메뉴 건너뛰기




Volumn 58, Issue 9, 2013, Pages 499-508

Neuroimaging-based biomarkers in psychiatry: Clinical opportunities of a paradigm shift

Author keywords

Alzheimer; Biomarkers; Depression; Machine learning; Magnetic resonance imaging; Neuroimaging; Personalized; Schizophrenia

Indexed keywords

BIOLOGICAL MARKER;

EID: 84884482813     PISSN: 07067437     EISSN: 14970015     Source Type: Journal    
DOI: 10.1177/070674371305800904     Document Type: Review
Times cited : (82)

References (83)
  • 1
    • 0035100888 scopus 로고    scopus 로고
    • Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework
    • Biomarkers Definitions Working Group NIH
    • Biomarkers Definitions Working Group NIH. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69(3):89-95.
    • (2001) Clin Pharmacol Ther. , vol.69 , Issue.3 , pp. 89-95
  • 3
    • 0038597007 scopus 로고    scopus 로고
    • Neuroscience research agenda to guide development of a pathophysiologically based classification system
    • editors Washington (DC): American Psychiatric Press
    • Kupfer DJ, First MB, Regier DA, editors. Neuroscience research agenda to guide development of a pathophysiologically based classification system. A research agenda for DSM-V. Washington (DC): American Psychiatric Press; 2002.
    • (2002) A Research Agenda for DSM-V
    • Kupfer, D.J.1    First, M.B.2    Regier, D.A.3
  • 4
    • 77954230363 scopus 로고    scopus 로고
    • Research Domain Criteria (RDoC): Toward a new classification framework for research on mental disorders
    • Insel T, Cuthbert B, Garvey M, et al. Research Domain Criteria (RDoC): Toward a new classification framework for research on mental disorders. Am J Psychiatry. 2010;167(7):748-751.
    • (2010) Am J Psychiatry. , vol.167 , Issue.7 , pp. 748-751
    • Insel, T.1    Cuthbert, B.2    Garvey, M.3
  • 5
    • 37549029793 scopus 로고    scopus 로고
    • The properties of highdimensional data spaces: Implications for exploring gene and protein expression data
    • Clarke R, Ressom HW, Wang A, et al. The properties of highdimensional data spaces: Implications for exploring gene and protein expression data. Nat Rev Cancer. 2008;8(1):37-49.
    • (2008) Nat Rev Cancer. , vol.8 , Issue.1 , pp. 37-49
    • Clarke, R.1    Ressom, H.W.2    Wang, A.3
  • 7
    • 33845703344 scopus 로고    scopus 로고
    • What is a support vector machine?
    • Noble WS. What is a support vector machine? Nat Biotechnol. 2006;24(12):1565-1567.
    • (2006) Nat Biotechnol. , vol.24 , Issue.12 , pp. 1565-1567
    • Noble, W.S.1
  • 8
    • 34548084959 scopus 로고    scopus 로고
    • The discipline of machine learning
    • Pittsburgh (PA): Carnegie Mellon University, School of Computer Science, Machine Learning Department Contract number CMU-ML-06-108
    • Mitchell TM. The discipline of machine learning. Technical report. Pittsburgh (PA): Carnegie Mellon University, School of Computer Science, Machine Learning Department; 2006. Contract number CMU-ML-06-108.
    • (2006) Technical Report
    • Mitchell, T.M.1
  • 9
    • 65549168742 scopus 로고    scopus 로고
    • Machine learning classifiers and fMRI: A tutorial overview
    • Pereira F, Mitchell T, Botvinick M. Machine learning classifiers and fMRI: A tutorial overview. Neuroimage. 2009;45(1 Suppl 1):S199-S209.
    • (2009) Neuroimage , vol.45 , Issue.1 SUPPL. 1
    • Pereira, F.1    Mitchell, T.2    Botvinick, M.3
  • 10
    • 84890891489 scopus 로고    scopus 로고
    • Pooling fMRI data: Meta-Analysis, mega-Analysis and multi-Center studies
    • Costafreda SG. Pooling fMRI data: Meta-Analysis, mega-Analysis and multi-Center studies. Front Neuroinform. 2009;3:33.
