메뉴 건너뛰기




Volumn 42, Issue 1, 2017, Pages 42-56

Cellular Functions and Molecular Mechanisms of the ESCRT Membrane-Scission Machinery

Author keywords

[No Author keywords available]

Indexed keywords

ESCRT III PROTEIN; ESCRT PROTEIN; PEPTIDES AND PROTEINS; PROTEIN VPS4; UNCLASSIFIED DRUG; ADENOSINE TRIPHOSPHATASE;

EID: 84995679694     PISSN: 09680004     EISSN: 13624326     Source Type: Journal    
DOI: 10.1016/j.tibs.2016.08.016     Document Type: Review
Times cited : (347)

References (156)
  • 1
    • 0036902646 scopus 로고    scopus 로고
    • Receptor downregulation and multivesicular-body sorting
    • 1 Katzmann, D.J., et al. Receptor downregulation and multivesicular-body sorting. Nat. Rev. Mol. Cell Biol. 3 (2002), 893–905.
    • (2002) Nat. Rev. Mol. Cell Biol. , vol.3 , pp. 893-905
    • Katzmann, D.J.1
  • 3
    • 34347385894 scopus 로고    scopus 로고
    • Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery
    • 3 Carlton, J.G., Martin-Serrano, J., Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science 316 (2007), 1908–1912.
    • (2007) Science , vol.316 , pp. 1908-1912
    • Carlton, J.G.1    Martin-Serrano, J.2
  • 4
    • 34948911522 scopus 로고    scopus 로고
    • Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis
    • 4 Morita, E., et al. Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO J. 26 (2007), 4215–4227.
    • (2007) EMBO J. , vol.26 , pp. 4215-4227
    • Morita, E.1
  • 5
    • 84897624850 scopus 로고    scopus 로고
    • ESCRT machinery is required for plasma membrane repair
    • 5 Jimenez, A.J., et al. ESCRT machinery is required for plasma membrane repair. Science, 343, 2014, 1247136.
    • (2014) Science , vol.343 , pp. 1247136
    • Jimenez, A.J.1
  • 6
    • 84923086493 scopus 로고    scopus 로고
    • An ESCRT module is required for neuron pruning
    • 6 Loncle, N., et al. An ESCRT module is required for neuron pruning. Sci. Rep., 5, 2015, 8461.
    • (2015) Sci. Rep. , vol.5 , pp. 8461
    • Loncle, N.1
  • 7
    • 84858230240 scopus 로고    scopus 로고
    • Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein
    • 7 Nabhan, J.F., et al. Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), 4146–4151.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 4146-4151
    • Nabhan, J.F.1
  • 8
    • 84916928432 scopus 로고    scopus 로고
    • Surveillance of nuclear pore complex assembly by ESCRT-III/Vps4
    • 8 Webster, B.M., et al. Surveillance of nuclear pore complex assembly by ESCRT-III/Vps4. Cell 159 (2014), 388–401.
    • (2014) Cell , vol.159 , pp. 388-401
    • Webster, B.M.1
  • 9
    • 84930955595 scopus 로고    scopus 로고
    • ESCRT-III controls nuclear envelope reformation
    • 9 Olmos, Y., et al. ESCRT-III controls nuclear envelope reformation. Nature 522 (2015), 236–239.
    • (2015) Nature , vol.522 , pp. 236-239
    • Olmos, Y.1
  • 10
    • 84930946081 scopus 로고    scopus 로고
    • Spastin and ESCRT-III coordinate mitotic spindle disassembly and nuclear envelope sealing
    • 10 Vietri, M., et al. Spastin and ESCRT-III coordinate mitotic spindle disassembly and nuclear envelope sealing. Nature 522 (2015), 231–235.
    • (2015) Nature , vol.522 , pp. 231-235
    • Vietri, M.1
  • 11
    • 84963538020 scopus 로고    scopus 로고
    • ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death
    • 11 Raab, M., et al. ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science 352 (2016), 359–362.
    • (2016) Science , vol.352 , pp. 359-362
    • Raab, M.1
  • 12
    • 84961613728 scopus 로고    scopus 로고
    • Nuclear envelope rupture and repair during cancer cell migration
    • 12 Denais, C.M., et al. Nuclear envelope rupture and repair during cancer cell migration. Science 352 (2016), 353–358.
    • (2016) Science , vol.352 , pp. 353-358
    • Denais, C.M.1
  • 13
    • 84968876706 scopus 로고    scopus 로고
    • ESCRT-III drives the final stages of CUPS maturation for unconventional protein secretion
    • 13 Curwin, A.J., et al. ESCRT-III drives the final stages of CUPS maturation for unconventional protein secretion. Elife, 5, 2016, e16299.
    • (2016) Elife , vol.5 , pp. e16299
    • Curwin, A.J.1
  • 14
    • 79960225411 scopus 로고    scopus 로고
    • The ESCRT pathway
    • 14 Henne, W.M., et al. The ESCRT pathway. Dev. Cell 21 (2011), 77–91.
    • (2011) Dev. Cell , vol.21 , pp. 77-91
    • Henne, W.M.1
  • 16
    • 84942838662 scopus 로고    scopus 로고
    • ESCRTs are everywhere
    • 16 Hurley, J.H., ESCRTs are everywhere. EMBO J. 34 (2015), 2398–2407.
    • (2015) EMBO J. , vol.34 , pp. 2398-2407
    • Hurley, J.H.1
  • 17
    • 63649086486 scopus 로고    scopus 로고
    • The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins
    • 17 Raiborg, C., Stenmark, H., The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458 (2009), 445–452.
    • (2009) Nature , vol.458 , pp. 445-452
    • Raiborg, C.1    Stenmark, H.2
  • 18
    • 84878951746 scopus 로고    scopus 로고
    • Membrane fission reactions of the mammalian ESCRT pathway
    • 18 McCullough, J., et al. Membrane fission reactions of the mammalian ESCRT pathway. Annu. Rev. Biochem. 82 (2013), 663–692.
    • (2013) Annu. Rev. Biochem. , vol.82 , pp. 663-692
    • McCullough, J.1
  • 19
    • 80052233389 scopus 로고    scopus 로고
    • Endosome maturation
    • 19 Huotari, J., Helenius, A., Endosome maturation. EMBO J. 30 (2011), 3481–3500.
    • (2011) EMBO J. , vol.30 , pp. 3481-3500
    • Huotari, J.1    Helenius, A.2
  • 20
    • 84901851577 scopus 로고    scopus 로고
    • The ESCRT machinery: from the plasma membrane to endosomes and back again
    • 20 Schuh, A.L., Audhya, A., The ESCRT machinery: from the plasma membrane to endosomes and back again. Crit. Rev. Biochem. Mol. Biol. 49 (2014), 242–261.
    • (2014) Crit. Rev. Biochem. Mol. Biol. , vol.49 , pp. 242-261
    • Schuh, A.L.1    Audhya, A.2
  • 21
    • 17144377439 scopus 로고    scopus 로고
    • Human CHMP6, a myristoylated ESCRT-III protein, interacts directly with an ESCRT-II component EAP20 and regulates endosomal cargo sorting
    • 21 Yorikawa, C., et al. Human CHMP6, a myristoylated ESCRT-III protein, interacts directly with an ESCRT-II component EAP20 and regulates endosomal cargo sorting. Biochem. J. 387 (2005), 17–26.
    • (2005) Biochem. J. , vol.387 , pp. 17-26
    • Yorikawa, C.1
  • 22
    • 33745761343 scopus 로고    scopus 로고
    • The crystal structure of the C-terminal domain of Vps28 reveals a conserved surface required for Vps20 recruitment
    • 22 Pineda-Molina, E., et al. The crystal structure of the C-terminal domain of Vps28 reveals a conserved surface required for Vps20 recruitment. Traffic 7 (2006), 1007–1016.
    • (2006) Traffic , vol.7 , pp. 1007-1016
    • Pineda-Molina, E.1
  • 23
    • 44449097226 scopus 로고    scopus 로고
    • Integrated structural model and membrane targeting mechanism of the human ESCRT-II complex
    • 23 Im, Y.J., Hurley, J.H., Integrated structural model and membrane targeting mechanism of the human ESCRT-II complex. Dev. Cell 14 (2008), 902–913.
