-
1
-
-
0036902646
-
Receptor downregulation and multivesicular-body sorting
-
1 Katzmann, D.J., et al. Receptor downregulation and multivesicular-body sorting. Nat. Rev. Mol. Cell Biol. 3 (2002), 893–905.
-
(2002)
Nat. Rev. Mol. Cell Biol.
, vol.3
, pp. 893-905
-
-
Katzmann, D.J.1
-
3
-
-
34347385894
-
Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery
-
3 Carlton, J.G., Martin-Serrano, J., Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science 316 (2007), 1908–1912.
-
(2007)
Science
, vol.316
, pp. 1908-1912
-
-
Carlton, J.G.1
Martin-Serrano, J.2
-
4
-
-
34948911522
-
Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis
-
4 Morita, E., et al. Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO J. 26 (2007), 4215–4227.
-
(2007)
EMBO J.
, vol.26
, pp. 4215-4227
-
-
Morita, E.1
-
5
-
-
84897624850
-
ESCRT machinery is required for plasma membrane repair
-
5 Jimenez, A.J., et al. ESCRT machinery is required for plasma membrane repair. Science, 343, 2014, 1247136.
-
(2014)
Science
, vol.343
, pp. 1247136
-
-
Jimenez, A.J.1
-
6
-
-
84923086493
-
An ESCRT module is required for neuron pruning
-
6 Loncle, N., et al. An ESCRT module is required for neuron pruning. Sci. Rep., 5, 2015, 8461.
-
(2015)
Sci. Rep.
, vol.5
, pp. 8461
-
-
Loncle, N.1
-
7
-
-
84858230240
-
Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein
-
7 Nabhan, J.F., et al. Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), 4146–4151.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 4146-4151
-
-
Nabhan, J.F.1
-
8
-
-
84916928432
-
Surveillance of nuclear pore complex assembly by ESCRT-III/Vps4
-
8 Webster, B.M., et al. Surveillance of nuclear pore complex assembly by ESCRT-III/Vps4. Cell 159 (2014), 388–401.
-
(2014)
Cell
, vol.159
, pp. 388-401
-
-
Webster, B.M.1
-
9
-
-
84930955595
-
ESCRT-III controls nuclear envelope reformation
-
9 Olmos, Y., et al. ESCRT-III controls nuclear envelope reformation. Nature 522 (2015), 236–239.
-
(2015)
Nature
, vol.522
, pp. 236-239
-
-
Olmos, Y.1
-
10
-
-
84930946081
-
Spastin and ESCRT-III coordinate mitotic spindle disassembly and nuclear envelope sealing
-
10 Vietri, M., et al. Spastin and ESCRT-III coordinate mitotic spindle disassembly and nuclear envelope sealing. Nature 522 (2015), 231–235.
-
(2015)
Nature
, vol.522
, pp. 231-235
-
-
Vietri, M.1
-
11
-
-
84963538020
-
ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death
-
11 Raab, M., et al. ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science 352 (2016), 359–362.
-
(2016)
Science
, vol.352
, pp. 359-362
-
-
Raab, M.1
-
12
-
-
84961613728
-
Nuclear envelope rupture and repair during cancer cell migration
-
12 Denais, C.M., et al. Nuclear envelope rupture and repair during cancer cell migration. Science 352 (2016), 353–358.
-
(2016)
Science
, vol.352
, pp. 353-358
-
-
Denais, C.M.1
-
13
-
-
84968876706
-
ESCRT-III drives the final stages of CUPS maturation for unconventional protein secretion
-
13 Curwin, A.J., et al. ESCRT-III drives the final stages of CUPS maturation for unconventional protein secretion. Elife, 5, 2016, e16299.
-
(2016)
Elife
, vol.5
, pp. e16299
-
-
Curwin, A.J.1
-
14
-
-
79960225411
-
The ESCRT pathway
-
14 Henne, W.M., et al. The ESCRT pathway. Dev. Cell 21 (2011), 77–91.
-
(2011)
Dev. Cell
, vol.21
, pp. 77-91
-
-
Henne, W.M.1
-
16
-
-
84942838662
-
ESCRTs are everywhere
-
16 Hurley, J.H., ESCRTs are everywhere. EMBO J. 34 (2015), 2398–2407.
-
(2015)
EMBO J.
, vol.34
, pp. 2398-2407
-
-
Hurley, J.H.1
-
17
-
-
63649086486
-
The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins
-
17 Raiborg, C., Stenmark, H., The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458 (2009), 445–452.
-
(2009)
Nature
, vol.458
, pp. 445-452
-
-
Raiborg, C.1
Stenmark, H.2
-
18
-
-
84878951746
-
Membrane fission reactions of the mammalian ESCRT pathway
-
18 McCullough, J., et al. Membrane fission reactions of the mammalian ESCRT pathway. Annu. Rev. Biochem. 82 (2013), 663–692.
-
(2013)
Annu. Rev. Biochem.
, vol.82
, pp. 663-692
-
-
McCullough, J.1
-
19
-
-
80052233389
-
Endosome maturation
-
19 Huotari, J., Helenius, A., Endosome maturation. EMBO J. 30 (2011), 3481–3500.
-
(2011)
EMBO J.
, vol.30
, pp. 3481-3500
-
-
Huotari, J.1
Helenius, A.2
-
20
-
-
84901851577
-
The ESCRT machinery: from the plasma membrane to endosomes and back again
-
20 Schuh, A.L., Audhya, A., The ESCRT machinery: from the plasma membrane to endosomes and back again. Crit. Rev. Biochem. Mol. Biol. 49 (2014), 242–261.
-
(2014)
Crit. Rev. Biochem. Mol. Biol.
, vol.49
, pp. 242-261
-
-
Schuh, A.L.1
Audhya, A.2
-
21
-
-
17144377439
-
Human CHMP6, a myristoylated ESCRT-III protein, interacts directly with an ESCRT-II component EAP20 and regulates endosomal cargo sorting
-
21 Yorikawa, C., et al. Human CHMP6, a myristoylated ESCRT-III protein, interacts directly with an ESCRT-II component EAP20 and regulates endosomal cargo sorting. Biochem. J. 387 (2005), 17–26.
-
(2005)
Biochem. J.
, vol.387
, pp. 17-26
-
-
Yorikawa, C.1
-
22
-
-
33745761343
-
The crystal structure of the C-terminal domain of Vps28 reveals a conserved surface required for Vps20 recruitment
-
22 Pineda-Molina, E., et al. The crystal structure of the C-terminal domain of Vps28 reveals a conserved surface required for Vps20 recruitment. Traffic 7 (2006), 1007–1016.
-
(2006)
Traffic
, vol.7
, pp. 1007-1016
-
-
Pineda-Molina, E.1
-
23
-
-
44449097226
-
Integrated structural model and membrane targeting mechanism of the human ESCRT-II complex
-
23 Im, Y.J., Hurley, J.H., Integrated structural model and membrane targeting mechanism of the human ESCRT-II complex. Dev. Cell 14 (2008), 902–913.
-
(2008)
Dev. Cell
, vol.14
, pp. 902-913
-
-
Im, Y.J.1
Hurley, J.H.2
-
24
-
-
84886641339
-
Essential N-terminal insertion motif anchors the ESCRT-III filament during MVB vesicle formation
-
24 Buchkovich, N.J., et al. Essential N-terminal insertion motif anchors the ESCRT-III filament during MVB vesicle formation. Dev. Cell 27 (2013), 201–214.