    • (2009) Front Neuroinform. , vol.3 , pp. 33
    • Costafreda, S.G.1
  • 11
    • 84860734393 scopus 로고    scopus 로고
    • Diagnostic neuroimaging across diseases
    • Kloppel S, Abdulkadir A, Jack CR Jr, et al. Diagnostic neuroimaging across diseases. Neuroimage. 2012;61(2):457-463.
    • (2012) Neuroimage. , vol.61 , Issue.2 , pp. 457-463
    • Kloppel, S.1    Abdulkadir, A.2    Jack Jr., C.R.3
  • 12
    • 84857000430 scopus 로고    scopus 로고
    • Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: A critical review
    • Orrù G, Pettersson-Yeo W, Marquand AF, et al. Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: A critical review. Neurosci Biobehav Rev. 2012;36(4):1140-1152.
    • (2012) Neurosci Biobehav Rev. , vol.36 , Issue.4 , pp. 1140-1152
    • Orrù, G.1    Pettersson-Yeo, W.2    Marquand, A.F.3
  • 13
    • 0025863618 scopus 로고
    • Neuropathological stageing of Alzheimer-Related changes
    • Braak H, Braak E. Neuropathological stageing of Alzheimer-Related changes. Acta Neuropathol. 1991;82(4):239-259.
    • (1991) Acta Neuropathol. , vol.82 , Issue.4 , pp. 239-259
    • Braak, H.1    Braak, E.2
  • 14
    • 34447322271 scopus 로고    scopus 로고
    • Research criteria for the diagnosis of Alzheimer's disease: Revising the NINCDS-ADRDA criteria
    • Dubois B, Feldman HH, Jacova C, et al. Research criteria for the diagnosis of Alzheimer?s disease: Revising the NINCDS-ADRDA criteria. Lancet Neurol. 2007;6(8):734-746.
    • (2007) Lancet Neurol. , vol.6 , Issue.8 , pp. 734-746
    • Dubois, B.1    Feldman, H.H.2    Jacova, C.3
  • 15
    • 76849095847 scopus 로고    scopus 로고
    • The clinical use of structural MRI in Alzheimer disease
    • Frisoni GB, Fox NC, Jack CR, et al. The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol. 2010;6(2):67-77.
    • (2010) Nat Rev Neurol. , vol.6 , Issue.2 , pp. 67-77
    • Frisoni, G.B.1    Fox, N.C.2    Jack, C.R.3
  • 16
    • 38749113910 scopus 로고    scopus 로고
    • Spatial patterns of brain atrophy in MCI patients, identified via high-Dimensional pattern classification, predict subsequent cognitive decline
    • Fan Y, Batmanghelich N, Clark CM, et al. Spatial patterns of brain atrophy in MCI patients, identified via high-Dimensional pattern classification, predict subsequent cognitive decline. Neuroimage. 2008;39(4):1731-1743.
    • (2008) Neuroimage. , vol.39 , Issue.4 , pp. 1731-1743
    • Fan, Y.1    Batmanghelich, N.2    Clark, C.M.3
  • 17
    • 66249084849 scopus 로고    scopus 로고
    • Disease classification with hippocampal shape invariants
    • Gutman B, Wang Y, Morra J, et al. Disease classification with hippocampal shape invariants. Hippocampus. 2009;19(6):572-578.
    • (2009) Hippocampus. , vol.19 , Issue.6 , pp. 572-578
    • Gutman, B.1    Wang, Y.2    Morra, J.3
  • 18
    • 34548795886 scopus 로고    scopus 로고
    • Multivariate deformation-Based analysis of brain atrophy to predict Alzheimer's disease in mild cognitive impairment
    • Teipel SJ, Born C, Ewers M, et al. Multivariate deformation-Based analysis of brain atrophy to predict Alzheimer?s disease in mild cognitive impairment. Neuroimage. 2007;38(1):13-24.
    • (2007) Neuroimage. , vol.38 , Issue.1 , pp. 13-24
    • Teipel, S.J.1    Born, C.2    Ewers, M.3
  • 19
    • 55749098303 scopus 로고    scopus 로고
    • Accuracy of dementia diagnosis: A direct comparison between radiologists and a computerized method
    • Kloppel S, Stonnington CM, Barnes J, et al. Accuracy of dementia diagnosis: A direct comparison between radiologists and a computerized method. Brain. 2008;131(Pt 11):2969-2974.