    • (2008) Dev. Cell , vol.14 , pp. 902-913
    • Im, Y.J.1    Hurley, J.H.2
  • 24
    • 84886641339 scopus 로고    scopus 로고
    • Essential N-terminal insertion motif anchors the ESCRT-III filament during MVB vesicle formation
    • 24 Buchkovich, N.J., et al. Essential N-terminal insertion motif anchors the ESCRT-III filament during MVB vesicle formation. Dev. Cell 27 (2013), 201–214.
    • (2013) Dev. Cell , vol.27 , pp. 201-214
    • Buchkovich, N.J.1
  • 25
    • 62249210955 scopus 로고    scopus 로고
    • Membrane scission by the ESCRT-III complex
    • 25 Wollert, T., et al. Membrane scission by the ESCRT-III complex. Nature 458 (2009), 172–177.
    • (2009) Nature , vol.458 , pp. 172-177
    • Wollert, T.1
  • 26
    • 84901675911 scopus 로고    scopus 로고
    • Coordinated binding of Vps4 to ESCRT-III drives membrane neck constriction during MVB vesicle formation
    • 26 Adell, M.A., et al. Coordinated binding of Vps4 to ESCRT-III drives membrane neck constriction during MVB vesicle formation. J. Cell Biol. 205 (2014), 33–49.
    • (2014) J. Cell Biol. , vol.205 , pp. 33-49
    • Adell, M.A.1
  • 27
    • 78951470141 scopus 로고    scopus 로고
    • Bro1 binding to Snf7 regulates ESCRT-III membrane scission activity in yeast
    • 27 Wemmer, M., et al. Bro1 binding to Snf7 regulates ESCRT-III membrane scission activity in yeast. J. Cell Biol. 192 (2011), 295–306.
    • (2011) J. Cell Biol. , vol.192 , pp. 295-306
    • Wemmer, M.1
  • 28
    • 84988603419 scopus 로고    scopus 로고
    • Structural basis for activation, assembly and membrane binding of ESCRT-III Snf7 filaments
    • 28 Tang, S., et al. Structural basis for activation, assembly and membrane binding of ESCRT-III Snf7 filaments. Elife, 4, 2015, e12548.
    • (2015) Elife , vol.4 , pp. e12548
    • Tang, S.1
  • 29
    • 84960335655 scopus 로고    scopus 로고
    • ALIX and ESCRT-I/II function as parallel ESCRT-III recruiters in cytokinetic abscission
    • 29 Christ, L., et al. ALIX and ESCRT-I/II function as parallel ESCRT-III recruiters in cytokinetic abscission. J. Cell Biol. 212 (2016), 499–513.
    • (2016) J. Cell Biol. , vol.212 , pp. 499-513
    • Christ, L.1
  • 30
    • 84870777012 scopus 로고    scopus 로고
    • ALIX is a Lys63-specific polyubiquitin binding protein that functions in retrovirus budding
    • 30 Dowlatshahi, D.P., et al. ALIX is a Lys63-specific polyubiquitin binding protein that functions in retrovirus budding. Dev. Cell 23 (2012), 1247–1254.
    • (2012) Dev. Cell , vol.23 , pp. 1247-1254
    • Dowlatshahi, D.P.1
  • 31
    • 84878980535 scopus 로고    scopus 로고
    • The yeast Alix homolog Bro1 functions as a ubiquitin receptor for protein sorting into multivesicular endosomes
    • 31 Pashkova, N., et al. The yeast Alix homolog Bro1 functions as a ubiquitin receptor for protein sorting into multivesicular endosomes. Dev. Cell 25 (2013), 520–533.
    • (2013) Dev. Cell , vol.25 , pp. 520-533
    • Pashkova, N.1
  • 32
    • 84875279930 scopus 로고    scopus 로고
    • Recruitment of UBPY and ESCRT exchange drive HD-PTP-dependent sorting of EGFR to the MVB
    • 32 Ali, N., et al. Recruitment of UBPY and ESCRT exchange drive HD-PTP-dependent sorting of EGFR to the MVB. Curr. Biol. 23 (2013), 453–461.
    • (2013) Curr. Biol. , vol.23 , pp. 453-461
    • Ali, N.1
  • 33
    • 84935904669 scopus 로고    scopus 로고
    • WASH and Tsg101/ALIX-dependent diversion of stress-internalized EGFR from the canonical endocytic pathway
    • 33 Tomas, A., et al. WASH and Tsg101/ALIX-dependent diversion of stress-internalized EGFR from the canonical endocytic pathway. Nat. Commun., 6, 2015, 7324.
    • (2015) Nat. Commun. , vol.6 , pp. 7324
    • Tomas, A.1
  • 34
    • 84959387188 scopus 로고    scopus 로고
    • Structural study of the HD-PTP Bro1 domain in a complex with the core region of STAM2, a subunit of ESCRT-0
    • 34 Lee, J., et al. Structural study of the HD-PTP Bro1 domain in a complex with the core region of STAM2, a subunit of ESCRT-0. PloS ONE, 11, 2016, e0149113.
    • (2016) PloS ONE , vol.11 , pp. e0149113
    • Lee, J.1
  • 35
    • 84969217666 scopus 로고    scopus 로고
    • ESCRT-III activation by parallel action of ESCRT-I/II and ESCRT-0/Bro1 during MVB biogenesis
    • 35 Tang, S., et al. ESCRT-III activation by parallel action of ESCRT-I/II and ESCRT-0/Bro1 during MVB biogenesis. Elife, 5, 2016, e15507.
    • (2016) Elife , vol.5 , pp. e15507
    • Tang, S.1
  • 36
    • 84942420909 scopus 로고    scopus 로고
    • A non-canonical ESCRT pathway, including histidine domain phosphotyrosine phosphatase (HD-PTP), is used for down-regulation of virally ubiquitinated MHC class I
    • 36 Parkinson, M.D., et al. A non-canonical ESCRT pathway, including histidine domain phosphotyrosine phosphatase (HD-PTP), is used for down-regulation of virally ubiquitinated MHC class I. Biochem. J. 471 (2015), 79–88.
    • (2015) Biochem. J. , vol.471 , pp. 79-88
    • Parkinson, M.D.1
  • 37
    • 84941258958 scopus 로고    scopus 로고
    • Histidine-domain-containing protein tyrosine phosphatase regulates platelet-derived growth factor receptor intracellular sorting and degradation
    • 37 Ma, H., et al. Histidine-domain-containing protein tyrosine phosphatase regulates platelet-derived growth factor receptor intracellular sorting and degradation. Cell. Signal. 27 (2015), 2209–2219.
    • (2015) Cell. Signal. , vol.27 , pp. 2209-2219
    • Ma, H.1
  • 38
    • 79952444150 scopus 로고    scopus 로고
    • SCF(TrCP) acts in endosomal sorting of the GH receptor
    • 38 van Kerkhof, P., et al. SCF(TrCP) acts in endosomal sorting of the GH receptor. Exp. Cell Res. 317 (2011), 1071–1082.
    • (2011) Exp. Cell Res. , vol.317 , pp. 1071-1082
    • van Kerkhof, P.1
  • 39
    • 79952501324 scopus 로고    scopus 로고
    • Microautophagy of cytosolic proteins by late endosomes
    • 39 Sahu, R., et al. Microautophagy of cytosolic proteins by late endosomes. Dev. Cell 20 (2011), 131–139.
    • (2011) Dev. Cell , vol.20 , pp. 131-139
    • Sahu, R.1
  • 40
    • 69449089915 scopus 로고    scopus 로고
    • How do ESCRT proteins control autophagy?
    • 40 Rusten, T.E., Stenmark, H., How do ESCRT proteins control autophagy?. J. Cell Sci. 122 (2009), 2179–2183.
    • (2009) J. Cell Sci. , vol.122 , pp. 2179-2183
    • Rusten, T.E.1    Stenmark, H.2
  • 41
    • 84883894715 scopus 로고    scopus 로고
    • Virus budding and the ESCRT pathway
    • 41 Votteler, J., Sundquist, W.I., Virus budding and the ESCRT pathway. Cell Host Microbe 14 (2013), 232–241.
    • (2013) Cell Host Microbe , vol.14 , pp. 232-241
    • Votteler, J.1    Sundquist, W.I.2
  • 42
    • 0028971135 scopus 로고
    • p6Gag is required for particle production from full-length human immunodeficiency virus type 1 molecular clones expressing protease
    • 42 Huang, M., et al. p6Gag is required for particle production from full-length human immunodeficiency virus type 1 molecular clones expressing protease. J. Virol. 69 (1995), 6810–6818.
