메뉴 건너뛰기




Volumn 22, Issue 1, 2017, Pages 37-43

Predictive analytics in mental health: Applications, guidelines, challenges and perspectives

Author keywords

[No Author keywords available]

Indexed keywords

AMPHETAMINE; METHYLPHENIDATE;

EID: 84995470401     PISSN: 13594184     EISSN: 14765578     Source Type: Journal    
DOI: 10.1038/mp.2016.201     Document Type: Review
Times cited : (97)

References (56)
  • 4
    • 44949200470 scopus 로고    scopus 로고
    • Assessing the economic costs of serious mental illness
    • Insel T. Assessing the economic costs of serious mental illness. Am J Psychiatry 2008; 165: 663-665.
    • (2008) Am J Psychiatry , vol.165 , pp. 663-665
    • Insel, T.1
  • 5
    • 85006343821 scopus 로고    scopus 로고
    • Volkswirtschaftliche Konsequenzen
    • Stoppe G, Bramesfeld A, Schwartz F-W (eds) Springer: Berlin Heidelberg, Germany
    • Stamm K, Salize H-J. Volkswirtschaftliche Konsequenzen. In: Stoppe G, Bramesfeld A, Schwartz F-W (eds). Volkskrankheit Depression? Springer: Berlin Heidelberg, Germany, 2006, pp 109-120.
    • (2006) Volkskrankheit Depression? , pp. 109-120
    • Stamm, K.1    Salize, H.-J.2
  • 6
    • 0035721498 scopus 로고    scopus 로고
    • Impact of bipolar affective disorder on family and partners
    • Dore G, Romans SE. Impact of bipolar affective disorder on family and partners. J Affect Disord 2001; 67: 147-158.
    • (2001) J Affect Disord , vol.67 , pp. 147-158
    • Dore, G.1    Romans, S.E.2
  • 7
    • 18844404690 scopus 로고    scopus 로고
    • Effects of patients with bipolar, schizophrenic, and major depressive disorders on the mental and other healthcare expenses of family members
    • Gianfrancesco FD, Wang R-h YuE. Effects of patients with bipolar, schizophrenic, and major depressive disorders on the mental and other healthcare expenses of family members. Soc Sci Med 2005; 61: 305-311.
    • (2005) Soc Sci Med , vol.61 , pp. 305-311
    • Gianfrancesco, F.D.1    Wang, R.H.Yu.E.2
  • 8
    • 79955921020 scopus 로고    scopus 로고
    • Relative impact of Axis i mental disorders on quality of life among adults in the community
    • Guan B, Deng Y, Cohen P, Chen H. Relative impact of Axis I mental disorders on quality of life among adults in the community. J Affect Disord 2011; 131: 293-298.
    • (2011) J Affect Disord , vol.131 , pp. 293-298
    • Guan, B.1    Deng, Y.2    Cohen, P.3    Chen, H.4
  • 10
    • 34247571377 scopus 로고    scopus 로고
    • Quality of life in the anxiety disorders: A meta-analytic review
    • Olatunji BO, Cisler JM, Tolin DF. Quality of life in the anxiety disorders: a meta-analytic review. Clin Psychol Rev 2007; 27: 572-581.
    • (2007) Clin Psychol Rev , vol.27 , pp. 572-581
    • Olatunji, B.O.1    Cisler, J.M.2    Tolin, D.F.3
  • 11
    • 0038137034 scopus 로고    scopus 로고
    • Families living with severe mental illness: A literature review
    • Saunders JC. Families living with severe mental illness: a literature review. Issues Ment Health Nurs 2003; 24: 175-198.
    • (2003) Issues Ment Health Nurs , vol.24 , pp. 175-198
    • Saunders, J.C.1
  • 15
    • 84957921914 scopus 로고    scopus 로고
    • Machine learning and the profession of medicine
    • Darcy AM, Louie AK, Roberts LW. Machine learning and the profession of medicine. JAMA 2016; 315: 551-552.
    • (2016) JAMA , vol.315 , pp. 551-552
    • Darcy, A.M.1    Louie, A.K.2    Roberts, L.W.3
  • 17