    • (2008) Brain. , vol.131 , Issue.PART 11 , pp. 2969-2974
    • Kloppel, S.1    Stonnington, C.M.2    Barnes, J.3
  • 20
    • 39749191312 scopus 로고    scopus 로고
    • Automatic classification of MR scans in Alzheimer's disease
    • Kloppel S, Stonnington CM, Chu C, et al. Automatic classification of MR scans in Alzheimer?s disease. Brain. 2008;131(Pt 3):681-689.
    • (2008) Brain. , vol.131 , Issue.PART 3 , pp. 681-689
    • Kloppel, S.1    Stonnington, C.M.2    Chu, C.3
  • 21
    • 80052364811 scopus 로고    scopus 로고
    • Computer aided diagnosis system for Alzheimer disease using brain diffusion tensor imaging features selected by Pearson s correlation
    • Graña M, Termenon M, Savio A, et al. Computer aided diagnosis system for Alzheimer disease using brain diffusion tensor imaging features selected by Pearson?s correlation. Neurosci Lett. 2011;502(3):225-229.
    • (2011) Neurosci Lett. , vol.502 , Issue.3 , pp. 225-229
    • Graña, M.1    Termenon, M.2    Savio, A.3
  • 22
    • 51349092925 scopus 로고    scopus 로고
    • Can clinical data predict progression to dementia in amnestic mild cognitive impairment
    • Fellows L, Bergman H, Wolfson C, et al. Can clinical data predict progression to dementia in amnestic mild cognitive impairment? Can J Neurol Sci. 2008;35(3):314-322.
    • (2008) Can J Neurol Sci. , vol.35 , Issue.3 , pp. 314-322
    • Fellows, L.1    Bergman, H.2    Wolfson, C.3
  • 23
    • 67849104993 scopus 로고    scopus 로고
    • Morphological hippocampal markers for automated detection of Alzheimer's disease and mild cognitive impairment converters in magnetic resonance images
    • Ferrarini L, Frisoni GB, Pievani M, et al. Morphological hippocampal markers for automated detection of Alzheimer?s disease and mild cognitive impairment converters in magnetic resonance images. J Alzheimers Dis. 2009;17(3):643-659.
    • (2009) J Alzheimers Dis. , vol.17 , Issue.3 , pp. 643-659
    • Ferrarini, L.1    Frisoni, G.B.2    Pievani, M.3
  • 24
    • 79953032540 scopus 로고    scopus 로고
    • Automated hippocampal shape analysis predicts the onset of dementia in mild cognitive impairment
    • Costafreda SG, Dinov ID, Tu Z, et al. Automated hippocampal shape analysis predicts the onset of dementia in mild cognitive impairment. Neuroimage. 2011;56(1):212-219.
    • (2011) Neuroimage. , vol.56 , Issue.1 , pp. 212-219
    • Costafreda, S.G.1    Dinov, I.D.2    Tu, Z.3
  • 25
    • 58149386194 scopus 로고    scopus 로고
    • Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-Term conversion to AD: Results from ADNI
    • Misra C, Fan Y, Davatzikos C. Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-Term conversion to AD: Results from ADNI. Neuroimage. 2009;44(4):1415-1422.
    • (2009) Neuroimage. , vol.44 , Issue.4 , pp. 1415-1422
    • Misra, C.1    Fan, Y.2    Davatzikos, C.3
  • 26
    • 0035932961 scopus 로고    scopus 로고
    • Progressive brain atrophy on serial MRI in dementia with Lewy bodies AD and vascular dementia
    • O?Brien JT, Paling S, Barber R, et al. Progressive brain atrophy on serial MRI in dementia with Lewy bodies, AD, and vascular dementia. Neurology. 2001;56(10):1386-1388.