-
(2013)
Dev. Cell
, vol.27
, pp. 201-214
-
-
Buchkovich, N.J.1
-
25
-
-
62249210955
-
Membrane scission by the ESCRT-III complex
-
25 Wollert, T., et al. Membrane scission by the ESCRT-III complex. Nature 458 (2009), 172–177.
-
(2009)
Nature
, vol.458
, pp. 172-177
-
-
Wollert, T.1
-
26
-
-
84901675911
-
Coordinated binding of Vps4 to ESCRT-III drives membrane neck constriction during MVB vesicle formation
-
26 Adell, M.A., et al. Coordinated binding of Vps4 to ESCRT-III drives membrane neck constriction during MVB vesicle formation. J. Cell Biol. 205 (2014), 33–49.
-
(2014)
J. Cell Biol.
, vol.205
, pp. 33-49
-
-
Adell, M.A.1
-
27
-
-
78951470141
-
Bro1 binding to Snf7 regulates ESCRT-III membrane scission activity in yeast
-
27 Wemmer, M., et al. Bro1 binding to Snf7 regulates ESCRT-III membrane scission activity in yeast. J. Cell Biol. 192 (2011), 295–306.
-
(2011)
J. Cell Biol.
, vol.192
, pp. 295-306
-
-
Wemmer, M.1
-
28
-
-
84988603419
-
Structural basis for activation, assembly and membrane binding of ESCRT-III Snf7 filaments
-
28 Tang, S., et al. Structural basis for activation, assembly and membrane binding of ESCRT-III Snf7 filaments. Elife, 4, 2015, e12548.
-
(2015)
Elife
, vol.4
, pp. e12548
-
-
Tang, S.1
-
29
-
-
84960335655
-
ALIX and ESCRT-I/II function as parallel ESCRT-III recruiters in cytokinetic abscission
-
29 Christ, L., et al. ALIX and ESCRT-I/II function as parallel ESCRT-III recruiters in cytokinetic abscission. J. Cell Biol. 212 (2016), 499–513.
-
(2016)
J. Cell Biol.
, vol.212
, pp. 499-513
-
-
Christ, L.1
-
30
-
-
84870777012
-
ALIX is a Lys63-specific polyubiquitin binding protein that functions in retrovirus budding
-
30 Dowlatshahi, D.P., et al. ALIX is a Lys63-specific polyubiquitin binding protein that functions in retrovirus budding. Dev. Cell 23 (2012), 1247–1254.
-
(2012)
Dev. Cell
, vol.23
, pp. 1247-1254
-
-
Dowlatshahi, D.P.1
-
31
-
-
84878980535
-
The yeast Alix homolog Bro1 functions as a ubiquitin receptor for protein sorting into multivesicular endosomes
-
31 Pashkova, N., et al. The yeast Alix homolog Bro1 functions as a ubiquitin receptor for protein sorting into multivesicular endosomes. Dev. Cell 25 (2013), 520–533.
-
(2013)
Dev. Cell
, vol.25
, pp. 520-533
-
-
Pashkova, N.1
-
32
-
-
84875279930
-
Recruitment of UBPY and ESCRT exchange drive HD-PTP-dependent sorting of EGFR to the MVB
-
32 Ali, N., et al. Recruitment of UBPY and ESCRT exchange drive HD-PTP-dependent sorting of EGFR to the MVB. Curr. Biol. 23 (2013), 453–461.
-
(2013)
Curr. Biol.
, vol.23
, pp. 453-461
-
-
Ali, N.1
-
33
-
-
84935904669
-
WASH and Tsg101/ALIX-dependent diversion of stress-internalized EGFR from the canonical endocytic pathway
-
33 Tomas, A., et al. WASH and Tsg101/ALIX-dependent diversion of stress-internalized EGFR from the canonical endocytic pathway. Nat. Commun., 6, 2015, 7324.
-
(2015)
Nat. Commun.
, vol.6
, pp. 7324
-
-
Tomas, A.1
-
34
-
-
84959387188
-
Structural study of the HD-PTP Bro1 domain in a complex with the core region of STAM2, a subunit of ESCRT-0
-
34 Lee, J., et al. Structural study of the HD-PTP Bro1 domain in a complex with the core region of STAM2, a subunit of ESCRT-0. PloS ONE, 11, 2016, e0149113.
-
(2016)
PloS ONE
, vol.11
, pp. e0149113
-
-
Lee, J.1
-
35
-
-
84969217666
-
ESCRT-III activation by parallel action of ESCRT-I/II and ESCRT-0/Bro1 during MVB biogenesis
-
35 Tang, S., et al. ESCRT-III activation by parallel action of ESCRT-I/II and ESCRT-0/Bro1 during MVB biogenesis. Elife, 5, 2016, e15507.
-
(2016)
Elife
, vol.5
, pp. e15507
-
-
Tang, S.1
-
36
-
-
84942420909
-
A non-canonical ESCRT pathway, including histidine domain phosphotyrosine phosphatase (HD-PTP), is used for down-regulation of virally ubiquitinated MHC class I
-
36 Parkinson, M.D., et al. A non-canonical ESCRT pathway, including histidine domain phosphotyrosine phosphatase (HD-PTP), is used for down-regulation of virally ubiquitinated MHC class I. Biochem. J. 471 (2015), 79–88.
-
(2015)
Biochem. J.
, vol.471
, pp. 79-88
-
-
Parkinson, M.D.1
-
37
-
-
84941258958
-
Histidine-domain-containing protein tyrosine phosphatase regulates platelet-derived growth factor receptor intracellular sorting and degradation
-
37 Ma, H., et al. Histidine-domain-containing protein tyrosine phosphatase regulates platelet-derived growth factor receptor intracellular sorting and degradation. Cell. Signal. 27 (2015), 2209–2219.
-
(2015)
Cell. Signal.
, vol.27
, pp. 2209-2219
-
-
Ma, H.1
-
38
-
-
79952444150
-
SCF(TrCP) acts in endosomal sorting of the GH receptor
-
38 van Kerkhof, P., et al. SCF(TrCP) acts in endosomal sorting of the GH receptor. Exp. Cell Res. 317 (2011), 1071–1082.
-
(2011)
Exp. Cell Res.
, vol.317
, pp. 1071-1082
-
-
van Kerkhof, P.1
-
39
-
-
79952501324
-
Microautophagy of cytosolic proteins by late endosomes
-
39 Sahu, R., et al. Microautophagy of cytosolic proteins by late endosomes. Dev. Cell 20 (2011), 131–139.
-
(2011)
Dev. Cell
, vol.20
, pp. 131-139
-
-
Sahu, R.1
-
40
-
-
69449089915
-
How do ESCRT proteins control autophagy?
-
40 Rusten, T.E., Stenmark, H., How do ESCRT proteins control autophagy?. J. Cell Sci. 122 (2009), 2179–2183.
-
(2009)
J. Cell Sci.
, vol.122
, pp. 2179-2183
-
-
Rusten, T.E.1
Stenmark, H.2
-
41
-
-
84883894715
-
Virus budding and the ESCRT pathway
-
41 Votteler, J., Sundquist, W.I., Virus budding and the ESCRT pathway. Cell Host Microbe 14 (2013), 232–241.
-
(2013)
Cell Host Microbe
, vol.14
, pp. 232-241
-
-
Votteler, J.1
Sundquist, W.I.2
-
42
-
-
0028971135
-
p6Gag is required for particle production from full-length human immunodeficiency virus type 1 molecular clones expressing protease
-
42 Huang, M., et al. p6Gag is required for particle production from full-length human immunodeficiency virus type 1 molecular clones expressing protease. J. Virol. 69 (1995), 6810–6818.