    • (1995) J. Virol. , vol.69 , pp. 6810-6818
    • Huang, M.1
  • 43
    • 17944363138 scopus 로고    scopus 로고
    • Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding
    • 43 Garrus, J.E., et al. Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107 (2001), 55–65.
    • (2001) Cell , vol.107 , pp. 55-65
    • Garrus, J.E.1
  • 44
    • 0034940214 scopus 로고    scopus 로고
    • Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55(Gag)
    • 44 VerPlank, L., et al. Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55(Gag). Proc. Natl. Acad. Sci. U.S.A. 98 (2001), 7724–7729.
    • (2001) Proc. Natl. Acad. Sci. U.S.A. , vol.98 , pp. 7724-7729
    • VerPlank, L.1
  • 45
    • 0030858622 scopus 로고    scopus 로고
    • Equine infectious anemia virus utilizes a YXXL motif within the late assembly domain of the Gag p9 protein
    • 45 Puffer, B.A., et al. Equine infectious anemia virus utilizes a YXXL motif within the late assembly domain of the Gag p9 protein. J. Virol. 71 (1997), 6541–6546.
    • (1997) J. Virol. , vol.71 , pp. 6541-6546
    • Puffer, B.A.1
  • 46
    • 0141844660 scopus 로고    scopus 로고
    • AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding
    • 46 Strack, B., et al. AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Cell 114 (2003), 689–699.
    • (2003) Cell , vol.114 , pp. 689-699
    • Strack, B.1
  • 47
    • 0142123069 scopus 로고    scopus 로고
    • Divergent retroviral late-budding domains recruit vacuolar protein sorting factors by using alternative adaptor proteins
    • 47 Martin-Serrano, J., et al. Divergent retroviral late-budding domains recruit vacuolar protein sorting factors by using alternative adaptor proteins. Proc. Natl. Acad. Sci. U.S.A. 100 (2003), 12414–12419.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 12414-12419
    • Martin-Serrano, J.1
  • 48
    • 84885099846 scopus 로고    scopus 로고
    • ESCRT requirements for EIAV budding
    • 48 Sandrin, V., Sundquist, W.I., ESCRT requirements for EIAV budding. Retrovirology, 10, 2013, 104.
    • (2013) Retrovirology , vol.10 , pp. 104
    • Sandrin, V.1    Sundquist, W.I.2
  • 49
    • 84964309654 scopus 로고    scopus 로고
    • ESCRT requirements for murine leukemia virus release
    • 49 Bartusch, C., Prange, R., ESCRT requirements for murine leukemia virus release. Viruses, 8, 2016, 103.
    • (2016) Viruses , vol.8 , pp. 103
    • Bartusch, C.1    Prange, R.2
  • 50
    • 79952640255 scopus 로고    scopus 로고
    • ESCRT-III protein requirements for HIV-1 budding
    • 50 Morita, E., et al. ESCRT-III protein requirements for HIV-1 budding. Cell Host Microbe 9 (2011), 235–242.
    • (2011) Cell Host Microbe , vol.9 , pp. 235-242
    • Morita, E.1
  • 51
    • 84867644422 scopus 로고    scopus 로고
    • In vitro reconstitution of the ordered assembly of the endosomal sorting complex required for transport at membrane-bound HIV-1 Gag clusters
    • 51 Carlson, L.A., Hurley, J.H., In vitro reconstitution of the ordered assembly of the endosomal sorting complex required for transport at membrane-bound HIV-1 Gag clusters. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), 16928–16933.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 16928-16933
    • Carlson, L.A.1    Hurley, J.H.2
  • 52
    • 84872617312 scopus 로고    scopus 로고
    • ESCRT-III CHMP2A and CHMP3 form variable helical polymers in vitro and act synergistically during HIV-1 budding
    • 52 Effantin, G., et al. ESCRT-III CHMP2A and CHMP3 form variable helical polymers in vitro and act synergistically during HIV-1 budding. Cell. Microbiol. 15 (2013), 213–226.
    • (2013) Cell. Microbiol. , vol.15 , pp. 213-226
    • Effantin, G.1
  • 53
    • 33748943870 scopus 로고    scopus 로고
    • Human ESCRT-II complex and its role in human immunodeficiency virus type 1 release
    • 53 Langelier, C., et al. Human ESCRT-II complex and its role in human immunodeficiency virus type 1 release. J. Virol. 80 (2006), 9465–9480.
    • (2006) J. Virol. , vol.80 , pp. 9465-9480
    • Langelier, C.1
  • 54
    • 79953296191 scopus 로고    scopus 로고
    • Dynamics of ESCRT protein recruitment during retroviral assembly
    • 54 Jouvenet, N., et al. Dynamics of ESCRT protein recruitment during retroviral assembly. Nat. Cell Biol. 13 (2011), 394–401.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 394-401
    • Jouvenet, N.1
  • 55
    • 84938942146 scopus 로고    scopus 로고
    • Evidence that the endosomal sorting complex required for transport-II (ESCRT-II) is required for efficient human immunodeficiency virus-1 (HIV-1) production
    • 55 Meng, B., et al. Evidence that the endosomal sorting complex required for transport-II (ESCRT-II) is required for efficient human immunodeficiency virus-1 (HIV-1) production. Retrovirology, 12, 2015, 72.
    • (2015) Retrovirology , vol.12 , pp. 72
    • Meng, B.1
  • 56
    • 33847355934 scopus 로고    scopus 로고
    • Structural and biochemical studies of ALIX/AIP1 and its role in retrovirus budding
    • 56 Fisher, R.D., et al. Structural and biochemical studies of ALIX/AIP1 and its role in retrovirus budding. Cell 128 (2007), 841–852.
    • (2007) Cell , vol.128 , pp. 841-852
    • Fisher, R.D.1
  • 57
    • 34249943479 scopus 로고    scopus 로고
    • Potent rescue of human immunodeficiency virus type 1 late domain mutants by ALIX/AIP1 depends on its CHMP4 binding site
    • 57 Usami, Y., et al. Potent rescue of human immunodeficiency virus type 1 late domain mutants by ALIX/AIP1 depends on its CHMP4 binding site. J. Virol. 81 (2007), 6614–6622.
    • (2007) J. Virol. , vol.81 , pp. 6614-6622
    • Usami, Y.1
  • 58
    • 48749119362 scopus 로고    scopus 로고
    • Differential requirements for Alix and ESCRT-III in cytokinesis and HIV-1 release
    • 58 Carlton, J.G., et al. Differential requirements for Alix and ESCRT-III in cytokinesis and HIV-1 release. Proc. Natl. Acad. Sci. U.S.A. 105 (2008), 10541–10546.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 10541-10546
    • Carlton, J.G.1
  • 59
    • 77955618368 scopus 로고    scopus 로고
    • Human ESCRT-III and VPS4 proteins are required for centrosome and spindle maintenance
    • 59 Morita, E., et al. Human ESCRT-III and VPS4 proteins are required for centrosome and spindle maintenance. Proc. Natl. Acad. Sci. U.S.A. 107 (2010), 12889–12894.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 12889-12894
    • Morita, E.1
  • 60
    • 79953161074 scopus 로고    scopus 로고
    • Cortical constriction during abscission involves helices of ESCRT-III-dependent filaments
    • 60 Guizetti, J., et al. Cortical constriction during abscission involves helices of ESCRT-III-dependent filaments. Science 331 (2011), 1616–1620.
    • (2011) Science , vol.331 , pp. 1616-1620
    • Guizetti, J.1
  • 61
    • 84911406750 scopus 로고    scopus 로고
    • Inhibition of ESCRT-II–CHMP6 interactions impedes cytokinetic abscission and leads to cell death
    • 61 Goliand, I., et al. Inhibition of ESCRT-II–CHMP6 interactions impedes cytokinetic abscission and leads to cell death. Mol. Biol. Cell 25 (2014), 3740–3748.
    • (2014) Mol. Biol. Cell , vol.25 , pp. 3740-3748
    • Goliand, I.1
  • 62
    • 78349285587 scopus 로고    scopus 로고
    • Plk1 negatively regulates Cep55 recruitment to the midbody to ensure orderly abscission
    • 62 Bastos, R.N., Barr, F.A., Plk1 negatively regulates Cep55 recruitment to the midbody to ensure orderly abscission. J. Cell Biol. 191 (2010), 751–760.