    • (2001) Neurology. , vol.56 , Issue.10 , pp. 1386-1388
    • Obrien, J.T.1    Paling, S.2    Barber, R.3
  • 27
    • 58849132290 scopus 로고    scopus 로고
    • Medial temporal lobe atrophy on MRI differentiates Alzheimer's disease from dementia with Lewy bodies and vascular cognitive impairment: A prospective study with pathological verification of diagnosis
    • Burton EJ, Barber R, Mukaetova-Ladinska EB, et al. Medial temporal lobe atrophy on MRI differentiates Alzheimer?s disease from dementia with Lewy bodies and vascular cognitive impairment: A prospective study with pathological verification of diagnosis. Brain. 2009;132(Pt 1):195-203.
    • (2009) Brain. , vol.132 , Issue.PART 1 , pp. 195-203
    • Burton, E.J.1    Barber, R.2    Mukaetova-Ladinska, E.B.3
  • 28
    • 79551581431 scopus 로고    scopus 로고
    • Antemortem differential diagnosis of dementia pathology using structural MRI: Differential-STAND
    • Vemuri P, Simon G, Kantarci K, et al. Antemortem differential diagnosis of dementia pathology using structural MRI: Differential-STAND. Neuroimage. 2011;55(2):522-531.
    • (2011) Neuroimage. , vol.55 , Issue.2 , pp. 522-531
    • Vemuri, P.1    Simon, G.2    Kantarci, K.3
  • 31
    • 20344398668 scopus 로고    scopus 로고
    • Automatic classification of SPECT images of Alzheimer's disease patients and control subjects
    • Stoeckel J, Ayache N, Malandain G, et al. Automatic classification of SPECT images of Alzheimer?s disease patients and control subjects. Lect Notes Comput Sci. 2004:654-662.
    • (2004) Lect Notes Comput Sci. , pp. 654-662
    • Stoeckel, J.1    Ayache, N.2    Malandain, G.3
  • 32
    • 33947376436 scopus 로고    scopus 로고
    • SVM feature selection for classification of SPECT images of Alzheimer's disease using spatial information
    • Fung G, Stoeckel J. SVM feature selection for classification of SPECT images of Alzheimer?s disease using spatial information. Knowl Inf Syst. 2007;11(2):243-258.
    • (2007) Knowl Inf Syst. , vol.11 , Issue.2 , pp. 243-258
    • Fung, G.1    Stoeckel, J.2
  • 33
    • 84884476489 scopus 로고    scopus 로고
    • National Institute for Health and Clinical Excellence (NICE) London (GB): NICE
    • National Institute for Health and Clinical Excellence (NICE). NICE guidelines for dementia. London (GB): NICE; 2010.
    • (2010) NICE Guidelines for Dementia.
  • 34
    • 44849110068 scopus 로고    scopus 로고
    • A meta-Analytic study of changes in brain activation in depression
    • Fitzgerald PB, Laird AR, Maller J, et al. A meta-Analytic study of changes in brain activation in depression. Hum Brain Mapp. 2008;29(6):683-695.
    • (2008) Hum Brain Mapp. , vol.29 , Issue.6 , pp. 683-695
    • Fitzgerald, P.B.1    Laird, A.R.2    Maller, J.3
  • 35
    • 70349987702 scopus 로고    scopus 로고
    • Brain volume abnormalities in major depressive disorder: A metaanalysis of magnetic resonance imaging studies
    • Koolschijn PC, van Haren NE, Lensvelt-Mulders GJ, et al. Brain volume abnormalities in major depressive disorder: A metaanalysis of magnetic resonance imaging studies. Hum Brain Mapp. 2009;30(11):3719-3735.
    • (2009) Hum Brain Mapp. , vol.30 , Issue.11 , pp. 3719-3735
    • Koolschijn, P.C.1    Van Haren, N.E.2    Lensvelt-Mulders, G.J.3
  • 36
    • 40149084821 scopus 로고    scopus 로고
    • Pattern classification of sad facial processing: Toward the development of neurobiological markers in depression
    • Fu CHY, Mourao-Miranda J, Costafreda SG, et al. Pattern classification of sad facial processing: Toward the development of neurobiological markers in depression. Biol Psychiatry. 2008;63(7):656-662.