-
(1995)
J. Virol.
, vol.69
, pp. 6810-6818
-
-
Huang, M.1
-
43
-
-
17944363138
-
Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding
-
43 Garrus, J.E., et al. Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107 (2001), 55–65.
-
(2001)
Cell
, vol.107
, pp. 55-65
-
-
Garrus, J.E.1
-
44
-
-
0034940214
-
Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55(Gag)
-
44 VerPlank, L., et al. Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55(Gag). Proc. Natl. Acad. Sci. U.S.A. 98 (2001), 7724–7729.
-
(2001)
Proc. Natl. Acad. Sci. U.S.A.
, vol.98
, pp. 7724-7729
-
-
VerPlank, L.1
-
45
-
-
0030858622
-
Equine infectious anemia virus utilizes a YXXL motif within the late assembly domain of the Gag p9 protein
-
45 Puffer, B.A., et al. Equine infectious anemia virus utilizes a YXXL motif within the late assembly domain of the Gag p9 protein. J. Virol. 71 (1997), 6541–6546.
-
(1997)
J. Virol.
, vol.71
, pp. 6541-6546
-
-
Puffer, B.A.1
-
46
-
-
0141844660
-
AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding
-
46 Strack, B., et al. AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Cell 114 (2003), 689–699.
-
(2003)
Cell
, vol.114
, pp. 689-699
-
-
Strack, B.1
-
47
-
-
0142123069
-
Divergent retroviral late-budding domains recruit vacuolar protein sorting factors by using alternative adaptor proteins
-
47 Martin-Serrano, J., et al. Divergent retroviral late-budding domains recruit vacuolar protein sorting factors by using alternative adaptor proteins. Proc. Natl. Acad. Sci. U.S.A. 100 (2003), 12414–12419.
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 12414-12419
-
-
Martin-Serrano, J.1
-
48
-
-
84885099846
-
ESCRT requirements for EIAV budding
-
48 Sandrin, V., Sundquist, W.I., ESCRT requirements for EIAV budding. Retrovirology, 10, 2013, 104.
-
(2013)
Retrovirology
, vol.10
, pp. 104
-
-
Sandrin, V.1
Sundquist, W.I.2
-
49
-
-
84964309654
-
ESCRT requirements for murine leukemia virus release
-
49 Bartusch, C., Prange, R., ESCRT requirements for murine leukemia virus release. Viruses, 8, 2016, 103.
-
(2016)
Viruses
, vol.8
, pp. 103
-
-
Bartusch, C.1
Prange, R.2
-
50
-
-
79952640255
-
ESCRT-III protein requirements for HIV-1 budding
-
50 Morita, E., et al. ESCRT-III protein requirements for HIV-1 budding. Cell Host Microbe 9 (2011), 235–242.
-
(2011)
Cell Host Microbe
, vol.9
, pp. 235-242
-
-
Morita, E.1
-
51
-
-
84867644422
-
In vitro reconstitution of the ordered assembly of the endosomal sorting complex required for transport at membrane-bound HIV-1 Gag clusters
-
51 Carlson, L.A., Hurley, J.H., In vitro reconstitution of the ordered assembly of the endosomal sorting complex required for transport at membrane-bound HIV-1 Gag clusters. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), 16928–16933.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 16928-16933
-
-
Carlson, L.A.1
Hurley, J.H.2
-
52
-
-
84872617312
-
ESCRT-III CHMP2A and CHMP3 form variable helical polymers in vitro and act synergistically during HIV-1 budding
-
52 Effantin, G., et al. ESCRT-III CHMP2A and CHMP3 form variable helical polymers in vitro and act synergistically during HIV-1 budding. Cell. Microbiol. 15 (2013), 213–226.
-
(2013)
Cell. Microbiol.
, vol.15
, pp. 213-226
-
-
Effantin, G.1
-
53
-
-
33748943870
-
Human ESCRT-II complex and its role in human immunodeficiency virus type 1 release
-
53 Langelier, C., et al. Human ESCRT-II complex and its role in human immunodeficiency virus type 1 release. J. Virol. 80 (2006), 9465–9480.
-
(2006)
J. Virol.
, vol.80
, pp. 9465-9480
-
-
Langelier, C.1
-
54
-
-
79953296191
-
Dynamics of ESCRT protein recruitment during retroviral assembly
-
54 Jouvenet, N., et al. Dynamics of ESCRT protein recruitment during retroviral assembly. Nat. Cell Biol. 13 (2011), 394–401.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 394-401
-
-
Jouvenet, N.1
-
55
-
-
84938942146
-
Evidence that the endosomal sorting complex required for transport-II (ESCRT-II) is required for efficient human immunodeficiency virus-1 (HIV-1) production
-
55 Meng, B., et al. Evidence that the endosomal sorting complex required for transport-II (ESCRT-II) is required for efficient human immunodeficiency virus-1 (HIV-1) production. Retrovirology, 12, 2015, 72.
-
(2015)
Retrovirology
, vol.12
, pp. 72
-
-
Meng, B.1
-
56
-
-
33847355934
-
Structural and biochemical studies of ALIX/AIP1 and its role in retrovirus budding
-
56 Fisher, R.D., et al. Structural and biochemical studies of ALIX/AIP1 and its role in retrovirus budding. Cell 128 (2007), 841–852.
-
(2007)
Cell
, vol.128
, pp. 841-852
-
-
Fisher, R.D.1
-
57
-
-
34249943479
-
Potent rescue of human immunodeficiency virus type 1 late domain mutants by ALIX/AIP1 depends on its CHMP4 binding site
-
57 Usami, Y., et al. Potent rescue of human immunodeficiency virus type 1 late domain mutants by ALIX/AIP1 depends on its CHMP4 binding site. J. Virol. 81 (2007), 6614–6622.
-
(2007)
J. Virol.
, vol.81
, pp. 6614-6622
-
-
Usami, Y.1
-
58
-
-
48749119362
-
Differential requirements for Alix and ESCRT-III in cytokinesis and HIV-1 release
-
58 Carlton, J.G., et al. Differential requirements for Alix and ESCRT-III in cytokinesis and HIV-1 release. Proc. Natl. Acad. Sci. U.S.A. 105 (2008), 10541–10546.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 10541-10546
-
-
Carlton, J.G.1
-
59
-
-
77955618368
-
Human ESCRT-III and VPS4 proteins are required for centrosome and spindle maintenance
-
59 Morita, E., et al. Human ESCRT-III and VPS4 proteins are required for centrosome and spindle maintenance. Proc. Natl. Acad. Sci. U.S.A. 107 (2010), 12889–12894.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 12889-12894
-
-
Morita, E.1
-
60
-
-
79953161074
-
Cortical constriction during abscission involves helices of ESCRT-III-dependent filaments
-
60 Guizetti, J., et al. Cortical constriction during abscission involves helices of ESCRT-III-dependent filaments. Science 331 (2011), 1616–1620.
-
(2011)
Science
, vol.331
, pp. 1616-1620
-
-
Guizetti, J.1
-
61
-
-
84911406750
-
Inhibition of ESCRT-II–CHMP6 interactions impedes cytokinetic abscission and leads to cell death
-
61 Goliand, I., et al. Inhibition of ESCRT-II–CHMP6 interactions impedes cytokinetic abscission and leads to cell death. Mol. Biol. Cell 25 (2014), 3740–3748.
-
(2014)
Mol. Biol. Cell
, vol.25
, pp. 3740-3748
-
-
Goliand, I.1
-
62
-
-
78349285587
-
Plk1 negatively regulates Cep55 recruitment to the midbody to ensure orderly abscission
-
62 Bastos, R.N., Barr, F.A., Plk1 negatively regulates Cep55 recruitment to the midbody to ensure orderly abscission. J. Cell Biol. 191 (2010), 751–760.