    • (2010) J. Cell Biol. , vol.191 , pp. 751-760
    • Bastos, R.N.1    Barr, F.A.2
  • 63
    • 54949088988 scopus 로고    scopus 로고
    • Midbody targeting of the ESCRT machinery by a noncanonical coiled coil in CEP55
    • 63 Lee, H.H., et al. Midbody targeting of the ESCRT machinery by a noncanonical coiled coil in CEP55. Science 322 (2008), 576–580.
    • (2008) Science , vol.322 , pp. 576-580
    • Lee, H.H.1
  • 64
    • 79953225554 scopus 로고    scopus 로고
    • Dynamics of endosomal sorting complex required for transport (ESCRT) machinery during cytokinesis and its role in abscission
    • 64 Elia, N., et al. Dynamics of endosomal sorting complex required for transport (ESCRT) machinery during cytokinesis and its role in abscission. Proc. Natl. Acad. Sci. U.S.A. 108 (2011), 4846–4851.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 4846-4851
    • Elia, N.1
  • 65
    • 85007081450 scopus 로고    scopus 로고
    • Phosphorylation-dependent activation of the ESCRT function of ALIX in cytokinetic abscission and retroviral budding
    • 65 Sun, S., et al. Phosphorylation-dependent activation of the ESCRT function of ALIX in cytokinetic abscission and retroviral budding. Dev. Cell, 37, 2016, 581.
    • (2016) Dev. Cell , vol.37 , pp. 581
    • Sun, S.1
  • 66
    • 84867083334 scopus 로고    scopus 로고
    • FIP3-endosome-dependent formation of the secondary ingression mediates ESCRT-III recruitment during cytokinesis
    • 66 Schiel, J.A., et al. FIP3-endosome-dependent formation of the secondary ingression mediates ESCRT-III recruitment during cytokinesis. Nat. Cell Biol. 14 (2012), 1068–1078.
    • (2012) Nat. Cell Biol. , vol.14 , pp. 1068-1078
    • Schiel, J.A.1
  • 67
    • 57149085245 scopus 로고    scopus 로고
    • Structural basis for midbody targeting of spastin by the ESCRT-III protein CHMP1B
    • 67 Yang, D., et al. Structural basis for midbody targeting of spastin by the ESCRT-III protein CHMP1B. Nat. Struct. Mol. Biol. 15 (2008), 1278–1286.
    • (2008) Nat. Struct. Mol. Biol. , vol.15 , pp. 1278-1286
    • Yang, D.1
  • 68
    • 58149181351 scopus 로고    scopus 로고
    • Spastin couples microtubule severing to membrane traffic in completion of cytokinesis and secretion
    • 68 Connell, J.W., et al. Spastin couples microtubule severing to membrane traffic in completion of cytokinesis and secretion. Traffic 10 (2009), 42–56.
    • (2009) Traffic , vol.10 , pp. 42-56
    • Connell, J.W.1
  • 69
    • 84971577041 scopus 로고    scopus 로고
    • Integrin signaling via FAK–Src controls cytokinetic abscission by decelerating PLK1 degradation and subsequent recruitment of CEP55 at the midbody
    • 69 Kamranvar, S.A., et al. Integrin signaling via FAK–Src controls cytokinetic abscission by decelerating PLK1 degradation and subsequent recruitment of CEP55 at the midbody. Oncotarget 7 (2016), 30820–30830.
    • (2016) Oncotarget , vol.7 , pp. 30820-30830
    • Kamranvar, S.A.1
  • 70
    • 84875519176 scopus 로고    scopus 로고
    • ESCRT-III assembly and cytokinetic abscission are induced by tension release in the intercellular bridge
    • 70 Lafaurie-Janvore, J., et al. ESCRT-III assembly and cytokinetic abscission are induced by tension release in the intercellular bridge. Science 339 (2013), 1625–1629.
    • (2013) Science , vol.339 , pp. 1625-1629
    • Lafaurie-Janvore, J.1
  • 71
    • 78649685697 scopus 로고    scopus 로고
    • Defects in nuclear pore assembly lead to activation of an Aurora B-mediated abscission checkpoint
    • 71 Mackay, D.R., et al. Defects in nuclear pore assembly lead to activation of an Aurora B-mediated abscission checkpoint. J. Cell Biol. 191 (2010), 923–931.
    • (2010) J. Cell Biol. , vol.191 , pp. 923-931
    • Mackay, D.R.1
  • 72
    • 59049101302 scopus 로고    scopus 로고
    • Aurora B-mediated abscission checkpoint protects against tetraploidization
    • 72 Steigemann, P., et al. Aurora B-mediated abscission checkpoint protects against tetraploidization. Cell 136 (2009), 473–484.
    • (2009) Cell , vol.136 , pp. 473-484
    • Steigemann, P.1
  • 73
    • 84930631701 scopus 로고    scopus 로고
    • ULK3 regulates cytokinetic abscission by phosphorylating ESCRT-III proteins
    • 73 Caballe, A., et al. ULK3 regulates cytokinetic abscission by phosphorylating ESCRT-III proteins. Elife, 4, 2015, e06547.
    • (2015) Elife , vol.4 , pp. e06547
    • Caballe, A.1
  • 74
    • 84964624211 scopus 로고    scopus 로고
    • Clks 1, 2 and 4 prevent chromatin breakage by regulating the Aurora B-dependent abscission checkpoint
    • 74 Petsalaki, E., Zachos, G., Clks 1, 2 and 4 prevent chromatin breakage by regulating the Aurora B-dependent abscission checkpoint. Nat. Commun., 7, 2016, 11451.
    • (2016) Nat. Commun. , vol.7 , pp. 11451
    • Petsalaki, E.1    Zachos, G.2
  • 75
    • 33645968660 scopus 로고    scopus 로고
    • The NoCut pathway links completion of cytokinesis to spindle midzone function to prevent chromosome breakage
    • 75 Norden, C., et al. The NoCut pathway links completion of cytokinesis to spindle midzone function to prevent chromosome breakage. Cell 125 (2006), 85–98.
    • (2006) Cell , vol.125 , pp. 85-98
    • Norden, C.1
  • 76
    • 65249089181 scopus 로고    scopus 로고
    • The nucleoporin Nup153 has separable roles in both early mitotic progression and the resolution of mitosis
    • 76 Mackay, D.R., et al. The nucleoporin Nup153 has separable roles in both early mitotic progression and the resolution of mitosis. Mol. Biol. Cell 20 (2009), 1652–1660.
    • (2009) Mol. Biol. Cell , vol.20 , pp. 1652-1660
    • Mackay, D.R.1
  • 77
    • 84930899667 scopus 로고    scopus 로고
    • ATR and a Chk1–Aurora B pathway coordinate postmitotic genome surveillance with cytokinetic abscission
    • 77 Mackay, D.R., Ullman, K.S., ATR and a Chk1–Aurora B pathway coordinate postmitotic genome surveillance with cytokinetic abscission. Mol. Biol. Cell 26 (2015), 2217–2226.
    • (2015) Mol. Biol. Cell , vol.26 , pp. 2217-2226
    • Mackay, D.R.1    Ullman, K.S.2
  • 78
    • 84878524196 scopus 로고    scopus 로고
    • Condensin and the spindle midzone prevent cytokinesis failure induced by chromatin bridges in C. elegans embryos
    • 78 Bembenek, J.N., et al. Condensin and the spindle midzone prevent cytokinesis failure induced by chromatin bridges in C. elegans embryos. Curr. Biol. 23 (2013), 937–946.
    • (2013) Curr. Biol. , vol.23 , pp. 937-946
    • Bembenek, J.N.1
  • 79
    • 84859630113 scopus 로고    scopus 로고
    • ESCRT-III governs the Aurora B-mediated abscission checkpoint through CHMP4C
    • 79 Carlton, J.G., et al. ESCRT-III governs the Aurora B-mediated abscission checkpoint through CHMP4C. Science 336 (2012), 220–225.
    • (2012) Science , vol.336 , pp. 220-225
    • Carlton, J.G.1
  • 80
    • 84864212914 scopus 로고    scopus 로고
    • The chromosomal passenger complex controls the function of endosomal sorting complex required for transport-III Snf7 proteins during cytokinesis
    • 80 Capalbo, L., et al. The chromosomal passenger complex controls the function of endosomal sorting complex required for transport-III Snf7 proteins during cytokinesis. Open Biol., 2, 2012, 120070.
