-
1
-
-
4544235448
-
2 surfaces principles mechanisms, and selected results
-
2 surfaces principles mechanisms, and selected results. Chem. Rev. 95 (1995), 735–758.
-
(1995)
Chem. Rev.
, vol.95
, pp. 735-758
-
-
Lu, G.1
Linsebigler, A.2
Yates, J.3
-
4
-
-
84855454904
-
Nano-photocatalytic materials: possibilities and challenges
-
[4] Tong, H., Ouyang, S., Bi, Y., Umezawa, N., Oshikiri, M., Ye, J., Nano-photocatalytic materials: possibilities and challenges. Adv. Mater. 24 (2012), 229–251.
-
(2012)
Adv. Mater.
, vol.24
, pp. 229-251
-
-
Tong, H.1
Ouyang, S.2
Bi, Y.3
Umezawa, N.4
Oshikiri, M.5
Ye, J.6
-
5
-
-
33744823762
-
Preparation and characterization of terraced surfaces of low-index faces of anatase, rutile, and brookite
-
[5] Lu, Y., Jaeckel, B., Parkinson, B.A., Preparation and characterization of terraced surfaces of low-index faces of anatase, rutile, and brookite. Langmuir 22 (2006), 4472–4475.
-
(2006)
Langmuir
, vol.22
, pp. 4472-4475
-
-
Lu, Y.1
Jaeckel, B.2
Parkinson, B.A.3
-
7
-
-
84944322285
-
3 : a novel multi-heterojunction photocatalyst with enhanced photocatalytic activity
-
3 : a novel multi-heterojunction photocatalyst with enhanced photocatalytic activity. Appl. Surf. Sci. 355 (2015), 411–418.
-
(2015)
Appl. Surf. Sci.
, vol.355
, pp. 411-418
-
-
Ao, Y.1
Xu, L.2
Wang, P.3
Wang, C.4
Hou, J.5
Qian, J.6
Li, Y.7
-
9
-
-
84966393746
-
Direct reductive amination of aldehydes with nitroarenes using bio-renewable formic acid as a hydrogen source
-
[9] Zhang, Q., Li, S.S., Zhu, M.M., Liu, Y.M., He, H.Y., Cao, Y., Direct reductive amination of aldehydes with nitroarenes using bio-renewable formic acid as a hydrogen source. Green Chem. 18 (2016), 2507–2513.
-
(2016)
Green Chem.
, vol.18
, pp. 2507-2513
-
-
Zhang, Q.1
Li, S.S.2
Zhu, M.M.3
Liu, Y.M.4
He, H.Y.5
Cao, Y.6
-
11
-
-
57849140722
-
Preparation, characterization of Au (or Pt)-loaded titania nanotubes and their photocatalytic activities for degradation of methyl orange
-
[11] Zhao, Q., Li, M., Chu, J., Jiang, T., Yin, H., Preparation, characterization of Au (or Pt)-loaded titania nanotubes and their photocatalytic activities for degradation of methyl orange. Appl. Surf. Sci. 255 (2009), 3773–3778.
-
(2009)
Appl. Surf. Sci.
, vol.255
, pp. 3773-3778
-
-
Zhao, Q.1
Li, M.2
Chu, J.3
Jiang, T.4
Yin, H.5
-
12
-
-
2342505762
-
2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant
-
2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant. J. Photochem. Photobiol. A 163 (2004), 569–580.
-
(2004)
J. Photochem. Photobiol. A
, vol.163
, pp. 569-580
-
-
Bessekhouad, Y.1
Robert, D.2
Weber, J.V.3
-
14
-
-
84900802696
-
3 core–shell structures with enhanced quantum efficiency profit from an ultrafast electron transfer process
-
3 core–shell structures with enhanced quantum efficiency profit from an ultrafast electron transfer process. J. Mater. Chem. A, 2, 2014, 8273.
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 8273
-
-
Zhang, Y.1
Li, D.2
Zhang, Y.3
Zhou, X.4
Guo, S.5
Yang, L.6
-
19
-
-
84861100150
-
3 heterojunction with a nuclear-shell structure and its high photocatalytic activity
-
3 heterojunction with a nuclear-shell structure and its high photocatalytic activity. Mater. Res. Bull. 47 (2012), 1621–1624.
-
(2012)
Mater. Res. Bull.