    • (2008) Biol Psychiatry. , vol.63 , Issue.7 , pp. 656-662
    • Chy, F.1    Mourao-Miranda, J.2    Costafreda, S.G.3
  • 37
    • 35848945711 scopus 로고    scopus 로고
    • A longitudinal functional magnetic resonance imaging study of verbal working memory in depression after antidepressant therapy
    • Walsh ND, Williams SCR, Brammer MJ, et al. A longitudinal functional magnetic resonance imaging study of verbal working memory in depression after antidepressant therapy. Biol Psychiatry. 2007;62(11):1236-1243.
    • (2007) Biol Psychiatry. , vol.62 , Issue.11 , pp. 1236-1243
    • Walsh, N.D.1    Scr, W.2    Brammer, M.J.3
  • 38
    • 53549088324 scopus 로고    scopus 로고
    • Neuroanatomy of verbal working memory as a diagnostic biomarker for depression
    • Marquand AF, Mourao-Miranda J, Brammer MJ, et al. Neuroanatomy of verbal working memory as a diagnostic biomarker for depression. Neuroreport. 2008;19(15):1507-1511.
    • (2008) Neuroreport. , vol.19 , Issue.15 , pp. 1507-1511
    • Marquand, A.F.1    Mourao-Miranda, J.2    Brammer, M.J.3
  • 39
    • 79953761839 scopus 로고    scopus 로고
    • Integrating neurobiological markers of depression
    • Hahn T, Marquand AF, Ehlis A-C, et al. Integrating neurobiological markers of depression. Arch Gen Psychiatry. 2011;68(4):361-368.
    • (2011) Arch Gen Psychiatry. , vol.68 , Issue.4 , pp. 361-368
    • Hahn, T.1    Marquand, A.F.2    Ehlis, A.-C.3
  • 40
    • 68149169975 scopus 로고    scopus 로고
    • Prognostic and diagnostic potential of the structural neuroanatomy of depression
    • Costafreda SG, Chu C, Ashburner J, et al. Prognostic and diagnostic potential of the structural neuroanatomy of depression. PLoS One. 2009;4(7):e6353.
    • (2009) PLoS One. , vol.4 , Issue.7
    • Costafreda, S.G.1    Chu, C.2    Ashburner, J.3
  • 41
    • 83755174702 scopus 로고    scopus 로고
    • Prediction of illness severity in patients with major depression using structural MR brain scans
    • Mwangi B, Matthews K, Steele JD. Prediction of illness severity in patients with major depression using structural MR brain scans. J Magn Reson Imaging. 2012;35(1):64-71.
    • (2012) J Magn Reson Imaging. , vol.35 , Issue.1 , pp. 64-71
    • Mwangi, B.1    Matthews, K.2    Steele, J.D.3
  • 42
    • 10844252289 scopus 로고    scopus 로고
    • Detection and analysis of statistical differences in anatomical shape
    • Golland P, Grimson WEL, Shenton ME, et al. Detection and analysis of statistical differences in anatomical shape. Med Image Anal. 2005;9(1):69-86.
    • (2005) Med Image Anal. , vol.9 , Issue.1 , pp. 69-86
    • Golland, P.1    Wel, G.2    Shenton, M.E.3
  • 43
    • 33744812523 scopus 로고    scopus 로고
    • Feature selection for shapebased classification of biological objects
    • Yushkevich P, Joshi S, Pizer SM, et al. Feature selection for shapebased classification of biological objects. Inf Process Med Imaging. 2003;2732:114-125.
    • (2003) Inf Process Med Imaging. , vol.2732 , pp. 114-125
    • Yushkevich, P.1    Joshi, S.2    Pizer, S.M.3
  • 45
    • 3042586437 scopus 로고    scopus 로고
    • A surface-Based approach for classification of 3D neuroanatomic structures
    • Shen L. A surface-Based approach for classification of 3D neuroanatomic structures. Intell Data Anal. 2004;8(6):519-542.
    • (2004) Intell Data Anal. , vol.8 , Issue.6 , pp. 519-542
    • Shen, L.1
  • 46
    • 0037045142 scopus 로고    scopus 로고
    • Prediction and prevention of transition to psychosis in young people at incipient risk for schizophrenia
    • Phillips LJ, Yung AR, Yuen HP, et al. Prediction and prevention of transition to psychosis in young people at incipient risk for schizophrenia. Am J Med Genet. 2002;114(8):929-937.