-
(2010)
J. Cell Biol.
, vol.191
, pp. 751-760
-
-
Bastos, R.N.1
Barr, F.A.2
-
63
-
-
54949088988
-
Midbody targeting of the ESCRT machinery by a noncanonical coiled coil in CEP55
-
63 Lee, H.H., et al. Midbody targeting of the ESCRT machinery by a noncanonical coiled coil in CEP55. Science 322 (2008), 576–580.
-
(2008)
Science
, vol.322
, pp. 576-580
-
-
Lee, H.H.1
-
64
-
-
79953225554
-
Dynamics of endosomal sorting complex required for transport (ESCRT) machinery during cytokinesis and its role in abscission
-
64 Elia, N., et al. Dynamics of endosomal sorting complex required for transport (ESCRT) machinery during cytokinesis and its role in abscission. Proc. Natl. Acad. Sci. U.S.A. 108 (2011), 4846–4851.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 4846-4851
-
-
Elia, N.1
-
65
-
-
85007081450
-
Phosphorylation-dependent activation of the ESCRT function of ALIX in cytokinetic abscission and retroviral budding
-
65 Sun, S., et al. Phosphorylation-dependent activation of the ESCRT function of ALIX in cytokinetic abscission and retroviral budding. Dev. Cell, 37, 2016, 581.
-
(2016)
Dev. Cell
, vol.37
, pp. 581
-
-
Sun, S.1
-
66
-
-
84867083334
-
FIP3-endosome-dependent formation of the secondary ingression mediates ESCRT-III recruitment during cytokinesis
-
66 Schiel, J.A., et al. FIP3-endosome-dependent formation of the secondary ingression mediates ESCRT-III recruitment during cytokinesis. Nat. Cell Biol. 14 (2012), 1068–1078.
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 1068-1078
-
-
Schiel, J.A.1
-
67
-
-
57149085245
-
Structural basis for midbody targeting of spastin by the ESCRT-III protein CHMP1B
-
67 Yang, D., et al. Structural basis for midbody targeting of spastin by the ESCRT-III protein CHMP1B. Nat. Struct. Mol. Biol. 15 (2008), 1278–1286.
-
(2008)
Nat. Struct. Mol. Biol.
, vol.15
, pp. 1278-1286
-
-
Yang, D.1
-
68
-
-
58149181351
-
Spastin couples microtubule severing to membrane traffic in completion of cytokinesis and secretion
-
68 Connell, J.W., et al. Spastin couples microtubule severing to membrane traffic in completion of cytokinesis and secretion. Traffic 10 (2009), 42–56.
-
(2009)
Traffic
, vol.10
, pp. 42-56
-
-
Connell, J.W.1
-
69
-
-
84971577041
-
Integrin signaling via FAK–Src controls cytokinetic abscission by decelerating PLK1 degradation and subsequent recruitment of CEP55 at the midbody
-
69 Kamranvar, S.A., et al. Integrin signaling via FAK–Src controls cytokinetic abscission by decelerating PLK1 degradation and subsequent recruitment of CEP55 at the midbody. Oncotarget 7 (2016), 30820–30830.
-
(2016)
Oncotarget
, vol.7
, pp. 30820-30830
-
-
Kamranvar, S.A.1
-
70
-
-
84875519176
-
ESCRT-III assembly and cytokinetic abscission are induced by tension release in the intercellular bridge
-
70 Lafaurie-Janvore, J., et al. ESCRT-III assembly and cytokinetic abscission are induced by tension release in the intercellular bridge. Science 339 (2013), 1625–1629.
-
(2013)
Science
, vol.339
, pp. 1625-1629
-
-
Lafaurie-Janvore, J.1
-
71
-
-
78649685697
-
Defects in nuclear pore assembly lead to activation of an Aurora B-mediated abscission checkpoint
-
71 Mackay, D.R., et al. Defects in nuclear pore assembly lead to activation of an Aurora B-mediated abscission checkpoint. J. Cell Biol. 191 (2010), 923–931.
-
(2010)
J. Cell Biol.
, vol.191
, pp. 923-931
-
-
Mackay, D.R.1
-
72
-
-
59049101302
-
Aurora B-mediated abscission checkpoint protects against tetraploidization
-
72 Steigemann, P., et al. Aurora B-mediated abscission checkpoint protects against tetraploidization. Cell 136 (2009), 473–484.
-
(2009)
Cell
, vol.136
, pp. 473-484
-
-
Steigemann, P.1
-
73
-
-
84930631701
-
ULK3 regulates cytokinetic abscission by phosphorylating ESCRT-III proteins
-
73 Caballe, A., et al. ULK3 regulates cytokinetic abscission by phosphorylating ESCRT-III proteins. Elife, 4, 2015, e06547.
-
(2015)
Elife
, vol.4
, pp. e06547
-
-
Caballe, A.1
-
74
-
-
84964624211
-
Clks 1, 2 and 4 prevent chromatin breakage by regulating the Aurora B-dependent abscission checkpoint
-
74 Petsalaki, E., Zachos, G., Clks 1, 2 and 4 prevent chromatin breakage by regulating the Aurora B-dependent abscission checkpoint. Nat. Commun., 7, 2016, 11451.
-
(2016)
Nat. Commun.
, vol.7
, pp. 11451
-
-
Petsalaki, E.1
Zachos, G.2
-
75
-
-
33645968660
-
The NoCut pathway links completion of cytokinesis to spindle midzone function to prevent chromosome breakage
-
75 Norden, C., et al. The NoCut pathway links completion of cytokinesis to spindle midzone function to prevent chromosome breakage. Cell 125 (2006), 85–98.
-
(2006)
Cell
, vol.125
, pp. 85-98
-
-
Norden, C.1
-
76
-
-
65249089181
-
The nucleoporin Nup153 has separable roles in both early mitotic progression and the resolution of mitosis
-
76 Mackay, D.R., et al. The nucleoporin Nup153 has separable roles in both early mitotic progression and the resolution of mitosis. Mol. Biol. Cell 20 (2009), 1652–1660.
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 1652-1660
-
-
Mackay, D.R.1
-
77
-
-
84930899667
-
ATR and a Chk1–Aurora B pathway coordinate postmitotic genome surveillance with cytokinetic abscission
-
77 Mackay, D.R., Ullman, K.S., ATR and a Chk1–Aurora B pathway coordinate postmitotic genome surveillance with cytokinetic abscission. Mol. Biol. Cell 26 (2015), 2217–2226.
-
(2015)
Mol. Biol. Cell
, vol.26
, pp. 2217-2226
-
-
Mackay, D.R.1
Ullman, K.S.2
-
78
-
-
84878524196
-
Condensin and the spindle midzone prevent cytokinesis failure induced by chromatin bridges in C. elegans embryos
-
78 Bembenek, J.N., et al. Condensin and the spindle midzone prevent cytokinesis failure induced by chromatin bridges in C. elegans embryos. Curr. Biol. 23 (2013), 937–946.
-
(2013)
Curr. Biol.
, vol.23
, pp. 937-946
-
-
Bembenek, J.N.1
-
79
-
-
84859630113
-
ESCRT-III governs the Aurora B-mediated abscission checkpoint through CHMP4C
-
79 Carlton, J.G., et al. ESCRT-III governs the Aurora B-mediated abscission checkpoint through CHMP4C. Science 336 (2012), 220–225.
-
(2012)
Science
, vol.336
, pp. 220-225
-
-
Carlton, J.G.1
-
80
-
-
84864212914
-
The chromosomal passenger complex controls the function of endosomal sorting complex required for transport-III Snf7 proteins during cytokinesis
-
80 Capalbo, L., et al. The chromosomal passenger complex controls the function of endosomal sorting complex required for transport-III Snf7 proteins during cytokinesis. Open Biol., 2, 2012, 120070.
-
(2012)
Open Biol.