    • (2012) Open Biol. , vol.2 , pp. 120070
    • Capalbo, L.1
  • 81
    • 84901841072 scopus 로고    scopus 로고
    • ANCHR mediates Aurora-B-dependent abscission checkpoint control through retention of VPS4
    • 81 Thoresen, S.B., et al. ANCHR mediates Aurora-B-dependent abscission checkpoint control through retention of VPS4. Nat. Cell Biol. 16 (2014), 550–560.
    • (2014) Nat. Cell Biol. , vol.16 , pp. 550-560
    • Thoresen, S.B.1
  • 82
    • 39449086176 scopus 로고    scopus 로고
    • Ist1 regulates Vps4 localization and assembly
    • 82 Dimaano, C., et al. Ist1 regulates Vps4 localization and assembly. Mol. Biol. Cell 19 (2008), 465–474.
    • (2008) Mol. Biol. Cell , vol.19 , pp. 465-474
    • Dimaano, C.1
  • 83
    • 65249163426 scopus 로고    scopus 로고
    • Biochemical analyses of human IST1 and its function in cytokinesis
    • 83 Bajorek, M., et al. Biochemical analyses of human IST1 and its function in cytokinesis. Mol. Biol. Cell 20 (2009), 1360–1373.
    • (2009) Mol. Biol. Cell , vol.20 , pp. 1360-1373
    • Bajorek, M.1
  • 84
    • 84949663759 scopus 로고    scopus 로고
    • Conformational changes in the endosomal sorting complex required for the transport III subunit Ist1 lead to distinct modes of ATPase Vps4 regulation
    • 84 Tan, J., et al. Conformational changes in the endosomal sorting complex required for the transport III subunit Ist1 lead to distinct modes of ATPase Vps4 regulation. J. Biol. Chem. 290 (2015), 30053–30065.
    • (2015) J. Biol. Chem. , vol.290 , pp. 30053-30065
    • Tan, J.1
  • 85
    • 84925729200 scopus 로고    scopus 로고
    • Distinct mechanisms of recognizing endosomal sorting complex required for transport III (ESCRT-III) protein IST1 by different microtubule interacting and trafficking (MIT) domains
    • 85 Guo, E.Z., Xu, Z., Distinct mechanisms of recognizing endosomal sorting complex required for transport III (ESCRT-III) protein IST1 by different microtubule interacting and trafficking (MIT) domains. J. Biol. Chem. 290 (2015), 8396–8408.
    • (2015) J. Biol. Chem. , vol.290 , pp. 8396-8408
    • Guo, E.Z.1    Xu, Z.2
  • 86
    • 64049116968 scopus 로고    scopus 로고
    • A mechanism for chromosome segregation sensing by the NoCut checkpoint
    • 86 Mendoza, M., et al. A mechanism for chromosome segregation sensing by the NoCut checkpoint. Nat. Cell Biol. 11 (2009), 477–483.
    • (2009) Nat. Cell Biol. , vol.11 , pp. 477-483
    • Mendoza, M.1
  • 87
    • 84890458696 scopus 로고    scopus 로고
    • Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles
    • 87 Colombo, M., et al. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J. Cell Sci. 126 (2013), 5553–5565.
    • (2013) J. Cell Sci. , vol.126 , pp. 5553-5565
    • Colombo, M.1
  • 88
    • 84928927712 scopus 로고    scopus 로고
    • Resolving sorting mechanisms into exosomes
    • 88 Stoorvogel, W., Resolving sorting mechanisms into exosomes. Cell Res. 25 (2015), 531–532.
    • (2015) Cell Res. , vol.25 , pp. 531-532
    • Stoorvogel, W.1
  • 89
    • 84950995197 scopus 로고    scopus 로고
    • Oligomerization and endocytosis of Hedgehog is necessary for its efficient exovesicular secretion
    • 89 Parchure, A., et al. Oligomerization and endocytosis of Hedgehog is necessary for its efficient exovesicular secretion. Mol. Biol. Cell 26 (2015), 4700–4717.
    • (2015) Mol. Biol. Cell , vol.26 , pp. 4700-4717
    • Parchure, A.1
  • 90
    • 84922277350 scopus 로고    scopus 로고
    • The ESCRT machinery regulates the secretion and long-range activity of Hedgehog
    • 90 Matusek, T., et al. The ESCRT machinery regulates the secretion and long-range activity of Hedgehog. Nature 516 (2014), 99–103.
    • (2014) Nature , vol.516 , pp. 99-103
    • Matusek, T.1
  • 91
    • 17644402459 scopus 로고    scopus 로고
    • Transduction of receptor signals by beta-arrestins
    • 91 Lefkowitz, R.J., Shenoy, S.K., Transduction of receptor signals by beta-arrestins. Science 308 (2005), 512–517.
    • (2005) Science , vol.308 , pp. 512-517
    • Lefkowitz, R.J.1    Shenoy, S.K.2
  • 92
    • 55549102963 scopus 로고    scopus 로고
    • Arrestin-related ubiquitin-ligase adaptors regulate endocytosis and protein turnover at the cell surface
    • 92 Lin, C.H., et al. Arrestin-related ubiquitin-ligase adaptors regulate endocytosis and protein turnover at the cell surface. Cell 135 (2008), 714–725.
    • (2008) Cell , vol.135 , pp. 714-725
    • Lin, C.H.1
  • 93
    • 80054079071 scopus 로고    scopus 로고
    • Assembly and disassembly of the ESCRT-III membrane scission complex
    • 93 Adell, M.A., Teis, D., Assembly and disassembly of the ESCRT-III membrane scission complex. FEBS Lett. 585 (2011), 3191–3196.
    • (2011) FEBS Lett. , vol.585 , pp. 3191-3196
    • Adell, M.A.1    Teis, D.2
  • 94
    • 77954626403 scopus 로고    scopus 로고
    • Arrestin-2 interacts with the endosomal sorting complex required for transport machinery to modulate endosomal sorting of CXCR4
    • 94 Malik, R., Marchese, A., Arrestin-2 interacts with the endosomal sorting complex required for transport machinery to modulate endosomal sorting of CXCR4. Mol. Biol. Cell 21 (2010), 2529–2541.
    • (2010) Mol. Biol. Cell , vol.21 , pp. 2529-2541
    • Malik, R.1    Marchese, A.2
  • 95
    • 79952588626 scopus 로고    scopus 로고
    • Multiple interactions between the ESCRT machinery and arrestin-related proteins: implications for PPXY-dependent budding
    • 95 Rauch, S., Martin-Serrano, J., Multiple interactions between the ESCRT machinery and arrestin-related proteins: implications for PPXY-dependent budding. J. Virol. 85 (2011), 3546–3556.
    • (2011) J. Virol. , vol.85 , pp. 3546-3556
    • Rauch, S.1    Martin-Serrano, J.2
  • 96
    • 84895891752 scopus 로고    scopus 로고
    • Polarized release of T-cell-receptor-enriched microvesicles at the immunological synapse
    • 96 Choudhuri, K., et al. Polarized release of T-cell-receptor-enriched microvesicles at the immunological synapse. Nature 507 (2014), 118–123.
    • (2014) Nature , vol.507 , pp. 118-123
    • Choudhuri, K.1
  • 97
    • 84955292894 scopus 로고    scopus 로고
    • Translocation of interleukin-1beta into a vesicle intermediate in autophagy-mediated secretion
    • 97 Zhang, M., et al. Translocation of interleukin-1beta into a vesicle intermediate in autophagy-mediated secretion. Elife, 4, 2015, e11205.
    • (2015) Elife , vol.4 , pp. e11205
    • Zhang, M.1
  • 98
    • 84923820273 scopus 로고    scopus 로고
    • Damage control: cellular mechanisms of plasma membrane repair
    • 98 Andrews, N.W., et al. Damage control: cellular mechanisms of plasma membrane repair. Trends Cell Biol. 24 (2014), 734–742.
    • (2014) Trends Cell Biol. , vol.24 , pp. 734-742
    • Andrews, N.W.1
  • 99
    • 84964312696 scopus 로고    scopus 로고
    • 2+-triggered ESCRT assembly and regulation of cell membrane repair
    • 2+-triggered ESCRT assembly and regulation of cell membrane repair. Nat. Commun., 5, 2014, 5646.
