    • Development and validation of a classification approach for extracting severity automatically from electronic health records
    • Boland MR, Tatonetti NP, Hripcsak G. Development and validation of a classification approach for extracting severity automatically from electronic health records. J Biomed Semant 2015; 6: 14.
    • (2015) J Biomed Semant , vol.6 , pp. 14
    • Boland, M.R.1    Tatonetti, N.P.2    Hripcsak, G.3
  • 29
    • 84957580256 scopus 로고    scopus 로고
    • Automatically annotating temporal data from a phenotype-driven mutagenesis screen
    • Dublin, Ireland
    • Greenaway S, Blake A, Retha A, et al. Automatically annotating temporal data from a phenotype-driven mutagenesis screen. In Proceedings of Phenotype Day at ISMB, Dublin, Ireland, 2015.
    • (2015) Proceedings of Phenotype Day at ISMB
    • Greenaway, S.1    Blake, A.2    Retha, A.3
  • 30
    • 84864358886 scopus 로고    scopus 로고
    • Representation of rare diseases in health information systems: The Orphanet approach to serve a wide range of end users
    • Rath A, Olry A, Dhombres F, et al. Representation of rare diseases in health information systems: the Orphanet approach to serve a wide range of end users. Hum Mutat 2012; 33: 803-8.
    • (2012) Hum Mutat , vol.33 , pp. 803-808
    • Rath, A.1    Olry, A.2    Dhombres, F.3
  • 32
    • 33644876661 scopus 로고    scopus 로고
    • The Zebrafish Information Network: The zebrafish model organism database
    • Sprague J, Bayraktaroglu L, Clements D, et al. The Zebrafish Information Network: the zebrafish model organism database. Nucleic Acids Res 2006; 34: D581-5.
    • (2006) Nucleic Acids Res , vol.34 , pp. D581-D585
    • Sprague, J.1    Bayraktaroglu, L.2    Clements, D.3
  • 33
    • 84860743865 scopus 로고    scopus 로고
    • Towards an encyclopaedia of mammalian gene function: The International Mouse Phenotyping Consortium
    • Brown SDM, Moore MW. Towards an encyclopaedia of mammalian gene function: the International Mouse Phenotyping Consortium. Dis Models Mech 2012; 5: 289-92.
    • (2012) Dis Models Mech , vol.5 , pp. 289-292
    • Brown, S.D.M.1    Moore, M.W.2
  • 34
    • 77955287813 scopus 로고    scopus 로고
    • An overview of MetaMap: Historical perspective and recent advances
    • Aronson AR, Lang FM. An overview of MetaMap: historical perspective and recent advances. J Am Med Inform Assoc 2010; 17: 229-36.
    • (2010) J Am Med Inform Assoc , vol.17 , pp. 229-236
    • Aronson, A.R.1    Lang, F.M.2
  • 35
    • 0035741485 scopus 로고    scopus 로고
    • A simple algorithm for identifying negated findings and diseases in discharge summaries
    • Chapman WW, Bridewell W, Hanbury P, et al. A simple algorithm for identifying negated findings and diseases in discharge summaries. JBiomed Inform 2001; 34: 301-10.
    • (2001) JBiomed Inform , vol.34 , pp. 301-310
    • Chapman, W.W.1    Bridewell, W.2    Hanbury, P.3
  • 36
    • 0028403632 scopus 로고
    • A general natural-language text processor for clinical radiology
    • Friedman C, Alderson PO, Austin JH, et al. A general natural-language text processor for clinical radiology. J Am Med Inform Assoc 1994; 1: 161-74.
    • (1994) J Am Med Inform Assoc , vol.1 , pp. 161-174
    • Friedman, C.1    Alderson, P.O.2    Austin, J.H.3
  • 39
    • 84873650802 scopus 로고    scopus 로고
    • Mining skeletal phenotype descriptions from scientific literature
    • Groza T, Hunter J, Zankl A. Mining skeletal phenotype descriptions from scientific literature. PLoS One 2013; 8: e55656.
    • (2013) PLoS One , vol.8 , pp. e55656
    • Groza, T.1    Hunter, J.2    Zankl, A.3
  • 41
    • 78751642348 scopus 로고    scopus 로고
    • Worm Phenotype Ontology: Integrating phenotype data within and beyond the C. elegans community
    • Schindelman G, et al. Worm Phenotype Ontology: Integrating phenotype data within and beyond the C. elegans community. BMC Bioinformatics 2011; 12: 32.
    • (2011) BMC Bioinformatics , vol.12 , pp. 32
    • Schindelman, G.1
  • 42
    • 0038670579 scopus 로고    scopus 로고
    • The human phenome project
    • Freimer N, Sabatti C. The human phenome project. Nat Genet 2003; 34: 15-21.