    • 84920735890 scopus 로고    scopus 로고
    • Prediction as a humanitarian and pragmatic contribution from human cognitive neuroscience
    • Gabrieli JD, Ghosh SS, Whitfield-Gabrieli S. Prediction as a humanitarian and pragmatic contribution from human cognitive neuroscience. Neuron 2015; 85: 11-26.
    • (2015) Neuron , vol.85 , pp. 11-26
    • Gabrieli, J.D.1    Ghosh, S.S.2    Whitfield-Gabrieli, S.3
  • 18
    • 84937801713 scopus 로고    scopus 로고
    • Machine learning: Trends, perspectives, and prospects
    • Jordan MI, Mitchell TM. Machine learning: trends, perspectives, and prospects. Science 2015; 349: 255-260.
    • (2015) Science , vol.349 , pp. 255-260
    • Jordan, M.I.1    Mitchell, T.M.2
  • 19
    • 84952637704 scopus 로고    scopus 로고
    • From estimating activation locality to predicting disorder: A review of pattern recognition for neuroimaging-based psychiatric diagnostics
    • Wolfers T, Buitelaar JK, Beckmann CF, Franke B, Marquand AF. From estimating activation locality to predicting disorder: a review of pattern recognition for neuroimaging-based psychiatric diagnostics. Neurosci Biobehav Rev 2015; 57: 328-349.
    • (2015) Neurosci Biobehav Rev , vol.57 , pp. 328-349
    • Wolfers, T.1    Buitelaar, J.K.2    Beckmann, C.F.3    Franke, B.4    Marquand, A.F.5
  • 21
    • 84961211119 scopus 로고    scopus 로고
    • Genetic variants associated with response to lithium treatment in bipolar disorder: A genome-wide association study
    • Hou L, Heilbronner U, Degenhardt F, Adli M, Akiyama K, Akula N et al. Genetic variants associated with response to lithium treatment in bipolar disorder: a genome-wide association study. Lancet 2016; 387: 1085-1093.
    • (2016) Lancet , vol.387 , pp. 1085-1093
    • Hou, L.1    Heilbronner, U.2    Degenhardt, F.3    Adli, M.4    Akiyama, K.5    Akula, N.6
  • 22
    • 52449101590 scopus 로고    scopus 로고
    • Cognitive therapy versus medication for depression: Treatment outcomes and neural mechanisms
    • DeRubeis RJ, Siegle GJ, Hollon SD. Cognitive therapy versus medication for depression: treatment outcomes and neural mechanisms. Nat Rev Neurosci 2008; 9: 788-796.
    • (2008) Nat Rev Neurosci , vol.9 , pp. 788-796
    • DeRubeis, R.J.1    Siegle, G.J.2    Hollon, S.D.3
  • 23
    • 84937415858 scopus 로고    scopus 로고
    • Pragmatism instead of mechanism: A call for impactful biological psychiatry
    • Paulus MP. Pragmatism instead of mechanism: a call for impactful biological psychiatry. JAMA Psychiatry 2015; 72: 631-632.
    • (2015) JAMA Psychiatry , vol.72 , pp. 631-632
    • Paulus, M.P.1
  • 24
    • 84922682684 scopus 로고    scopus 로고
    • Eight (No, Nine!) Problems with Big Data
    • Sulzberger AOJ (ed)
    • Marcus G, Davis E. (2014). Eight (No, Nine!) Problems With Big Data. In Sulzberger AOJ (ed). The New York Times: New York, NY, USA, p A23.
    • (2014) The New York Times: New York, NY, USA , pp. A23
    • Marcus, G.1    Davis, E.2
  • 25
    • 84908459073 scopus 로고    scopus 로고
    • Applications of blood-based protein biomarker strategies in the study of psychiatric disorders
    • Chan MK, Gottschalk MG, Haenisch F, Tomasik J, Ruland T, Rahmoune H et al. Applications of blood-based protein biomarker strategies in the study of psychiatric disorders. Prog Neurobiol 2014; 122: 45-72.
    • (2014) Prog Neurobiol , vol.122 , pp. 45-72
    • Chan, M.K.1    Gottschalk, M.G.2    Haenisch, F.3    Tomasik, J.4    Ruland, T.5    Rahmoune, H.6