    • (2002) Am J Med Genet. , vol.114 , Issue.8 , pp. 929-937
    • Phillips, L.J.1    Yung, A.R.2    Yuen, H.P.3
  • 47
    • 33748686761 scopus 로고    scopus 로고
    • Classification of functional brain images with a spatio-Temporal dissimilarity map
    • Shinkareva SV, Ombao HC, Sutton BP, et al. Classification of functional brain images with a spatio-Temporal dissimilarity map. Neuroimage. 2006;33(1):63-71.
    • (2006) Neuroimage. , vol.33 , Issue.1 , pp. 63-71
    • Shinkareva, S.V.1    Ombao, H.C.2    Sutton, B.P.3
  • 48
    • 67650457029 scopus 로고    scopus 로고
    • Use of neuroanatomical pattern classification to identify subjects in at-Risk mental states of psychosis and predict disease transition
    • Koutsouleris N, Meisenzahl EM, Davatzikos C, et al. Use of neuroanatomical pattern classification to identify subjects in at-Risk mental states of psychosis and predict disease transition. Arch Gen Psychiatry. 2009;66(7):700.
    • (2009) Arch Gen Psychiatry. , vol.66 , Issue.7 , pp. 700
    • Koutsouleris, N.1    Meisenzahl, E.M.2    Davatzikos, C.3
  • 49
    • 55549121271 scopus 로고    scopus 로고
    • Temporal lobe and default hemodynamic brain modes discriminate between schizophrenia and bipolar disorder
    • Calhoun VD, Maciejewski PK, Pearlson GD, et al. Temporal lobe and default hemodynamic brain modes discriminate between schizophrenia and bipolar disorder. Hum Brain Mapp. 2008;29(11):1265-1275.
    • (2008) Hum Brain Mapp. , vol.29 , Issue.11 , pp. 1265-1275
    • Calhoun, V.D.1    Maciejewski, P.K.2    Pearlson, G.D.3
  • 50
    • 70349303493 scopus 로고    scopus 로고
    • Increased inferior frontal activation during word generation: A marker of genetic risk for schizophrenia but not bipolar disorder?
    • Costafreda SG, Fu CH, Picchioni M, et al. Increased inferior frontal activation during word generation: A marker of genetic risk for schizophrenia but not bipolar disorder? Hum Brain Mapp. 2009;30(10):3287-3298.
    • (2009) Hum Brain Mapp. , vol.30 , Issue.10 , pp. 3287-3298
    • Costafreda, S.G.1    Fu, C.H.2    Picchioni, M.3
  • 51
    • 79251561866 scopus 로고    scopus 로고
    • Pattern of neural responses to verbal fluency shows diagnostic specificity for schizophrenia and bipolar disorder
    • Costafreda SG, Fu CHY, Picchioni M, et al. Pattern of neural responses to verbal fluency shows diagnostic specificity for schizophrenia and bipolar disorder. BMC Psychiatry. 2011;11:18.
    • (2011) BMC Psychiatry. , Issue.11 , pp. 18
    • Costafreda, S.G.1    Chy, F.2    Picchioni, M.3
  • 52
    • 34047161656 scopus 로고    scopus 로고
    • Identifying patients with obsessive-Compulsive disorder using whole-Brain anatomy
    • Soriano-Mas C, Pujol J, Alonso P, et al. Identifying patients with obsessive-Compulsive disorder using whole-Brain anatomy. Neuroimage. 2007;35(3):1028-1037.
    • (2007) Neuroimage. , vol.35 , Issue.3 , pp. 1028-1037
    • Soriano-Mas, C.1    Pujol, J.2    Alonso, P.3
  • 53
    • 77956214538 scopus 로고    scopus 로고
    • Describing the brain in autism in five dimensions-Magnetic resonance imaging-Assisted diagnosis of autism spectrum disorder using a multiparameter classification approach
    • Ecker C, Marquand A, Mourão-Miranda J, et al. Describing the brain in autism in five dimensions-Magnetic resonance imaging-Assisted diagnosis of autism spectrum disorder using a multiparameter classification approach. J Neurosci. 2010;30(32):10612-10623.