, vol.47
, pp. 1621-1624
-
-
Lu, J.1
Han, Q.2
Wang, Z.3
-
20
-
-
84955485715
-
2 composites via the UV-assisted photocatalytic reduction of graphene oxide
-
2 composites via the UV-assisted photocatalytic reduction of graphene oxide. Appl. Surf. Sci. 380 (2016), 249–256.
-
(2016)
Appl. Surf. Sci.
, vol.380
, pp. 249-256
-
-
Yang, W.D.1
Li, Y.R.2
Lee, Y.C.3
-
22
-
-
84960089256
-
2 nanowires/reduced graphene oxide composites with enhanced photodegradation performance under visible light irradiation
-
2 nanowires/reduced graphene oxide composites with enhanced photodegradation performance under visible light irradiation. RSC Adv. 6 (2016), 23809–23815.
-
(2016)
RSC Adv.
, vol.6
, pp. 23809-23815
-
-
Zhu, S.1
Dong, Y.2
Xia, X.3
Liu, X.4
Li, H.5
-
24
-
-
33947461960
-
Preparation of graphitic oxide
-
[24] Hummers, W.S. Jr, Offeman, R.E., Preparation of graphitic oxide. J. Am. Chem., 80, 1958, 1339.
-
(1958)
J. Am. Chem.
, vol.80
, pp. 1339
-
-
Hummers, W.S.1
Offeman, R.E.2
-
27
-
-
84918548357
-
2 nanorod array structures at the nanoscale for efficient photoelectrocatalysis under visible light
-
2 nanorod array structures at the nanoscale for efficient photoelectrocatalysis under visible light. J. Mater. Chem. A 3 (2015), 1235–1242.
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 1235-1242
-
-
Wang, X.1
Xie, J.2
Li, C.3
-
28
-
-
84922566905
-
3 core–shell nanowire arrays for photoelectrochemical hydrogen generation
-
3 core–shell nanowire arrays for photoelectrochemical hydrogen generation. RSC Adv. 5 (2015), 13544–13549.
-
(2015)
RSC Adv.
, vol.5
, pp. 13544-13549
-
-
Ai, G.1
Mo, R.2
Chen, Q.3
Xu, H.4
Yang, S.5
Li, H.6
Zhong, J.7
-
29
-
-
84919663442
-
Facile and controlled synthesis of bismuth sulfide nanorods-reduced graphene oxide composites with enhanced supercapacitor performance
-
[29] Nie, G., Lu, X., Lei, J., Yang, L., Wang, C., Facile and controlled synthesis of bismuth sulfide nanorods-reduced graphene oxide composites with enhanced supercapacitor performance. Electrochim. Acta 154 (2015), 24–30.
-
(2015)
Electrochim. Acta
, vol.154
, pp. 24-30
-
-
Nie, G.1
Lu, X.2
Lei, J.3
Yang, L.4
Wang, C.5
-
30
-
-
84887092069
-
Synthesis of bismuth sulfide/reduced graphene oxide composites and their electrochemical properties for lithium ion batteries
-
[30] Zhang, Z., Zhou, C., Huang, L., Wang, X., Qu, Y., Lai, Y., Li, J., Synthesis of bismuth sulfide/reduced graphene oxide composites and their electrochemical properties for lithium ion batteries. Electrochim. Acta 114 (2013), 88–94.
-
(2013)
Electrochim. Acta
, vol.114
, pp. 88-94
-
-
Zhang, Z.1
Zhou, C.2
Huang, L.3
Wang, X.4
Qu, Y.5
Lai, Y.6
Li, J.7
-
32
-
-
0041841504
-
Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids
-
[32] Bourlinos, A.B., Gournis, D., Petridis, D., Szabo, T.S., Szeri, A., Dekány, I., Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir 19 (2003), 6050–6055.
-
(2003)
Langmuir
, vol.19
, pp. 6050-6055
-
-
Bourlinos, A.B.1
Gournis, D.2
Petridis, D.3
Szabo, T.S.4
Szeri, A.5
Dekány, I.6
-
33
-
-
84947805920
-
2 nanowire composites with highly enhanced photocatalytic activity under visible light irradiation
-
2 nanowire composites with highly enhanced photocatalytic activity under visible light irradiation. J. Mater. Chem. A 3 (2015), 15214–15224.