    • (2003) Nat Genet , vol.34 , pp. 15-21
    • Freimer, N.1    Sabatti, C.2
  • 43
    • 84949768868 scopus 로고    scopus 로고
    • A classification of existing phenotypical representations and methods for improvement
    • Mannheim, Germany
    • Oellrich A, Rebholz-Schuhmann D. A classification of existing phenotypical representations and methods for improvement. In Proceedingsof the 2nd OBMLWorkshop, Mannheim, Germany, 2010.
    • (2010) Proceedingsof the 2nd OBMLWorkshop
    • Oellrich, A.1    Rebholz-Schuhmann, D.2
  • 44
    • 77349112447 scopus 로고    scopus 로고
    • Integrating phenotype ontologies across multiple species
    • Mungall CJ, Gkoutos GV, Smith CL, et al. Integrating phenotype ontologies across multiple species. Genome Biol 2010; 11: R2.
    • (2010) Genome Biol , vol.11 , pp. R2
    • Mungall, C.J.1    Gkoutos, G.V.2    Smith, C.L.3
  • 45
    • 84869772444 scopus 로고    scopus 로고
    • Three ontologies to define phenotype measurement data
    • Shimoyama M, Nigam R, McIntosh LS, et al. Three ontologies to define phenotype measurement data. Front Genet 2012; 3: 87.
    • (2012) Front Genet , vol.3 , pp. 87
    • Shimoyama, M.1    Nigam, R.2    Intosh, L.S.3
  • 46
    • 0036088113 scopus 로고    scopus 로고
    • PharmGKB: The pharmacogenetics knowledge base
    • Hewett M, Oliver DE, Rubin DL, et al. PharmGKB: the pharmacogenetics knowledge base. Nucleic Acids Res 2002; 30: 163-5.
    • (2002) Nucleic Acids Res , vol.30 , pp. 163-165
    • Hewett, M.1    Oliver, D.E.2    Rubin, D.L.3
  • 47
    • 14544306487 scopus 로고    scopus 로고
    • A statistical approach to scanning the biomedical literature for pharmacogenetics knowledge
    • Rubin DL, Thorn CF, Klein TE, et al. A statistical approach to scanning the biomedical literature for pharmacogenetics knowledge. JAm Med Inform Assoc 2005; 12: 121-9.
    • (2005) JAm Med Inform Assoc , vol.12 , pp. 121-129
    • Rubin, D.L.1    Thorn, C.F.2    Klein, T.E.3
  • 48
    • 35948989284 scopus 로고    scopus 로고
    • The OBO Foundry: Coordinated evolution of ontologies to support biomedical data integration
    • Smith B, Ashburner M, Rosse C, et al. The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nat Biotechnol 2007; 25: 1251-5.
    • (2007) Nat Biotechnol , vol.25 , pp. 1251-1255
    • Smith, B.1    Ashburner, M.2    Rosse, C.3
  • 49
    • 84880562927 scopus 로고    scopus 로고
    • Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes
    • White JK, Gerdin AK, Karp NA, et al. Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes. Cell 2013; 154: 452-64.
    • (2013) Cell , vol.154 , pp. 452-464
    • White, J.K.1    Gerdin, A.K.2    Karp, N.A.3
  • 50
    • 65549139325 scopus 로고    scopus 로고
    • Practical application ofontologies to annotate and analyse large scale raw mouse pheno-type data
    • Beck T, Morgan H, Blake A, et al. Practical application ofontologies to annotate and analyse large scale raw mouse pheno-type data. BMC Bioinformatics 2009; 10: S2.
    • (2009) BMC Bioinformatics , vol.10 , pp. S2
    • Beck, T.1    Morgan, H.2    Blake, A.3
  • 51
    • 84880508099 scopus 로고    scopus 로고
    • PhenoTips: Patient phenotyping software for clinical and research use
    • Girdea M, Dumitriu S, Fiume M, et al. PhenoTips: patient phenotyping software for clinical and research use. Hum Mutat 2013; 34: 1057-65.
    • (2013) Hum Mutat , vol.34 , pp. 1057-1065
    • Girdea, M.1    Dumitriu, S.2    Fiume, M.3
  • 52
    • 84901362119 scopus 로고    scopus 로고
    • Phenotype ontologies and crossspecies analysis for translational research
    • Robinson PN, Webber C. Phenotype ontologies and crossspecies analysis for translational research. PLoS Genet 2014; 10: e1004268.