    • (2010) J Neurosci. , vol.30 , Issue.32 , pp. 10612-10623
    • Ecker, C.1    Marquand, A.2    Mourão-Miranda, J.3
  • 56
    • 0343145706 scopus 로고    scopus 로고
    • Effect of sertraline on regional metabolic rate in patients with affective disorder
    • Buchsbaum MS, Joseph W, Siegel BV, et al. Effect of sertraline on regional metabolic rate in patients with affective disorder. Biol Psychiatry. 1997;41(1):15-22.
    • (1997) Biol Psychiatry. , vol.41 , Issue.1 , pp. 15-22
    • Buchsbaum, M.S.1    Joseph, W.2    Siegel, B.V.3
  • 57
    • 8244256653 scopus 로고    scopus 로고
    • Cingulate function in depression: A potential predictor of treatment response
    • Mayberg HS, Brannan SK, Mahurin RK, et al. Cingulate function in depression: A potential predictor of treatment response. Neuroreport. 1997;8(4):1057-1061.
    • (1997) Neuroreport. , vol.8 , Issue.4 , pp. 1057-1061
    • Mayberg, H.S.1    Brannan, S.K.2    Mahurin, R.K.3
  • 58
    • 4444225019 scopus 로고    scopus 로고
    • Attenuation of the neural response to sad faces in major depression by antidepressant treatment: A prospective, event-Related functional magnetic resonance imaging study
    • Fu CH, Williams SC, Cleare AJ, et al. Attenuation of the neural response to sad faces in major depression by antidepressant treatment: A prospective, event-Related functional magnetic resonance imaging study. Arch Gen Psychiatry. 2004;61(9):877-889.
    • (2004) Arch Gen Psychiatry. , vol.61 , Issue.9 , pp. 877-889
    • Fu, C.H.1    Williams, S.C.2    Cleare, A.J.3
  • 59
    • 49749132805 scopus 로고    scopus 로고
    • Neural responses to sad facial expressions in major depression following cognitive behavioral therapy
    • Fu CHY, Williams SCR, Cleare AJ, et al. Neural responses to sad facial expressions in major depression following cognitive behavioral therapy. Biol Psychiatry. 2008;64(6):505-512.
    • (2008) Biol Psychiatry. , vol.64 , Issue.6 , pp. 505-512
    • Chy, F.1    Scr, W.2    Cleare, A.J.3
  • 60
    • 84873525001 scopus 로고    scopus 로고
    • Predictive neural biomarkers of clinical response in depression: A meta-Analysis of functional and structural neuroimaging studies of pharmacological and psychological therapies
    • Fu CH, Steiner H, Costafreda SG. Predictive neural biomarkers of clinical response in depression: A meta-Analysis of functional and structural neuroimaging studies of pharmacological and psychological therapies. Neurobiol Dis. 2013;52:75-83.
    • (2013) Neurobiol Dis. , vol.52 , pp. 75-83
    • Fu, C.H.1    Steiner, H.2    Costafreda, S.G.3
  • 61
    • 79952708926 scopus 로고    scopus 로고
    • Prognostic prediction of therapeutic response in depression using high-Field MR imaging
    • Gong Q, Wu Q, Scarpazza C, et al. Prognostic prediction of therapeutic response in depression using high-Field MR imaging. Neuroimage. 2011;55:1497-1503.
    • (2011) Neuroimage. , vol.55 , pp. 1497-1503
    • Gong, Q.1    Wu, Q.2    Scarpazza, C.3
  • 62
    • 67049115926 scopus 로고    scopus 로고
    • Neural correlates of sad faces predict clinical remission to cognitive behavioural therapy in depression
    • Costafreda SG, Khanna A, Mourao-Miranda J, et al. Neural correlates of sad faces predict clinical remission to cognitive behavioural therapy in depression. Neuroreport. 2009;20(7):637-641.