, vol.2
, pp. 120070
-
-
Capalbo, L.1
-
81
-
-
84901841072
-
ANCHR mediates Aurora-B-dependent abscission checkpoint control through retention of VPS4
-
81 Thoresen, S.B., et al. ANCHR mediates Aurora-B-dependent abscission checkpoint control through retention of VPS4. Nat. Cell Biol. 16 (2014), 550–560.
-
(2014)
Nat. Cell Biol.
, vol.16
, pp. 550-560
-
-
Thoresen, S.B.1
-
82
-
-
39449086176
-
Ist1 regulates Vps4 localization and assembly
-
82 Dimaano, C., et al. Ist1 regulates Vps4 localization and assembly. Mol. Biol. Cell 19 (2008), 465–474.
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 465-474
-
-
Dimaano, C.1
-
83
-
-
65249163426
-
Biochemical analyses of human IST1 and its function in cytokinesis
-
83 Bajorek, M., et al. Biochemical analyses of human IST1 and its function in cytokinesis. Mol. Biol. Cell 20 (2009), 1360–1373.
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 1360-1373
-
-
Bajorek, M.1
-
84
-
-
84949663759
-
Conformational changes in the endosomal sorting complex required for the transport III subunit Ist1 lead to distinct modes of ATPase Vps4 regulation
-
84 Tan, J., et al. Conformational changes in the endosomal sorting complex required for the transport III subunit Ist1 lead to distinct modes of ATPase Vps4 regulation. J. Biol. Chem. 290 (2015), 30053–30065.
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 30053-30065
-
-
Tan, J.1
-
85
-
-
84925729200
-
Distinct mechanisms of recognizing endosomal sorting complex required for transport III (ESCRT-III) protein IST1 by different microtubule interacting and trafficking (MIT) domains
-
85 Guo, E.Z., Xu, Z., Distinct mechanisms of recognizing endosomal sorting complex required for transport III (ESCRT-III) protein IST1 by different microtubule interacting and trafficking (MIT) domains. J. Biol. Chem. 290 (2015), 8396–8408.
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 8396-8408
-
-
Guo, E.Z.1
Xu, Z.2
-
86
-
-
64049116968
-
A mechanism for chromosome segregation sensing by the NoCut checkpoint
-
86 Mendoza, M., et al. A mechanism for chromosome segregation sensing by the NoCut checkpoint. Nat. Cell Biol. 11 (2009), 477–483.
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 477-483
-
-
Mendoza, M.1
-
87
-
-
84890458696
-
Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles
-
87 Colombo, M., et al. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J. Cell Sci. 126 (2013), 5553–5565.
-
(2013)
J. Cell Sci.
, vol.126
, pp. 5553-5565
-
-
Colombo, M.1
-
88
-
-
84928927712
-
Resolving sorting mechanisms into exosomes
-
88 Stoorvogel, W., Resolving sorting mechanisms into exosomes. Cell Res. 25 (2015), 531–532.
-
(2015)
Cell Res.
, vol.25
, pp. 531-532
-
-
Stoorvogel, W.1
-
89
-
-
84950995197
-
Oligomerization and endocytosis of Hedgehog is necessary for its efficient exovesicular secretion
-
89 Parchure, A., et al. Oligomerization and endocytosis of Hedgehog is necessary for its efficient exovesicular secretion. Mol. Biol. Cell 26 (2015), 4700–4717.
-
(2015)
Mol. Biol. Cell
, vol.26
, pp. 4700-4717
-
-
Parchure, A.1
-
90
-
-
84922277350
-
The ESCRT machinery regulates the secretion and long-range activity of Hedgehog
-
90 Matusek, T., et al. The ESCRT machinery regulates the secretion and long-range activity of Hedgehog. Nature 516 (2014), 99–103.
-
(2014)
Nature
, vol.516
, pp. 99-103
-
-
Matusek, T.1
-
91
-
-
17644402459
-
Transduction of receptor signals by beta-arrestins
-
91 Lefkowitz, R.J., Shenoy, S.K., Transduction of receptor signals by beta-arrestins. Science 308 (2005), 512–517.
-
(2005)
Science
, vol.308
, pp. 512-517
-
-
Lefkowitz, R.J.1
Shenoy, S.K.2
-
92
-
-
55549102963
-
Arrestin-related ubiquitin-ligase adaptors regulate endocytosis and protein turnover at the cell surface
-
92 Lin, C.H., et al. Arrestin-related ubiquitin-ligase adaptors regulate endocytosis and protein turnover at the cell surface. Cell 135 (2008), 714–725.
-
(2008)
Cell
, vol.135
, pp. 714-725
-
-
Lin, C.H.1
-
93
-
-
80054079071
-
Assembly and disassembly of the ESCRT-III membrane scission complex
-
93 Adell, M.A., Teis, D., Assembly and disassembly of the ESCRT-III membrane scission complex. FEBS Lett. 585 (2011), 3191–3196.
-
(2011)
FEBS Lett.
, vol.585
, pp. 3191-3196
-
-
Adell, M.A.1
Teis, D.2
-
94
-
-
77954626403
-
Arrestin-2 interacts with the endosomal sorting complex required for transport machinery to modulate endosomal sorting of CXCR4
-
94 Malik, R., Marchese, A., Arrestin-2 interacts with the endosomal sorting complex required for transport machinery to modulate endosomal sorting of CXCR4. Mol. Biol. Cell 21 (2010), 2529–2541.
-
(2010)
Mol. Biol. Cell
, vol.21
, pp. 2529-2541
-
-
Malik, R.1
Marchese, A.2
-
95
-
-
79952588626
-
Multiple interactions between the ESCRT machinery and arrestin-related proteins: implications for PPXY-dependent budding
-
95 Rauch, S., Martin-Serrano, J., Multiple interactions between the ESCRT machinery and arrestin-related proteins: implications for PPXY-dependent budding. J. Virol. 85 (2011), 3546–3556.
-
(2011)
J. Virol.
, vol.85
, pp. 3546-3556
-
-
Rauch, S.1
Martin-Serrano, J.2
-
96
-
-
84895891752
-
Polarized release of T-cell-receptor-enriched microvesicles at the immunological synapse
-
96 Choudhuri, K., et al. Polarized release of T-cell-receptor-enriched microvesicles at the immunological synapse. Nature 507 (2014), 118–123.
-
(2014)
Nature
, vol.507
, pp. 118-123
-
-
Choudhuri, K.1
-
97
-
-
84955292894
-
Translocation of interleukin-1beta into a vesicle intermediate in autophagy-mediated secretion
-
97 Zhang, M., et al. Translocation of interleukin-1beta into a vesicle intermediate in autophagy-mediated secretion. Elife, 4, 2015, e11205.
-
(2015)
Elife
, vol.4
, pp. e11205
-
-
Zhang, M.1
-
98
-
-
84923820273
-
Damage control: cellular mechanisms of plasma membrane repair
-
98 Andrews, N.W., et al. Damage control: cellular mechanisms of plasma membrane repair. Trends Cell Biol. 24 (2014), 734–742.
-
(2014)
Trends Cell Biol.
, vol.24
, pp. 734-742
-
-
Andrews, N.W.1
-
99
-
-
84964312696
-
2+-triggered ESCRT assembly and regulation of cell membrane repair
-
2+-triggered ESCRT assembly and regulation of cell membrane repair. Nat. Commun., 5, 2014, 5646.
-
(2014)
Nat. Commun.
, vol.5
, pp. 5646
-
-
Scheffer, L.L.1
-
100
-
-
84878368479
-
Viral infection controlled by a calcium-dependent lipid-binding module in ALIX
-
100 Bissig, C., et al. Viral infection controlled by a calcium-dependent lipid-binding module in ALIX. Dev. Cell 25 (2013), 364–373.