    • (2014) Nat. Commun. , vol.5 , pp. 5646
    • Scheffer, L.L.1
  • 100
    • 84878368479 scopus 로고    scopus 로고
    • Viral infection controlled by a calcium-dependent lipid-binding module in ALIX
    • 100 Bissig, C., et al. Viral infection controlled by a calcium-dependent lipid-binding module in ALIX. Dev. Cell 25 (2013), 364–373.
    • (2013) Dev. Cell , vol.25 , pp. 364-373
    • Bissig, C.1
  • 101
    • 77953576191 scopus 로고    scopus 로고
    • Exocytosis of acid sphingomyelinase by wounded cells promotes endocytosis and plasma membrane repair
    • 101 Tam, C., et al. Exocytosis of acid sphingomyelinase by wounded cells promotes endocytosis and plasma membrane repair. J. Cell Biol. 189 (2010), 1027–1038.
    • (2010) J. Cell Biol. , vol.189 , pp. 1027-1038
    • Tam, C.1
  • 102
    • 84907322903 scopus 로고    scopus 로고
    • Endocytic pathways downregulate the L1-type cell adhesion molecule neuroglian to promote dendrite pruning in Drosophila
    • 102 Zhang, H., et al. Endocytic pathways downregulate the L1-type cell adhesion molecule neuroglian to promote dendrite pruning in Drosophila. Dev. Cell 30 (2014), 463–478.
    • (2014) Dev. Cell , vol.30 , pp. 463-478
    • Zhang, H.1
  • 103
    • 84921268569 scopus 로고    scopus 로고
    • The PI3 K class III complex promotes axon pruning by downregulating a Ptc-derived signal via endosome-lysosomal degradation
    • 103 Issman-Zecharya, N., Schuldiner, O., The PI3 K class III complex promotes axon pruning by downregulating a Ptc-derived signal via endosome-lysosomal degradation. Dev. Cell 31 (2014), 461–473.
    • (2014) Dev. Cell , vol.31 , pp. 461-473
    • Issman-Zecharya, N.1    Schuldiner, O.2
  • 104
    • 84945188896 scopus 로고    scopus 로고
    • ESCRTs breach the nuclear border
    • 104 Webster, B.M., Lusk, C.P., ESCRTs breach the nuclear border. Nucleus 6 (2015), 197–202.
    • (2015) Nucleus , vol.6 , pp. 197-202
    • Webster, B.M.1    Lusk, C.P.2
  • 105
    • 84954482980 scopus 로고    scopus 로고
    • Border safety: quality control at the nuclear envelope
    • 105 Webster, B.M., Lusk, C.P., Border safety: quality control at the nuclear envelope. Trends Cell Biol. 26 (2016), 29–39.
    • (2016) Trends Cell Biol. , vol.26 , pp. 29-39
    • Webster, B.M.1    Lusk, C.P.2
  • 106
    • 84866920100 scopus 로고    scopus 로고
    • The ESCRT machinery is recruited by the viral BFRF1 protein to the nucleus-associated membrane for the maturation of Epstein–Barr Virus
    • 106 Lee, C.P., et al. The ESCRT machinery is recruited by the viral BFRF1 protein to the nucleus-associated membrane for the maturation of Epstein–Barr Virus. PLoS Pathog., 8, 2012, e1002904.
    • (2012) PLoS Pathog. , vol.8 , pp. e1002904
    • Lee, C.P.1
  • 107
    • 33646863279 scopus 로고    scopus 로고
    • Structural basis for budding by the ESCRT-III factor CHMP3
    • 107 Muziol, T., et al. Structural basis for budding by the ESCRT-III factor CHMP3. Dev. Cell 10 (2006), 821–830.
    • (2006) Dev. Cell , vol.10 , pp. 821-830
    • Muziol, T.1
  • 108
    • 50849096722 scopus 로고    scopus 로고
    • Structure and disassembly of filaments formed by the ESCRT-III subunit Vps24
    • 108 Ghazi-Tabatabai, S., et al. Structure and disassembly of filaments formed by the ESCRT-III subunit Vps24. Structure 16 (2008), 1345–1356.
    • (2008) Structure , vol.16 , pp. 1345-1356
    • Ghazi-Tabatabai, S.1
  • 109
    • 84907081816 scopus 로고    scopus 로고
    • Structural analysis and modeling reveals new mechanisms governing ESCRT-III spiral filament assembly
    • 109 Shen, Q.T., et al. Structural analysis and modeling reveals new mechanisms governing ESCRT-III spiral filament assembly. J. Cell Biol. 206 (2014), 763–777.
    • (2014) J. Cell Biol. , vol.206 , pp. 763-777
    • Shen, Q.T.1
  • 110
    • 67650312119 scopus 로고    scopus 로고
    • Structural basis for ESCRT-III protein autoinhibition
    • 110 Bajorek, M., et al. Structural basis for ESCRT-III protein autoinhibition. Nat. Struct. Mol. Biol. 16 (2009), 754–762.
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 754-762
    • Bajorek, M.1
  • 111
    • 46049099346 scopus 로고    scopus 로고
    • Two distinct modes of ESCRT-III recognition are required for VPS4 functions in lysosomal protein targeting and HIV-1 budding
    • 111 Kieffer, C., et al. Two distinct modes of ESCRT-III recognition are required for VPS4 functions in lysosomal protein targeting and HIV-1 budding. Dev. Cell 15 (2008), 62–73.
    • (2008) Dev. Cell , vol.15 , pp. 62-73
    • Kieffer, C.1
  • 112
    • 35148900389 scopus 로고    scopus 로고
    • ESCRT-III recognition by VPS4 ATPases
    • 112 Stuchell-Brereton, M.D., et al. ESCRT-III recognition by VPS4 ATPases. Nature 449 (2007), 740–744.
    • (2007) Nature , vol.449 , pp. 740-744
    • Stuchell-Brereton, M.D.1
  • 113
    • 35148831808 scopus 로고    scopus 로고
    • Structural basis for selective recognition of ESCRT-III by the AAA ATPase Vps4
    • 113 Obita, T., et al. Structural basis for selective recognition of ESCRT-III by the AAA ATPase Vps4. Nature 449 (2007), 735–739.
    • (2007) Nature , vol.449 , pp. 735-739
    • Obita, T.1
  • 114
    • 84871586331 scopus 로고    scopus 로고
    • Interactions of the human LIP5 regulatory protein with endosomal sorting complexes required for transport
    • 114 Skalicky, J.J., et al. Interactions of the human LIP5 regulatory protein with endosomal sorting complexes required for transport. J. Biol. Chem. 287 (2012), 43910–43926.
    • (2012) J. Biol. Chem. , vol.287 , pp. 43910-43926
    • Skalicky, J.J.1
  • 115
    • 84869213191 scopus 로고    scopus 로고
    • MITD1 is recruited to midbodies by ESCRT-III and participates in cytokinesis
    • 115 Lee, S., et al. MITD1 is recruited to midbodies by ESCRT-III and participates in cytokinesis. Mol. Biol. Cell 23 (2012), 4347–4361.
    • (2012) Mol. Biol. Cell , vol.23 , pp. 4347-4361
    • Lee, S.1
  • 116
    • 84867903861 scopus 로고    scopus 로고
    • ESCRT-III binding protein MITD1 is involved in cytokinesis and has an unanticipated PLD fold that binds membranes
    • 116 Hadders, M.A., et al. ESCRT-III binding protein MITD1 is involved in cytokinesis and has an unanticipated PLD fold that binds membranes. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), 17424–17429.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 17424-17429
    • Hadders, M.A.1
  • 117
    • 35648973707 scopus 로고    scopus 로고
    • The MIT domain of UBPY constitutes a CHMP binding and endosomal localization signal required for efficient epidermal growth factor receptor degradation
    • 117 Row, P.E., et al. The MIT domain of UBPY constitutes a CHMP binding and endosomal localization signal required for efficient epidermal growth factor receptor degradation. J. Biol. Chem. 282 (2007), 30929–30937.
    • (2007) J. Biol. Chem. , vol.282 , pp. 30929-30937
    • Row, P.E.1
  • 118
    • 45549101132 scopus 로고    scopus 로고
    • ALIX–CHMP4 interactions in the human ESCRT pathway
    • 118 McCullough, J., et al. ALIX–CHMP4 interactions in the human ESCRT pathway. Proc. Natl. Acad. Sci. U.S.A. 105 (2008), 7687–7691.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 7687-7691
    • McCullough, J.1
  • 119
    • 34447527768 scopus 로고    scopus 로고
    • Structure/function analysis of four core ESCRT-III proteins reveals common regulatory role for extreme C-terminal domain
    • 119 Shim, S., et al. Structure/function analysis of four core ESCRT-III proteins reveals common regulatory role for extreme C-terminal domain. Traffic 8 (2007), 1068–1079.