  • 26
    • 84884482813 scopus 로고    scopus 로고
    • Neuroimaging-based biomarkers in psychiatry: Clinical opportunities of a paradigm shift
    • Fu CH, Costafreda SG. Neuroimaging-based biomarkers in psychiatry: clinical opportunities of a paradigm shift. Can J Psychiatry 2013; 58: 499-508.
    • (2013) Can J Psychiatry , vol.58 , pp. 499-508
    • Ch, F.1    Costafreda, S.G.2
  • 27
    • 84949429474 scopus 로고    scopus 로고
    • Bioinformatics mining and modeling methods for the identification of disease mechanisms in neurodegenerative disorders
    • Hofmann-Apitius M, Ball G, Gebel S, Bagewadi S, de Bono B, Schneider R et al. Bioinformatics mining and modeling methods for the identification of disease mechanisms in neurodegenerative disorders. Int J Mol Sci 2015; 16: 29179-29206.
    • (2015) Int J Mol Sci , vol.16 , pp. 29179-29206
    • Hofmann-Apitius, M.1    Ball, G.2    Gebel, S.3    Bagewadi, S.4    De Bono, B.5    Schneider, R.6
  • 28
    • 84925306502 scopus 로고    scopus 로고
    • Prediction of treatment outcomes in psychiatry-where do we stand?
    • McMahon FJ. Prediction of treatment outcomes in psychiatry-where do we stand? Dialogues Clin Neurosci 2014; 16: 455-464.
    • (2014) Dialogues Clin Neurosci , vol.16 , pp. 455-464
    • McMahon, F.J.1
  • 29
    • 84876675969 scopus 로고    scopus 로고
    • Clinical application of brain imaging for the diagnosis of mood disorders: The current state of play
    • Savitz JB, Rauch SL, Drevets WC. Clinical application of brain imaging for the diagnosis of mood disorders: the current state of play. Mol Psychiatry 2013; 18: 528-539.
    • (2013) Mol Psychiatry , vol.18 , pp. 528-539
    • Savitz, J.B.1    Rauch, S.L.2    Drevets, W.C.3
  • 35
    • 18144377392 scopus 로고    scopus 로고
    • Decision tree learning with fuzzy labels
    • Qin ZC, Lawry J. Decision tree learning with fuzzy labels. Inform Sci 2005; 172: 91-129.
    • (2005) Inform Sci , vol.172 , pp. 91-129
    • Qin, Z.C.1    Lawry, J.2
  • 37
    • 85161148381 scopus 로고    scopus 로고
    • The elements of statistical learning: Data mining, inference and prediction
    • Hastie T, Tibshirani R, Friedman J, Franklin J. The elements of statistical learning: data mining, inference and prediction. Math Intell 2005; 27: 83-85.
    • (2005) Math Intell , vol.27 , pp. 83-85
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3    Franklin, J.4
  • 38
    • 84878461822 scopus 로고    scopus 로고
    • Personalized medicine in psychiatry: Problems and promises
    • Ozomaro U, Wahlestedt C, Nemeroff CB. Personalized medicine in psychiatry: problems and promises. BMC Med 2013; 11: 132.
    • (2013) BMC Med , vol.11 , pp. 132
    • Ozomaro, U.1    Wahlestedt, C.2    Nemeroff, C.B.3
  • 39
    • 84975687657 scopus 로고    scopus 로고
    • Computational psychiatry as a bridge from neuroscience to clinical applications
    • Huys QJM, Maia TV, Frank MJ. Computational psychiatry as a bridge from neuroscience to clinical applications. Nat Neurosci 2016; 19: 404-413.
    • (2016) Nat Neurosci , vol.19 , pp. 404-413
    • Qjm, H.1    Maia, T.V.2    Frank, M.J.3
  • 40
    • 84947605442 scopus 로고    scopus 로고
    • ProFET: Feature engineering captures high-level protein functions
    • Ofer D, Linial M. ProFET: feature engineering captures high-level protein functions. Bioinformatics 2015; 31: 3429-3436.