    • (2014) PLoS Genet , vol.10 , pp. e1004268
    • Robinson, P.N.1    Webber, C.2
  • 53
    • 74049094457 scopus 로고    scopus 로고
    • Challenges in phenotype definition in the whole-genome era: Multivariate models of memory and intelligence
    • Sabb FW, Burggren AC, Higier RG, et al. Challenges in phenotype definition in the whole-genome era: multivariate models of memory and intelligence. Neuroscience 2009; 164: 88-107.
    • (2009) Neuroscience , vol.164 , pp. 88-107
    • Sabb, F.W.1    Burggren, A.C.2    Higier, R.G.3
  • 54
    • 78149490620 scopus 로고    scopus 로고
    • Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): Architecture, component evaluation and applications
    • Savova GK, Masanz JJ, Ogren PV, et al. Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications. J Am Med Inform Assoc 2010; 17: 507-13.
    • (2010) J Am Med Inform Assoc , vol.17 , pp. 507-513
    • Savova, G.K.1    Masanz, J.J.2    Ogren, P.V.3
  • 55
    • 4544280638 scopus 로고    scopus 로고
    • Automated encoding of clinical documents based on natural language processing
    • Friedman C, Shagina L, Lussier Y, et al. Automated encoding of clinical documents based on natural language processing. J Am Med Inform Assoc 2004; 11: 392-42.
    • (2004) J Am Med Inform Assoc , vol.11 , pp. 392-442
    • Friedman, C.1    Shagina, L.2    Lussier, Y.3
  • 56
    • 80053292637 scopus 로고    scopus 로고
    • 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text
    • Uzuner O, South BR, Shen S, et al. 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text. J Am Med Inform Assoc 2011; 18: 552-6.
    • (2011) J Am Med Inform Assoc , vol.18 , pp. 552-556
    • Uzuner, O.1    South, B.R.2    Shen, S.3
  • 58
    • 84862267399 scopus 로고    scopus 로고
    • Argo: An integrative, interactive, text mining-based workbench supporting curation
    • bas010
    • Rak R, et al. Argo: an integrative, interactive, text mining-based workbench supporting curation. Database 2012; bas010.
    • (2012) Database
    • Rak, R.1
  • 59
    • 84992345552 scopus 로고    scopus 로고
    • A strategy for annotating clinical records with phenotypic information relating to the chronic obstructive pulmonary disease
    • Boston, Massachusetts, USA
    • Fu X, Batista-Navarro RTB, Rak R, et al. A strategy for annotating clinical records with phenotypic information relating to the chronic obstructive pulmonary disease. In Proceedings of Phenotype Day at ISMB, Boston, Massachusetts, USA, 2014.
    • (2014) Proceedings of Phenotype Day at ISMB
    • Fu, X.1    Batista-Navarro, R.T.B.2    Rak, R.3
  • 60
    • 84885391631 scopus 로고    scopus 로고
    • Learning to recognize phenotype candidates in the auto-immune literature using SVM re-ranking
    • Collier N, Tran M, LeH, et al. Learning to recognize phenotype candidates in the auto-immune literature using SVM re-ranking. PLoS One 2013; 8: e72965.
    • (2013) PLoS One , vol.8 , pp. e72965
    • Collier, N.1    Tran, M.2    Le, H.3
  • 61
    • 34249062098 scopus 로고    scopus 로고
    • Integration of mouse phenome data resources
    • Mouse Phenotype Database Integration Consortium
    • Mouse Phenotype Database Integration Consortium, Hancock JM, Adams NC, et al. Integration of mouse phenome data resources. Mamm Genome 2007; 18: 157-63.
    • (2007) Mamm Genome , vol.18 , pp. 157-163
    • Hancock, J.M.1    Adams, N.C.2
  • 62
    • 84855448103 scopus 로고    scopus 로고
    • Finding and sharing: New approaches to registries of databases and services for the biomedical sciences
    • baq014
    • Smedley D, Schofield P, Chen CK, et al. Finding and sharing: new approaches to registries of databases and services for the biomedical sciences. Database 2010; baq014.
    • (2010) Database
    • Smedley, D.1    Schofield, P.2    Chen, C.K.3
  • 63
  • 64
    • 84923169896 scopus 로고    scopus 로고
    • Construction and accessibility of a cross-species phenotype ontology along with gene annotations for biomedical research
    • Köhler S, Doelken SC, Ruef BJ, et al. Construction and accessibility of a cross-species phenotype ontology along with gene annotations for biomedical research. F1000Res 2013; 2: 30.