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 15214-15224
-
-
Li, W.1
Liu, X.2
Li, H.3
-
34
-
-
84862796436
-
ZnS–Graphene nanocomposite: synthesis, characterization and optical properties
-
[34] Pan, S., Liu, X., ZnS–Graphene nanocomposite: synthesis, characterization and optical properties. J. Solid State Chem. 191 (2012), 51–56.
-
(2012)
J. Solid State Chem.
, vol.191
, pp. 51-56
-
-
Pan, S.1
Liu, X.2
-
36
-
-
3242656247
-
Hydrothermal synthesis and characterization of vanadium oxide/titanate composite nanorods
-
[36] Yu, L., Zhang, X., Hydrothermal synthesis and characterization of vanadium oxide/titanate composite nanorods. Mater. Chem. Phys. 87 (2004), 168–172.
-
(2004)
Mater. Chem. Phys.
, vol.87
, pp. 168-172
-
-
Yu, L.1
Zhang, X.2
-
38
-
-
42349087225
-
Superior thermal conductivity of single-layer graphene
-
[38] Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N., Superior thermal conductivity of single-layer graphene. Nano Lett. 8 (2008), 902–907.
-
(2008)
Nano Lett.
, vol.8
, pp. 902-907
-
-
Balandin, A.A.1
Ghosh, S.2
Bao, W.3
Calizo, I.4
Teweldebrhan, D.5
Miao, F.6
Lau, C.N.7
-
39
-
-
38749134828
-
Raman spectra of graphite oxide and functionalized graphene sheets
-
[39] Kudin, K.N., Ozbas, B., Schniepp, H.C., Prud'homme, R.P., Aksay, I.A., Car, R., Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 8 (2008), 36–41.
-
(2008)
Nano Lett.
, vol.8
, pp. 36-41
-
-
Kudin, K.N.1
Ozbas, B.2
Schniepp, H.C.3
Prud'homme, R.P.4
Aksay, I.A.5
Car, R.6
-
40
-
-
84861409508
-
Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties
-
[40] Poh, H.L., Sanek, F., Ambrosi, A., Zhao, G., Sofer, Z., Pumera, M., Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties. Nanoscale 4 (2012), 3515–3522.
-
(2012)
Nanoscale
, vol.4
, pp. 3515-3522
-
-
Poh, H.L.1
Sanek, F.2
Ambrosi, A.3
Zhao, G.4
Sofer, Z.5
Pumera, M.6
-
41
-
-
84906821058
-
Immobilizing gold nanoparticles in mesoporous silica covered reduced graphene oxide: a hybrid material for cancer cell detection through hydrogen peroxide sensing
-
[41] Maji, S.K., Sreejith, S., Mandal, A.K., Ma, X., Zhao, Y., Immobilizing gold nanoparticles in mesoporous silica covered reduced graphene oxide: a hybrid material for cancer cell detection through hydrogen peroxide sensing. ACS Appl. Mater. Inter. 6 (2014), 13648–13656.
-
(2014)
ACS Appl. Mater. Inter.
, vol.6
, pp. 13648-13656
-
-
Maji, S.K.1
Sreejith, S.2
Mandal, A.K.3
Ma, X.4
Zhao, Y.5
-
42
-
-
84934980426
-
4 functionalized reduced graphene oxide with enhanced photoelectrochemical performance for selective and sensitive detection of chlorpyrifos
-
4 functionalized reduced graphene oxide with enhanced photoelectrochemical performance for selective and sensitive detection of chlorpyrifos. J. Mater. Chem. A 3 (2015), 13671–13678.
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 13671-13678
-
-
Qian, J.1
Yang, Z.2
Wang, C.3
Wang, K.4
Liu, Q.5
Jiang, D.6
Yan, Y.7
Wang, K.8
-
43
-
-
79952939141
-
Effects of layer stacking on the combination Raman modes in graphene
-
[43] Rao, R., Podila, R., Tsuchikawa, R., Katoch, J., Tishler, D., Rao, A.M., Ishigami, M., Effects of layer stacking on the combination Raman modes in graphene. ACS Nano 5 (2011), 1594–1599.