-
(2013)
Dev. Cell
, vol.25
, pp. 364-373
-
-
Bissig, C.1
-
101
-
-
77953576191
-
Exocytosis of acid sphingomyelinase by wounded cells promotes endocytosis and plasma membrane repair
-
101 Tam, C., et al. Exocytosis of acid sphingomyelinase by wounded cells promotes endocytosis and plasma membrane repair. J. Cell Biol. 189 (2010), 1027–1038.
-
(2010)
J. Cell Biol.
, vol.189
, pp. 1027-1038
-
-
Tam, C.1
-
102
-
-
84907322903
-
Endocytic pathways downregulate the L1-type cell adhesion molecule neuroglian to promote dendrite pruning in Drosophila
-
102 Zhang, H., et al. Endocytic pathways downregulate the L1-type cell adhesion molecule neuroglian to promote dendrite pruning in Drosophila. Dev. Cell 30 (2014), 463–478.
-
(2014)
Dev. Cell
, vol.30
, pp. 463-478
-
-
Zhang, H.1
-
103
-
-
84921268569
-
The PI3 K class III complex promotes axon pruning by downregulating a Ptc-derived signal via endosome-lysosomal degradation
-
103 Issman-Zecharya, N., Schuldiner, O., The PI3 K class III complex promotes axon pruning by downregulating a Ptc-derived signal via endosome-lysosomal degradation. Dev. Cell 31 (2014), 461–473.
-
(2014)
Dev. Cell
, vol.31
, pp. 461-473
-
-
Issman-Zecharya, N.1
Schuldiner, O.2
-
104
-
-
84945188896
-
ESCRTs breach the nuclear border
-
104 Webster, B.M., Lusk, C.P., ESCRTs breach the nuclear border. Nucleus 6 (2015), 197–202.
-
(2015)
Nucleus
, vol.6
, pp. 197-202
-
-
Webster, B.M.1
Lusk, C.P.2
-
105
-
-
84954482980
-
Border safety: quality control at the nuclear envelope
-
105 Webster, B.M., Lusk, C.P., Border safety: quality control at the nuclear envelope. Trends Cell Biol. 26 (2016), 29–39.
-
(2016)
Trends Cell Biol.
, vol.26
, pp. 29-39
-
-
Webster, B.M.1
Lusk, C.P.2
-
106
-
-
84866920100
-
The ESCRT machinery is recruited by the viral BFRF1 protein to the nucleus-associated membrane for the maturation of Epstein–Barr Virus
-
106 Lee, C.P., et al. The ESCRT machinery is recruited by the viral BFRF1 protein to the nucleus-associated membrane for the maturation of Epstein–Barr Virus. PLoS Pathog., 8, 2012, e1002904.
-
(2012)
PLoS Pathog.
, vol.8
, pp. e1002904
-
-
Lee, C.P.1
-
107
-
-
33646863279
-
Structural basis for budding by the ESCRT-III factor CHMP3
-
107 Muziol, T., et al. Structural basis for budding by the ESCRT-III factor CHMP3. Dev. Cell 10 (2006), 821–830.
-
(2006)
Dev. Cell
, vol.10
, pp. 821-830
-
-
Muziol, T.1
-
108
-
-
50849096722
-
Structure and disassembly of filaments formed by the ESCRT-III subunit Vps24
-
108 Ghazi-Tabatabai, S., et al. Structure and disassembly of filaments formed by the ESCRT-III subunit Vps24. Structure 16 (2008), 1345–1356.
-
(2008)
Structure
, vol.16
, pp. 1345-1356
-
-
Ghazi-Tabatabai, S.1
-
109
-
-
84907081816
-
Structural analysis and modeling reveals new mechanisms governing ESCRT-III spiral filament assembly
-
109 Shen, Q.T., et al. Structural analysis and modeling reveals new mechanisms governing ESCRT-III spiral filament assembly. J. Cell Biol. 206 (2014), 763–777.
-
(2014)
J. Cell Biol.
, vol.206
, pp. 763-777
-
-
Shen, Q.T.1
-
110
-
-
67650312119
-
Structural basis for ESCRT-III protein autoinhibition
-
110 Bajorek, M., et al. Structural basis for ESCRT-III protein autoinhibition. Nat. Struct. Mol. Biol. 16 (2009), 754–762.
-
(2009)
Nat. Struct. Mol. Biol.
, vol.16
, pp. 754-762
-
-
Bajorek, M.1
-
111
-
-
46049099346
-
Two distinct modes of ESCRT-III recognition are required for VPS4 functions in lysosomal protein targeting and HIV-1 budding
-
111 Kieffer, C., et al. Two distinct modes of ESCRT-III recognition are required for VPS4 functions in lysosomal protein targeting and HIV-1 budding. Dev. Cell 15 (2008), 62–73.
-
(2008)
Dev. Cell
, vol.15
, pp. 62-73
-
-
Kieffer, C.1
-
112
-
-
35148900389
-
ESCRT-III recognition by VPS4 ATPases
-
112 Stuchell-Brereton, M.D., et al. ESCRT-III recognition by VPS4 ATPases. Nature 449 (2007), 740–744.
-
(2007)
Nature
, vol.449
, pp. 740-744
-
-
Stuchell-Brereton, M.D.1
-
113
-
-
35148831808
-
Structural basis for selective recognition of ESCRT-III by the AAA ATPase Vps4
-
113 Obita, T., et al. Structural basis for selective recognition of ESCRT-III by the AAA ATPase Vps4. Nature 449 (2007), 735–739.
-
(2007)
Nature
, vol.449
, pp. 735-739
-
-
Obita, T.1
-
114
-
-
84871586331
-
Interactions of the human LIP5 regulatory protein with endosomal sorting complexes required for transport
-
114 Skalicky, J.J., et al. Interactions of the human LIP5 regulatory protein with endosomal sorting complexes required for transport. J. Biol. Chem. 287 (2012), 43910–43926.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 43910-43926
-
-
Skalicky, J.J.1
-
115
-
-
84869213191
-
MITD1 is recruited to midbodies by ESCRT-III and participates in cytokinesis
-
115 Lee, S., et al. MITD1 is recruited to midbodies by ESCRT-III and participates in cytokinesis. Mol. Biol. Cell 23 (2012), 4347–4361.
-
(2012)
Mol. Biol. Cell
, vol.23
, pp. 4347-4361
-
-
Lee, S.1
-
116
-
-
84867903861
-
ESCRT-III binding protein MITD1 is involved in cytokinesis and has an unanticipated PLD fold that binds membranes
-
116 Hadders, M.A., et al. ESCRT-III binding protein MITD1 is involved in cytokinesis and has an unanticipated PLD fold that binds membranes. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), 17424–17429.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 17424-17429
-
-
Hadders, M.A.1
-
117
-
-
35648973707
-
The MIT domain of UBPY constitutes a CHMP binding and endosomal localization signal required for efficient epidermal growth factor receptor degradation
-
117 Row, P.E., et al. The MIT domain of UBPY constitutes a CHMP binding and endosomal localization signal required for efficient epidermal growth factor receptor degradation. J. Biol. Chem. 282 (2007), 30929–30937.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 30929-30937
-
-
Row, P.E.1
-
118
-
-
45549101132
-
ALIX–CHMP4 interactions in the human ESCRT pathway
-
118 McCullough, J., et al. ALIX–CHMP4 interactions in the human ESCRT pathway. Proc. Natl. Acad. Sci. U.S.A. 105 (2008), 7687–7691.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 7687-7691
-
-
McCullough, J.1
-
119
-
-
34447527768
-
Structure/function analysis of four core ESCRT-III proteins reveals common regulatory role for extreme C-terminal domain
-
119 Shim, S., et al. Structure/function analysis of four core ESCRT-III proteins reveals common regulatory role for extreme C-terminal domain. Traffic 8 (2007), 1068–1079.