    • (2007) Traffic , vol.8 , pp. 1068-1079
    • Shim, S.1
  • 120
    • 84963956934 scopus 로고    scopus 로고
    • Structural fine-tuning of MIT-interacting motif 2 (MIM2) and allosteric regulation of ESCRT-III by Vps4 in yeast
    • 120 Kojima, R., et al. Structural fine-tuning of MIT-interacting motif 2 (MIM2) and allosteric regulation of ESCRT-III by Vps4 in yeast. J. Mol. Biol. 428 (2016), 2392–2404.
    • (2016) J. Mol. Biol. , vol.428 , pp. 2392-2404
    • Kojima, R.1
  • 121
    • 46049118283 scopus 로고    scopus 로고
    • Novel interactions of ESCRT-III with LIP5 and VPS4 and their implications for ESCRT-III disassembly
    • 121 Shim, S., et al. Novel interactions of ESCRT-III with LIP5 and VPS4 and their implications for ESCRT-III disassembly. Mol. Biol. Cell 19 (2008), 2661–2672.
    • (2008) Mol. Biol. Cell , vol.19 , pp. 2661-2672
    • Shim, S.1
  • 122
    • 16844375707 scopus 로고    scopus 로고
    • Interaction of the mammalian endosomal sorting complex required for transport (ESCRT) III protein hSnf7-1 with itself, membranes, and the AAA + ATPase SKD1
    • 122 Lin, Y., et al. Interaction of the mammalian endosomal sorting complex required for transport (ESCRT) III protein hSnf7-1 with itself, membranes, and the AAA + ATPase SKD1. J. Biol. Chem. 280 (2005), 12799–12809.
    • (2005) J. Biol. Chem. , vol.280 , pp. 12799-12809
    • Lin, Y.1
  • 123
    • 84950271437 scopus 로고    scopus 로고
    • Structure and membrane remodeling activity of ESCRT-III helical polymers
    • 123 McCullough, J., et al. Structure and membrane remodeling activity of ESCRT-III helical polymers. Science 350 (2015), 1548–1551.
    • (2015) Science , vol.350 , pp. 1548-1551
    • McCullough, J.1
  • 124
    • 84989824949 scopus 로고    scopus 로고
    • Electrostatic interactions between elongated monomers drive filamentation of Drosophila Shrub, a metazoan ESCRT-III protein
    • 124 McMillan, B.J., et al. Electrostatic interactions between elongated monomers drive filamentation of Drosophila Shrub, a metazoan ESCRT-III protein. Cell Rep. 16 (2016), 1211–1217.
    • (2016) Cell Rep. , vol.16 , pp. 1211-1217
    • McMillan, B.J.1
  • 125
    • 84867548612 scopus 로고    scopus 로고
    • The endosomal sorting complex ESCRT-II mediates the assembly and architecture of ESCRT-III helices
    • 125 Henne, W.M., et al. The endosomal sorting complex ESCRT-II mediates the assembly and architecture of ESCRT-III helices. Cell 151 (2012), 356–371.
    • (2012) Cell , vol.151 , pp. 356-371
    • Henne, W.M.1
  • 126
    • 5044245523 scopus 로고    scopus 로고
    • ESCRT-II, an endosome-associated complex required for protein sorting: crystal structure and interactions with ESCRT-III and membranes
    • 126 Teo, H., et al. ESCRT-II, an endosome-associated complex required for protein sorting: crystal structure and interactions with ESCRT-III and membranes. Dev. Cell 7 (2004), 559–569.
    • (2004) Dev. Cell , vol.7 , pp. 559-569
    • Teo, H.1
  • 127
    • 58149103425 scopus 로고    scopus 로고
    • Functional reconstitution of ESCRT-III assembly and disassembly
    • 127 Saksena, S., et al. Functional reconstitution of ESCRT-III assembly and disassembly. Cell 136 (2009), 97–109.
    • (2009) Cell , vol.136 , pp. 97-109
    • Saksena, S.1
  • 128
    • 77649335931 scopus 로고    scopus 로고
    • ESCRT-II coordinates the assembly of ESCRT-III filaments for cargo sorting and multivesicular body vesicle formation
    • 128 Teis, D., et al. ESCRT-II coordinates the assembly of ESCRT-III filaments for cargo sorting and multivesicular body vesicle formation. EMBO J. 29 (2010), 871–883.
    • (2010) EMBO J. , vol.29 , pp. 871-883
    • Teis, D.1
  • 129
    • 80053206906 scopus 로고    scopus 로고
    • Association of the endosomal sorting complex ESCRT-II with the Vps20 subunit of ESCRT-III generates a curvature-sensitive complex capable of nucleating ESCRT-III filaments
    • 129 Fyfe, I., et al. Association of the endosomal sorting complex ESCRT-II with the Vps20 subunit of ESCRT-III generates a curvature-sensitive complex capable of nucleating ESCRT-III filaments. J. Biol. Chem. 286 (2011), 34262–34270.
    • (2011) J. Biol. Chem. , vol.286 , pp. 34262-34270
    • Fyfe, I.1
  • 130
    • 68449095867 scopus 로고    scopus 로고
    • Structure and function of the ESCRT-II-III interface in multivesicular body biogenesis
    • 130 Im, Y.J., et al. Structure and function of the ESCRT-II-III interface in multivesicular body biogenesis. Dev. Cell 17 (2009), 234–243.
    • (2009) Dev. Cell , vol.17 , pp. 234-243
    • Im, Y.J.1
  • 131
    • 84952690378 scopus 로고    scopus 로고
    • Negative membrane curvature catalyzes nucleation of endosomal sorting complex required for transport (ESCRT)-III assembly
    • 131 Lee, I.H., et al. Negative membrane curvature catalyzes nucleation of endosomal sorting complex required for transport (ESCRT)-III assembly. Proc. Natl. Acad. Sci. U.S.A., 2015.
    • (2015) Proc. Natl. Acad. Sci. U.S.A.
    • Lee, I.H.1
  • 132
    • 66749147856 scopus 로고    scopus 로고
    • A crescent-shaped ALIX dimer targets ESCRT-III CHMP4 filaments
    • 132 Pires, R., et al. A crescent-shaped ALIX dimer targets ESCRT-III CHMP4 filaments. Structure 17 (2009), 843–856.
    • (2009) Structure , vol.17 , pp. 843-856
    • Pires, R.1
  • 133
    • 84957818381 scopus 로고    scopus 로고
    • Evidence for a nonendosomal function of the Saccharomyces cerevisiae ESCRT-III-like protein Chm7
    • 133 Bauer, I., et al. Evidence for a nonendosomal function of the Saccharomyces cerevisiae ESCRT-III-like protein Chm7. Genetics 201 (2015), 1439–1452.
    • (2015) Genetics , vol.201 , pp. 1439-1452
    • Bauer, I.1
  • 134
    • 38749152820 scopus 로고    scopus 로고
    • Plasma membrane deformation by circular arrays of ESCRT-III protein filaments
    • 134 Hanson, P.I., et al. Plasma membrane deformation by circular arrays of ESCRT-III protein filaments. J. Cell Biol. 180 (2008), 389–402.
    • (2008) J. Cell Biol. , vol.180 , pp. 389-402
    • Hanson, P.I.1
  • 135
    • 84946141973 scopus 로고    scopus 로고
    • Relaxation of loaded ESCRT-III spiral springs drives membrane deformation
    • 135 Chiaruttini, N., et al. Relaxation of loaded ESCRT-III spiral springs drives membrane deformation. Cell 163 (2015), 866–879.
    • (2015) Cell , vol.163 , pp. 866-879
    • Chiaruttini, N.1
  • 136
    • 53249131094 scopus 로고    scopus 로고
    • Ordered assembly of the ESCRT-III complex on endosomes is required to sequester cargo during MVB formation
    • 136 Teis, D., et al. Ordered assembly of the ESCRT-III complex on endosomes is required to sequester cargo during MVB formation. Dev. Cell 15 (2008), 578–589.