-
(2011)
ACS Nano
, vol.5
, pp. 1594-1599
-
-
Rao, R.1
Podila, R.2
Tsuchikawa, R.3
Katoch, J.4
Tishler, D.5
Rao, A.M.6
Ishigami, M.7
-
44
-
-
84862608981
-
3 -sensitized BiOCl with highly visible light photocatalytic activity for the removal of rhodamine B
-
3 -sensitized BiOCl with highly visible light photocatalytic activity for the removal of rhodamine B. Catal. Commun. 26 (2012), 204–208.
-
(2012)
Catal. Commun.
, vol.26
, pp. 204-208
-
-
Cao, J.1
Xu, B.2
Lin, H.3
Luo, B.4
Chen, S.5
-
46
-
-
84866696517
-
2 nanosheets with exposed {001} facets on graphene for enhanced visible light photocatalytic activity
-
2 nanosheets with exposed {001} facets on graphene for enhanced visible light photocatalytic activity. J. Phys. Chem. C 116 (2012), 19893–19901.
-
(2012)
J. Phys. Chem. C
, vol.116
, pp. 19893-19901
-
-
Wang, W.S.1
Wang, D.H.2
Qu, W.G.3
Lu, L.Q.4
Xu, A.W.5
-
48
-
-
84903980532
-
Recent advances in visible light Bi-based photocatalysts
-
[48] He, R.A., Cao, S.W., Zhou, P., Yu, J.G., Recent advances in visible light Bi-based photocatalysts. Chin. J. Catal. 35 (2014), 989–1007.
-
(2014)
Chin. J. Catal.
, vol.35
, pp. 989-1007
-
-
He, R.A.1
Cao, S.W.2
Zhou, P.3
Yu, J.G.4
-
49
-
-
84885634210
-
2 nanocomposites
-
2 nanocomposites. J. Phys. Chem. C 117 (2013), 20406–20414.
-
(2013)
J. Phys. Chem. C
, vol.117
, pp. 20406-20414
-
-
Yang, H.1
Kershaw, S.V.2
Wang, Y.3
Gong, X.4
Kalytchuk, S.5
Rogach, A.L.6
Teoh, W.Y.7
-
54
-
-
84886993776
-
1-x prepared in water and ethylene glycol environments, and Ag and Au-doping effects
-
1-x prepared in water and ethylene glycol environments, and Ag and Au-doping effects. Appl. Catal. B Environ. 147 (2014), 711–725.
-
(2014)
Appl. Catal. B Environ.
, vol.147
, pp. 711-725
-
-
Kim, W.J.1
Pradhan, D.2
Min, B.K.3
Sohn, Y.4
-
55
-
-
84896515444
-
2 heterojunction with high photocatalytic efficiency in purifying 2,4-dichlorophenoxyacetic acid/Cr(VI) contaminated water
-
2 heterojunction with high photocatalytic efficiency in purifying 2,4-dichlorophenoxyacetic acid/Cr(VI) contaminated water. Appl. Catal. B Environ. 156–157 (2014), 25–34.
-
(2014)
Appl. Catal. B Environ.
, vol.156-157
, pp. 25-34
-
-
Yang, L.1
Sun, W.2
Luo, S.3
Luo, Y.4
-
56
-
-
84981541701
-
Bronsted-Lowry acid strength of metal hydride and dihydrogen complexes
-
[56] Morris, R.H., Bronsted-Lowry acid strength of metal hydride and dihydrogen complexes. Chem. Rev. 116 (2016), 8588–8654.
-
(2016)
Chem. Rev.
, vol.116
, pp. 8588-8654
-
-
Morris, R.H.1
-
57
-
-
84962476310
-
2 composites with enhanced photocatalytic activity and stability for organic pollutant degradation
-
2 composites with enhanced photocatalytic activity and stability for organic pollutant degradation. Appl. Surf. Sci. 377 (2016), 99–108.
-
(2016)
Appl. Surf. Sci.
, vol.377
, pp. 99-108
-
-
Zhu, C.1
Zhang, L.2
Jiang, B.3
Zheng, J.4
Hu, P.5
Li, S.6
Wu, M.7
Wu, W.8
-
58
-
-
84971336975
-
4 heterostructure and degradation property
-
4 heterostructure and degradation property. Appl. Surf. Sci. 385 (2016), 34–41.
-
(2016)
Appl. Surf. Sci.
, vol.385
, pp. 34-41
-
-
Li, J.1
Yuan, H.2
Zhu, Z.3
|