-
(2007)
Traffic
, vol.8
, pp. 1068-1079
-
-
Shim, S.1
-
120
-
-
84963956934
-
Structural fine-tuning of MIT-interacting motif 2 (MIM2) and allosteric regulation of ESCRT-III by Vps4 in yeast
-
120 Kojima, R., et al. Structural fine-tuning of MIT-interacting motif 2 (MIM2) and allosteric regulation of ESCRT-III by Vps4 in yeast. J. Mol. Biol. 428 (2016), 2392–2404.
-
(2016)
J. Mol. Biol.
, vol.428
, pp. 2392-2404
-
-
Kojima, R.1
-
121
-
-
46049118283
-
Novel interactions of ESCRT-III with LIP5 and VPS4 and their implications for ESCRT-III disassembly
-
121 Shim, S., et al. Novel interactions of ESCRT-III with LIP5 and VPS4 and their implications for ESCRT-III disassembly. Mol. Biol. Cell 19 (2008), 2661–2672.
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 2661-2672
-
-
Shim, S.1
-
122
-
-
16844375707
-
Interaction of the mammalian endosomal sorting complex required for transport (ESCRT) III protein hSnf7-1 with itself, membranes, and the AAA + ATPase SKD1
-
122 Lin, Y., et al. Interaction of the mammalian endosomal sorting complex required for transport (ESCRT) III protein hSnf7-1 with itself, membranes, and the AAA + ATPase SKD1. J. Biol. Chem. 280 (2005), 12799–12809.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 12799-12809
-
-
Lin, Y.1
-
123
-
-
84950271437
-
Structure and membrane remodeling activity of ESCRT-III helical polymers
-
123 McCullough, J., et al. Structure and membrane remodeling activity of ESCRT-III helical polymers. Science 350 (2015), 1548–1551.
-
(2015)
Science
, vol.350
, pp. 1548-1551
-
-
McCullough, J.1
-
124
-
-
84989824949
-
Electrostatic interactions between elongated monomers drive filamentation of Drosophila Shrub, a metazoan ESCRT-III protein
-
124 McMillan, B.J., et al. Electrostatic interactions between elongated monomers drive filamentation of Drosophila Shrub, a metazoan ESCRT-III protein. Cell Rep. 16 (2016), 1211–1217.
-
(2016)
Cell Rep.
, vol.16
, pp. 1211-1217
-
-
McMillan, B.J.1
-
125
-
-
84867548612
-
The endosomal sorting complex ESCRT-II mediates the assembly and architecture of ESCRT-III helices
-
125 Henne, W.M., et al. The endosomal sorting complex ESCRT-II mediates the assembly and architecture of ESCRT-III helices. Cell 151 (2012), 356–371.
-
(2012)
Cell
, vol.151
, pp. 356-371
-
-
Henne, W.M.1
-
126
-
-
5044245523
-
ESCRT-II, an endosome-associated complex required for protein sorting: crystal structure and interactions with ESCRT-III and membranes
-
126 Teo, H., et al. ESCRT-II, an endosome-associated complex required for protein sorting: crystal structure and interactions with ESCRT-III and membranes. Dev. Cell 7 (2004), 559–569.
-
(2004)
Dev. Cell
, vol.7
, pp. 559-569
-
-
Teo, H.1
-
127
-
-
58149103425
-
Functional reconstitution of ESCRT-III assembly and disassembly
-
127 Saksena, S., et al. Functional reconstitution of ESCRT-III assembly and disassembly. Cell 136 (2009), 97–109.
-
(2009)
Cell
, vol.136
, pp. 97-109
-
-
Saksena, S.1
-
128
-
-
77649335931
-
ESCRT-II coordinates the assembly of ESCRT-III filaments for cargo sorting and multivesicular body vesicle formation
-
128 Teis, D., et al. ESCRT-II coordinates the assembly of ESCRT-III filaments for cargo sorting and multivesicular body vesicle formation. EMBO J. 29 (2010), 871–883.
-
(2010)
EMBO J.
, vol.29
, pp. 871-883
-
-
Teis, D.1
-
129
-
-
80053206906
-
Association of the endosomal sorting complex ESCRT-II with the Vps20 subunit of ESCRT-III generates a curvature-sensitive complex capable of nucleating ESCRT-III filaments
-
129 Fyfe, I., et al. Association of the endosomal sorting complex ESCRT-II with the Vps20 subunit of ESCRT-III generates a curvature-sensitive complex capable of nucleating ESCRT-III filaments. J. Biol. Chem. 286 (2011), 34262–34270.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 34262-34270
-
-
Fyfe, I.1
-
130
-
-
68449095867
-
Structure and function of the ESCRT-II-III interface in multivesicular body biogenesis
-
130 Im, Y.J., et al. Structure and function of the ESCRT-II-III interface in multivesicular body biogenesis. Dev. Cell 17 (2009), 234–243.
-
(2009)
Dev. Cell
, vol.17
, pp. 234-243
-
-
Im, Y.J.1
-
131
-
-
84952690378
-
Negative membrane curvature catalyzes nucleation of endosomal sorting complex required for transport (ESCRT)-III assembly
-
131 Lee, I.H., et al. Negative membrane curvature catalyzes nucleation of endosomal sorting complex required for transport (ESCRT)-III assembly. Proc. Natl. Acad. Sci. U.S.A., 2015.
-
(2015)
Proc. Natl. Acad. Sci. U.S.A.
-
-
Lee, I.H.1
-
132
-
-
66749147856
-
A crescent-shaped ALIX dimer targets ESCRT-III CHMP4 filaments
-
132 Pires, R., et al. A crescent-shaped ALIX dimer targets ESCRT-III CHMP4 filaments. Structure 17 (2009), 843–856.
-
(2009)
Structure
, vol.17
, pp. 843-856
-
-
Pires, R.1
-
133
-
-
84957818381
-
Evidence for a nonendosomal function of the Saccharomyces cerevisiae ESCRT-III-like protein Chm7
-
133 Bauer, I., et al. Evidence for a nonendosomal function of the Saccharomyces cerevisiae ESCRT-III-like protein Chm7. Genetics 201 (2015), 1439–1452.
-
(2015)
Genetics
, vol.201
, pp. 1439-1452
-
-
Bauer, I.1
-
134
-
-
38749152820
-
Plasma membrane deformation by circular arrays of ESCRT-III protein filaments
-
134 Hanson, P.I., et al. Plasma membrane deformation by circular arrays of ESCRT-III protein filaments. J. Cell Biol. 180 (2008), 389–402.
-
(2008)
J. Cell Biol.
, vol.180
, pp. 389-402
-
-
Hanson, P.I.1
-
135
-
-
84946141973
-
Relaxation of loaded ESCRT-III spiral springs drives membrane deformation
-
135 Chiaruttini, N., et al. Relaxation of loaded ESCRT-III spiral springs drives membrane deformation. Cell 163 (2015), 866–879.
-
(2015)
Cell
, vol.163
, pp. 866-879
-
-
Chiaruttini, N.1
-
136
-
-
53249131094
-
Ordered assembly of the ESCRT-III complex on endosomes is required to sequester cargo during MVB formation
-
136 Teis, D., et al. Ordered assembly of the ESCRT-III complex on endosomes is required to sequester cargo during MVB formation. Dev. Cell 15 (2008), 578–589.