    • (2013) F1000Res , vol.2 , pp. 30
    • Köhler, S.1    Doelken, S.C.2    Ruef, B.J.3
  • 65
    • 84868548989 scopus 로고    scopus 로고
    • Crowdmap: Crowdsourcing Ontology Alignment with Microtasks
    • Springer: Berlin Heidelberg
    • Sarasua C, Simperl E, Noy NF. Crowdmap: Crowdsourcing Ontology Alignment with Microtasks. The Semantic Web-ISWC 2012, Springer: Berlin Heidelberg, 2012, 525-41.
    • (2012) The Semantic Web-ISWC 2012 , pp. 525-541
    • Sarasua, C.1    Simperl, E.2    Noy, N.F.3
  • 66
    • 0345863927 scopus 로고    scopus 로고
    • The Unified Medical Language System (UMLS): Integrating biomedical terminology
    • Bodenreider O. The Unified Medical Language System (UMLS): integrating biomedical terminology. Nucleic Acids Res 2004; 32: D267-70.
    • (2004) Nucleic Acids Res , vol.32 , pp. D267-D270
    • Bodenreider, O.1
  • 68
    • 78751480081 scopus 로고    scopus 로고
    • AgreementMaker: Efficient matching for large real-world schemas and ontologies
    • Lyon, France
    • Cruz IF, Antonelli FP, Stroe C. AgreementMaker: efficient matching for large real-world schemas and ontologies. In Proceedings of the VLDB Endowment, Lyon, France, 2009, Vol. 2, 1586-9.
    • (2009) Proceedings of the VLDB Endowment , vol.2 , pp. 1586-1589
    • Cruz, I.F.1    Antonelli, F.P.2    Stroe, C.3
  • 69
    • 42249096794 scopus 로고    scopus 로고
    • Mining phenotypes for gene function prediction
    • Groth P, Weiss B, Pohlenz HD, et al. Mining phenotypes for gene function prediction. BMC Bioinformatics 2008; 9: 136.
    • (2008) BMC Bioinformatics , vol.9 , pp. 136
    • Groth, P.1    Weiss, B.2    Pohlenz, H.D.3
  • 70
    • 84856670019 scopus 로고    scopus 로고
    • Re-thinking organisms: The impact of databases on model organism biology
    • Leonelli S, Ankeny RA. Re-thinking organisms: The impact of databases on model organism biology. Stud Hist Philos Biol Biomed Sci 2012; 43: 29-36.
    • (2012) Stud Hist Philos Biol Biomed Sci , vol.43 , pp. 29-36
    • Leonelli, S.1    Ankeny, R.A.2
  • 71
    • 84938806173 scopus 로고    scopus 로고
    • Linking gene expression to phenotypes via pathway information
    • Papatheodorou I, Oellrich A, Smedley D. Linking gene expression to phenotypes via pathway information. JBiomed Semant 2015; 6: 17.
    • (2015) JBiomed Semant , vol.6 , pp. 17
    • Papatheodorou, I.1    Oellrich, A.2    Smedley, D.3
  • 72
    • 70350474767 scopus 로고    scopus 로고
    • Clinical diagnostics in human genetics with semantic similarity searches in ontologies
    • Köhler S, Schulz MH, Krawitz P, et al. Clinical diagnostics in human genetics with semantic similarity searches in ontologies. Am J Hum Genet 2009; 85: 457-64.
    • (2009) Am J Hum Genet , vol.85 , pp. 457-464
    • Köhler, S.1    Schulz, M.H.2    Krawitz, P.3
  • 73
    • 84870615111 scopus 로고    scopus 로고
    • Decision support methods for finding phenotype-disorder associations in the bone dysplasia domain
    • Paul R, Groza T, Hunter J, et al. Decision support methods for finding phenotype-disorder associations in the bone dysplasia domain. PLoS One 2012; 7: e50614.
    • (2012) PLoS One , vol.7 , pp. e50614
    • Paul, R.1    Groza, T.2    Hunter, J.3
  • 74
    • 84899483170 scopus 로고    scopus 로고
    • Inferring characteristic phenotypes via class association rule mining in the bone dysplasia domain
    • Paul R, et al. Inferring characteristic phenotypes via class association rule mining in the bone dysplasia domain. J Biomed Inform 2013; 48: 73-83.
    • (2013) J Biomed Inform , vol.48 , pp. 73-83
    • Paul, R.1
  • 75
    • 84858433310 scopus 로고    scopus 로고
    • Personal omics profiling reveals dynamic molecular and medical phenotypes
    • Chen R, Mias GI, Li-Pook-Than J, et al. Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 2012; 148: 1293-307.