    • (2015) Bioinformatics , vol.31 , pp. 3429-3436
    • Ofer, D.1    Linial, M.2
  • 43
    • 84920816477 scopus 로고    scopus 로고
    • Predicting treatment response to cognitive behavioral therapy in panic disorder with agoraphobia by integrating local neural information
    • Hahn T, Kircher T, Straube B, Wittchen HU, Konrad C, Strohle A et al. Predicting treatment response to cognitive behavioral therapy in panic disorder with agoraphobia by integrating local neural information. JAMA Psychiatry 2015; 72: 68-74.
    • (2015) JAMA Psychiatry , vol.72 , pp. 68-74
    • Hahn, T.1    Kircher, T.2    Straube, B.3    Wittchen, H.U.4    Konrad, C.5    Strohle, A.6
  • 46
    • 84964974483 scopus 로고    scopus 로고
    • The nature of psychiatric disorders
    • Kendler KS. The nature of psychiatric disorders. World Psychiatry 2016; 15: 5-12.
    • (2016) World Psychiatry , vol.15 , pp. 5-12
    • Kendler, K.S.1
  • 47
    • 84964959921 scopus 로고    scopus 로고
    • The need for a conceptual framework in psychiatry acknowledging complexity while avoiding defeatism
    • Maj M. The need for a conceptual framework in psychiatry acknowledging complexity while avoiding defeatism. World Psychiatry 2016; 15: 1-2.
    • (2016) World Psychiatry , vol.15 , pp. 1-2
    • Maj, M.1
  • 51
    • 84937422811 scopus 로고    scopus 로고
    • Biomarkers with a mechanistic focus
    • Pine DS, Leibenluft E. Biomarkers with a mechanistic focus. JAMA Psychiatry 2015; 72: 633-634.
    • (2015) JAMA Psychiatry , vol.72 , pp. 633-634
    • Pine, D.S.1    Leibenluft, E.2
  • 52
    • 65549168742 scopus 로고    scopus 로고
    • Machine learning classifiers and fMRI: A tutorial overview
    • Pereira F, Mitchell T, Botvinick M. Machine learning classifiers and fMRI: a tutorial overview. Neuroimage 2009; 45: S199-S209.
    • (2009) Neuroimage , vol.45 , pp. S199-S209
    • Pereira, F.1    Mitchell, T.2    Botvinick, M.3
  • 53
    • 84865779177 scopus 로고    scopus 로고
    • Recent developments in multivariate pattern analysis for functional MRI
    • Yang Z, Fang F, Weng X. Recent developments in multivariate pattern analysis for functional MRI. Neurosci Bull 2012; 28: 399-408.
    • (2012) Neurosci Bull , vol.28 , pp. 399-408
    • Yang, Z.1    Fang, F.2    Weng, X.3
  • 54
    • 84952683126 scopus 로고    scopus 로고
    • Functional neuroimaging of psychotherapeutic processes in anxiety and depression: From mechanisms to predictions
    • Lueken U, Hahn T. Functional neuroimaging of psychotherapeutic processes in anxiety and depression: from mechanisms to predictions. Curr Opin Psychiatry 2016; 29: 25-31.
    • (2016) Curr Opin Psychiatry , vol.29 , pp. 25-31
    • Lueken, U.1    Hahn, T.2
  • 55
    • 84896056107 scopus 로고    scopus 로고
    • Big data. The parable of Google Flu: Traps in big data analysis
    • Lazer D, Kennedy R, King G, Vespignani A. Big data. The parable of Google Flu: traps in big data analysis. Science 2014; 343: 1203-1205.
    • (2014) Science , vol.343 , pp. 1203-1205
    • Lazer, D.1    Kennedy, R.2    King, G.3    Vespignani, A.4
  • 56
    • 0000459353 scopus 로고    scopus 로고
    • The lack of a priori distinctions between learning algorithms
    • Wolpert DH. The lack of a priori distinctions between learning algorithms. Neural Comput 1996; 8: 1341-1390.
    • (1996) Neural Comput , vol.8 , pp. 1341-1390
    • Wolpert, D.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.