-
(2008)
Dev. Cell
, vol.15
, pp. 578-589
-
-
Teis, D.1
-
137
-
-
51149106799
-
Helical structures of ESCRT-III are disassembled by VPS4
-
137 Lata, S., et al. Helical structures of ESCRT-III are disassembled by VPS4. Science 321 (2008), 1354–1357.
-
(2008)
Science
, vol.321
, pp. 1354-1357
-
-
Lata, S.1
-
138
-
-
68149094429
-
Structural basis of Ist1 function and Ist1–Did2 interaction in the multivesicular body pathway and cytokinesis
-
138 Xiao, J., et al. Structural basis of Ist1 function and Ist1–Did2 interaction in the multivesicular body pathway and cytokinesis. Mol. Biol. Cell 20 (2009), 3514–3524.
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 3514-3524
-
-
Xiao, J.1
-
139
-
-
84988547064
-
Structure of cellular ESCRT-III spirals and their relationship to HIV budding
-
139 Cashikar, A.G., et al. Structure of cellular ESCRT-III spirals and their relationship to HIV budding. Elife, 3, 2014, e02184.
-
(2014)
Elife
, vol.3
, pp. e02184
-
-
Cashikar, A.G.1
-
140
-
-
84961671485
-
ESCRT filaments as spiral springs
-
140 Carlson, L.A., et al. ESCRT filaments as spiral springs. Dev. Cell 35 (2015), 397–398.
-
(2015)
Dev. Cell
, vol.35
, pp. 397-398
-
-
Carlson, L.A.1
-
141
-
-
84974539481
-
Resolving new ultrastructural features of cytokinetic abscission with soft-X-ray cryo-tomography
-
141 Sherman, S., et al. Resolving new ultrastructural features of cytokinetic abscission with soft-X-ray cryo-tomography. Sci. Rep., 6, 2016, 27629.
-
(2016)
Sci. Rep.
, vol.6
, pp. 27629
-
-
Sherman, S.1
-
142
-
-
84987981735
-
ESCRT-III and Vps4: a dynamic multipurpose tool for membrane budding and scission
-
Published online February 22, 2016
-
142 Adell, M.A., et al. ESCRT-III and Vps4: a dynamic multipurpose tool for membrane budding and scission. FEBS J., 2016, 10.1111/febs.13688 Published online February 22, 2016.
-
(2016)
FEBS J.
-
-
Adell, M.A.1
-
143
-
-
84930413153
-
Vps4 disassembles an ESCRT-III filament by global unfolding and processive translocation
-
143 Yang, B., et al. Vps4 disassembles an ESCRT-III filament by global unfolding and processive translocation. Nat. Struct. Mol. Biol. 22 (2015), 492–498.
-
(2015)
Nat. Struct. Mol. Biol.
, vol.22
, pp. 492-498
-
-
Yang, B.1
-
144
-
-
79953323443
-
Live-cell visualization of dynamics of HIV budding site interactions with an ESCRT component
-
144 Baumgartel, V., et al. Live-cell visualization of dynamics of HIV budding site interactions with an ESCRT component. Nat. Cell Biol. 13 (2011), 469–474.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 469-474
-
-
Baumgartel, V.1
-
145
-
-
84892543174
-
The oligomeric state of the active Vps4 AAA ATPase
-
145 Monroe, N., et al. The oligomeric state of the active Vps4 AAA ATPase. J. Mol. Biol. 426 (2014), 510–525.
-
(2014)
J. Mol. Biol.
, vol.426
, pp. 510-525
-
-
Monroe, N.1
-
146
-
-
84949267291
-
Asymmetric ring structure of Vps4 required for ESCRT-III disassembly
-
146 Caillat, C., et al. Asymmetric ring structure of Vps4 required for ESCRT-III disassembly. Nat. Commun., 6, 2015, 8781.
-
(2015)
Nat. Commun.
, vol.6
, pp. 8781
-
-
Caillat, C.1
-
147
-
-
27144444327
-
Structural and mechanistic studies of VPS4 proteins
-
147 Scott, A., et al. Structural and mechanistic studies of VPS4 proteins. EMBO J. 24 (2005), 3658–3669.
-
(2005)
EMBO J.
, vol.24
, pp. 3658-3669
-
-
Scott, A.1
-
148
-
-
77955487325
-
Structural role of the Vps4–Vta1 interface in ESCRT-III recycling
-
148 Yang, D., Hurley, J.H., Structural role of the Vps4–Vta1 interface in ESCRT-III recycling. Structure 18 (2010), 976–984.
-
(2010)
Structure
, vol.18
, pp. 976-984
-
-
Yang, D.1
Hurley, J.H.2
-
149
-
-
33644525938
-
Recycling of ESCRTs by the AAA-ATPase Vps4 is regulated by a conserved VSL region in Vta1
-
149 Azmi, I., et al. Recycling of ESCRTs by the AAA-ATPase Vps4 is regulated by a conserved VSL region in Vta1. J. Cell Biol. 172 (2006), 705–717.
-
(2006)
J. Cell Biol.
, vol.172
, pp. 705-717
-
-
Azmi, I.1
-
150
-
-
37749048772
-
ESCRT-III family members stimulate Vps4 ATPase activity directly or via Vta1
-
150 Azmi, I.F., et al. ESCRT-III family members stimulate Vps4 ATPase activity directly or via Vta1. Dev. Cell 14 (2008), 50–61.
-
(2008)
Dev. Cell
, vol.14
, pp. 50-61
-
-
Azmi, I.F.1
-
151
-
-
84882829097
-
Knowing when to cut and run: mechanisms that control cytokinetic abscission
-
151 Agromayor, M., Martin-Serrano, J., Knowing when to cut and run: mechanisms that control cytokinetic abscission. Trends Cell Biol. 23 (2013), 433–441.
-
(2013)
Trends Cell Biol.
, vol.23
, pp. 433-441
-
-
Agromayor, M.1
Martin-Serrano, J.2
-
152
-
-
77950863406
-
Molecular mechanism of multivesicular body biogenesis by ESCRT complexes
-
152 Wollert, T., Hurley, J.H., Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature 464 (2010), 864–869.
-
(2010)
Nature
, vol.464
, pp. 864-869
-
-
Wollert, T.1
Hurley, J.H.2
-
153
-
-
67349135343
-
ESCRT proteins in physiology and disease
-
153 Stuffers, S., et al. ESCRT proteins in physiology and disease. Exp. Cell Res. 315 (2009), 1619–1626.
-
(2009)
Exp. Cell Res.
, vol.315
, pp. 1619-1626
-
-
Stuffers, S.1
-
154
-
-
84883783979
-
Molecular mechanisms of the membrane sculpting ESCRT pathway
-
154 Henne, W.M., et al. Molecular mechanisms of the membrane sculpting ESCRT pathway. Cold Spring Harb. Perspect. Biol., 5, 2013, a016766.
-
(2013)
Cold Spring Harb. Perspect. Biol.
, vol.5
, pp. a016766
-
-
Henne, W.M.1
-
155
-
-
84918508854
-
Cytokinetic abscission: molecular mechanisms and temporal control
-
155 Mierzwa, B., Gerlich, D.W., Cytokinetic abscission: molecular mechanisms and temporal control. Dev. Cell 31 (2014), 525–538.
-
(2014)
Dev. Cell
, vol.31
, pp. 525-538
-
-
Mierzwa, B.1
Gerlich, D.W.2
-
156
-
-
79954417888
-
Divergent pathways lead to ESCRT-III-catalyzed membrane fission
-
156 Peel, S., et al. Divergent pathways lead to ESCRT-III-catalyzed membrane fission. Trends Biochem. Sci. 36 (2011), 199–210.
-
(2011)
Trends Biochem. Sci.
, vol.36
, pp. 199-210
-
-
Peel, S.1
|