    • (2012) Cell , vol.148 , pp. 1293-1307
    • Chen, R.1    Mias, G.I.2    Li-Pook-Than, J.3
  • 76
    • 84892959492 scopus 로고    scopus 로고
    • Improved exome prioritization of disease genes through cross-species phenotype comparison
    • Robinson PN, Köhler S, Oellrich A, et al. Improved exome prioritization of disease genes through cross-species phenotype comparison. Genome Res 2014; 24: 340-8.
    • (2014) Genome Res , vol.24 , pp. 340-348
    • Robinson, P.N.1    Köhler, S.2    Oellrich, A.3
  • 77
    • 84907284564 scopus 로고    scopus 로고
    • Effective diagnosis of genetic disease by computational phenotype analysis of the disease-associated genome
    • Zemojtel T, Köhler S, Mackenroth L, et al. Effective diagnosis of genetic disease by computational phenotype analysis of the disease-associated genome. Sci Transl Med 2014; 6: 252ra123.
    • (2014) Sci Transl Med , vol.6 , pp. 252ra123
    • Zemojtel, T.1    Köhler, S.2    Mackenroth, L.3
  • 78
    • 84890107642 scopus 로고    scopus 로고
    • Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data
    • Denny JC, Bastarache L, Ritchie MD, et al. Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data. Nat Biotechnol 2013; 31: 1102-10.
    • (2013) Nat Biotechnol , vol.31 , pp. 1102-1110
    • Denny, J.C.1    Bastarache, L.2    Ritchie, M.D.3
  • 79
    • 67249117049 scopus 로고    scopus 로고
    • Potential etiologic and functional implications of genome-wide association loci for human diseases and traits
    • Hindorff LA, Sethupathy P, Junkins HA, et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci USA 2009; 106: 9362-7.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 9362-9367
    • Hindorff, L.A.1    Sethupathy, P.2    Junkins, H.A.3
  • 80
    • 84891790401 scopus 로고    scopus 로고
    • The NHGRI GWAS Catalog, a curated resource of SNP-trait associations
    • Welter D, MacArthur J, Morales J, et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res 2014; 42: D1001-6.
    • (2014) Nucleic Acids Res , vol.42 , pp. D1001-D1006
    • Welter, D.1    McArthur, J.2    Morales, J.3
  • 81
    • 77952822074 scopus 로고    scopus 로고
    • PheWAS: Demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations
    • Denny JC, Ritchie MD, Basford MA, et al. PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations. Bioinformatics 2010; 26: 1205-10.
    • (2010) Bioinformatics , vol.26 , pp. 1205-1210
    • Denny, J.C.1    Ritchie, M.D.2    Basford, M.A.3
  • 82
    • 84873488838 scopus 로고    scopus 로고
    • Phenome-wide association study (PheWAS) for detection of pleiotropy within the Population Architecture using Genomics and Epidemiology (PAGE) Network
    • Pendergrass SA, Brown-Gentry K, Dudek SM, et al. Phenome-wide association study (PheWAS) for detection of pleiotropy within the Population Architecture using Genomics and Epidemiology (PAGE) Network. PLoS Genet 2013; e1003087.
    • (2013) PLoS Genet , pp. e1003087
    • Pendergrass, S.A.1    Brown-Gentry, K.2    Dudek, S.M.3
  • 83
    • 84891858260 scopus 로고    scopus 로고
    • A genome- and phenome-wide association study to identify genetic variants influencing platelet count and volume and their pleiotropic effects
    • Shameer K, Denny JC, Ding K, et al. A genome- and phenome-wide association study to identify genetic variants influencing platelet count and volume and their pleiotropic effects. Hum Genet 2014; 133: 95-109.
    • (2014) Hum Genet , vol.133 , pp. 95-109
    • Shameer, K.1    Denny, J.C.2    Ding, K.3
  • 84
    • 84878252359 scopus 로고    scopus 로고
    • Ethnic differences in the relationship between insulin sensitivity and insulin response: A systematic review and meta-analysis
    • Kodama K, Tojjar D, Yamada S, et al. Ethnic differences in the relationship between insulin sensitivity and insulin response: a systematic review and meta-analysis. Diabetes Care 2013; 36: 1789-96.
    • (2013) Diabetes Care , vol.36 , pp. 1789-1796
    • Kodama, K.1    Tojjar, D.2    Yamada, S.3
  • 85
    • 84899859780 scopus 로고    scopus 로고
    • Disease risk factors identified through shared genetic architecture and electronic medical records
    • 234ra57
    • Li L, Ruau DJ, Patel CJ, et al. Disease risk factors identified through shared genetic architecture and electronic medical records. Sci Transl Med 2014; 6: 234ra57.
    • (2014) Sci Transl Med , vol.6
    • Li, L.1    Ruau, D.J.2    Patel, C.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.