    • (2008) Dev. Cell , vol.15 , pp. 578-589
    • Teis, D.1
  • 137
    • 51149106799 scopus 로고    scopus 로고
    • Helical structures of ESCRT-III are disassembled by VPS4
    • 137 Lata, S., et al. Helical structures of ESCRT-III are disassembled by VPS4. Science 321 (2008), 1354–1357.
    • (2008) Science , vol.321 , pp. 1354-1357
    • Lata, S.1
  • 138
    • 68149094429 scopus 로고    scopus 로고
    • Structural basis of Ist1 function and Ist1–Did2 interaction in the multivesicular body pathway and cytokinesis
    • 138 Xiao, J., et al. Structural basis of Ist1 function and Ist1–Did2 interaction in the multivesicular body pathway and cytokinesis. Mol. Biol. Cell 20 (2009), 3514–3524.
    • (2009) Mol. Biol. Cell , vol.20 , pp. 3514-3524
    • Xiao, J.1
  • 139
    • 84988547064 scopus 로고    scopus 로고
    • Structure of cellular ESCRT-III spirals and their relationship to HIV budding
    • 139 Cashikar, A.G., et al. Structure of cellular ESCRT-III spirals and their relationship to HIV budding. Elife, 3, 2014, e02184.
    • (2014) Elife , vol.3 , pp. e02184
    • Cashikar, A.G.1
  • 140
    • 84961671485 scopus 로고    scopus 로고
    • ESCRT filaments as spiral springs
    • 140 Carlson, L.A., et al. ESCRT filaments as spiral springs. Dev. Cell 35 (2015), 397–398.
    • (2015) Dev. Cell , vol.35 , pp. 397-398
    • Carlson, L.A.1
  • 141
    • 84974539481 scopus 로고    scopus 로고
    • Resolving new ultrastructural features of cytokinetic abscission with soft-X-ray cryo-tomography
    • 141 Sherman, S., et al. Resolving new ultrastructural features of cytokinetic abscission with soft-X-ray cryo-tomography. Sci. Rep., 6, 2016, 27629.
    • (2016) Sci. Rep. , vol.6 , pp. 27629
    • Sherman, S.1
  • 142
    • 84987981735 scopus 로고    scopus 로고
    • ESCRT-III and Vps4: a dynamic multipurpose tool for membrane budding and scission
    • Published online February 22, 2016
    • 142 Adell, M.A., et al. ESCRT-III and Vps4: a dynamic multipurpose tool for membrane budding and scission. FEBS J., 2016, 10.1111/febs.13688 Published online February 22, 2016.
    • (2016) FEBS J.
    • Adell, M.A.1
  • 143
    • 84930413153 scopus 로고    scopus 로고
    • Vps4 disassembles an ESCRT-III filament by global unfolding and processive translocation
    • 143 Yang, B., et al. Vps4 disassembles an ESCRT-III filament by global unfolding and processive translocation. Nat. Struct. Mol. Biol. 22 (2015), 492–498.
    • (2015) Nat. Struct. Mol. Biol. , vol.22 , pp. 492-498
    • Yang, B.1
  • 144
    • 79953323443 scopus 로고    scopus 로고
    • Live-cell visualization of dynamics of HIV budding site interactions with an ESCRT component
    • 144 Baumgartel, V., et al. Live-cell visualization of dynamics of HIV budding site interactions with an ESCRT component. Nat. Cell Biol. 13 (2011), 469–474.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 469-474
    • Baumgartel, V.1
  • 145
    • 84892543174 scopus 로고    scopus 로고
    • The oligomeric state of the active Vps4 AAA ATPase
    • 145 Monroe, N., et al. The oligomeric state of the active Vps4 AAA ATPase. J. Mol. Biol. 426 (2014), 510–525.
    • (2014) J. Mol. Biol. , vol.426 , pp. 510-525
    • Monroe, N.1
  • 146
    • 84949267291 scopus 로고    scopus 로고
    • Asymmetric ring structure of Vps4 required for ESCRT-III disassembly
    • 146 Caillat, C., et al. Asymmetric ring structure of Vps4 required for ESCRT-III disassembly. Nat. Commun., 6, 2015, 8781.
    • (2015) Nat. Commun. , vol.6 , pp. 8781
    • Caillat, C.1
  • 147
    • 27144444327 scopus 로고    scopus 로고
    • Structural and mechanistic studies of VPS4 proteins
    • 147 Scott, A., et al. Structural and mechanistic studies of VPS4 proteins. EMBO J. 24 (2005), 3658–3669.
    • (2005) EMBO J. , vol.24 , pp. 3658-3669
    • Scott, A.1
  • 148
    • 77955487325 scopus 로고    scopus 로고
    • Structural role of the Vps4–Vta1 interface in ESCRT-III recycling
    • 148 Yang, D., Hurley, J.H., Structural role of the Vps4–Vta1 interface in ESCRT-III recycling. Structure 18 (2010), 976–984.
    • (2010) Structure , vol.18 , pp. 976-984
    • Yang, D.1    Hurley, J.H.2
  • 149
    • 33644525938 scopus 로고    scopus 로고
    • Recycling of ESCRTs by the AAA-ATPase Vps4 is regulated by a conserved VSL region in Vta1
    • 149 Azmi, I., et al. Recycling of ESCRTs by the AAA-ATPase Vps4 is regulated by a conserved VSL region in Vta1. J. Cell Biol. 172 (2006), 705–717.
    • (2006) J. Cell Biol. , vol.172 , pp. 705-717
    • Azmi, I.1
  • 150
    • 37749048772 scopus 로고    scopus 로고
    • ESCRT-III family members stimulate Vps4 ATPase activity directly or via Vta1
    • 150 Azmi, I.F., et al. ESCRT-III family members stimulate Vps4 ATPase activity directly or via Vta1. Dev. Cell 14 (2008), 50–61.
    • (2008) Dev. Cell , vol.14 , pp. 50-61
    • Azmi, I.F.1
  • 151
    • 84882829097 scopus 로고    scopus 로고
    • Knowing when to cut and run: mechanisms that control cytokinetic abscission
    • 151 Agromayor, M., Martin-Serrano, J., Knowing when to cut and run: mechanisms that control cytokinetic abscission. Trends Cell Biol. 23 (2013), 433–441.
    • (2013) Trends Cell Biol. , vol.23 , pp. 433-441
    • Agromayor, M.1    Martin-Serrano, J.2
  • 152
    • 77950863406 scopus 로고    scopus 로고
    • Molecular mechanism of multivesicular body biogenesis by ESCRT complexes
    • 152 Wollert, T., Hurley, J.H., Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature 464 (2010), 864–869.
    • (2010) Nature , vol.464 , pp. 864-869
    • Wollert, T.1    Hurley, J.H.2
  • 153
    • 67349135343 scopus 로고    scopus 로고
    • ESCRT proteins in physiology and disease
    • 153 Stuffers, S., et al. ESCRT proteins in physiology and disease. Exp. Cell Res. 315 (2009), 1619–1626.
    • (2009) Exp. Cell Res. , vol.315 , pp. 1619-1626
    • Stuffers, S.1
  • 154
    • 84883783979 scopus 로고    scopus 로고
    • Molecular mechanisms of the membrane sculpting ESCRT pathway
    • 154 Henne, W.M., et al. Molecular mechanisms of the membrane sculpting ESCRT pathway. Cold Spring Harb. Perspect. Biol., 5, 2013, a016766.
    • (2013) Cold Spring Harb. Perspect. Biol. , vol.5 , pp. a016766
    • Henne, W.M.1
  • 155
    • 84918508854 scopus 로고    scopus 로고
    • Cytokinetic abscission: molecular mechanisms and temporal control
    • 155 Mierzwa, B., Gerlich, D.W., Cytokinetic abscission: molecular mechanisms and temporal control. Dev. Cell 31 (2014), 525–538.
    • (2014) Dev. Cell , vol.31 , pp. 525-538
    • Mierzwa, B.1    Gerlich, D.W.2
  • 156
    • 79954417888 scopus 로고    scopus 로고
    • Divergent pathways lead to ESCRT-III-catalyzed membrane fission
    • 156 Peel, S., et al. Divergent pathways lead to ESCRT-III-catalyzed membrane fission. Trends Biochem. Sci. 36 (2011), 199–210.
    • (2011) Trends Biochem. Sci. , vol.36 , pp. 199-210
    • Peel, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.