    • (2009) Neuroreport. , vol.20 , Issue.7 , pp. 637-641
    • Costafreda, S.G.1    Khanna, A.2    Mourao-Miranda, J.3
  • 63
    • 78049251267 scopus 로고    scopus 로고
    • A pilot study to determine whether machine learning methodologies using pre-Treatment electroencephalography can predict the symptomatic response to clozapine therapy
    • Khodayari-Rostamabad A, Hasey GM, MacCrimmon DJ, et al. A pilot study to determine whether machine learning methodologies using pre-Treatment electroencephalography can predict the symptomatic response to clozapine therapy. Clin Neurophysiol. 2010;121(12):1998-2006.
    • (2010) Clin Neurophysiol. , vol.121 , Issue.12 , pp. 1998-2006
    • Khodayari-Rostamabad, A.1    Hasey, G.M.2    Maccrimmon, D.J.3
  • 64
    • 38849166655 scopus 로고    scopus 로고
    • Evaluation of diagnostic tests when there is no gold standard. A review of methods
    • Rutjes A, Reitsma J, Coomarasamy A, et al. Evaluation of diagnostic tests when there is no gold standard. A review of methods. Health Technol Assess. 2007;50(11):iii, ix-51.
    • (2007) Health Technol Assess. , vol.50 , Issue.11 , pp. 39-51
    • Rutjes, A.1    Reitsma, J.2    Coomarasamy, A.3
  • 65
    • 66949114541 scopus 로고    scopus 로고
    • The conceptual development of DSM-V
    • Regier DA, Narrow WE, Kuhl EA, et al. The conceptual development of DSM-V. Am J Psychiatry. 2009;166(6):645-650.
    • (2009) Am J Psychiatry. , vol.166 , Issue.6 , pp. 645-650
    • Regier, D.A.1    Narrow, W.E.2    Kuhl, E.A.3
  • 66
    • 0014702024 scopus 로고
    • Establishment of diagnostic validity in psychiatric illness: Its application to schizophrenia
    • Robins E, Guze SB. Establishment of diagnostic validity in psychiatric illness: Its application to schizophrenia. Am J Psychiatry. 1970;126(7):983-987.
    • (1970) Am J Psychiatry. , vol.126 , Issue.7 , pp. 983-987
    • Robins, E.1    Guze, S.B.2
  • 67
    • 0025185751 scopus 로고
    • Toward a scientific psychiatric nosology. Strengths and limitations
    • Kendler KS. Toward a scientific psychiatric nosology. Strengths and limitations. Arch Gen Psychiatry. 1990;47(10):969-973.
    • (1990) Arch Gen Psychiatry. , vol.47 , Issue.10 , pp. 969-973
    • Kendler, K.S.1
  • 68
    • 79954987179 scopus 로고    scopus 로고
    • Machine learning classification with confidence: Application of transductive conformal predictors to MRI-Based diagnostic and prognostic markers in depression
    • Epub 2010 May 17
    • Nouretdinov I, Costafreda SG, Gammerman A, et al. Machine learning classification with confidence: Application of transductive conformal predictors to MRI-Based diagnostic and prognostic markers in depression. Neuroimage. 2011;56(2):809-813; Epub 2010 May 17.
    • (2011) Neuroimage. , vol.56 , Issue.2 , pp. 809-813
    • Nouretdinov, I.1    Costafreda, S.G.2    Gammerman, A.3
  • 69
    • 84858061434 scopus 로고    scopus 로고
    • Assessing the value of diagnostic tests: A framework for designing and evaluating trials
    • Ferrante di Ruffano L, Hyde CJ, McCaffery KJ, et al. Assessing the value of diagnostic tests: A framework for designing and evaluating trials. BMJ. 2012;344:e686.
    • (2012) BMJ , vol.344
    • Ferrante Di Ruffano, L.1    Hyde, C.J.2    McCaffery, K.J.3
  • 71
    • 9144238091 scopus 로고    scopus 로고
    • A comparison of classification methods for differentiating fronto-Temporal dementia from Alzheimer's disease using FDG-PET imaging
    • Higdon R, Foster NL, Koeppe RA, et al. A comparison of classification methods for differentiating fronto-Temporal dementia from Alzheimer?s disease using FDG-PET imaging. Stat Med. 2004;23(2):315-326.
    • (2004) Stat Med. , vol.23 , Issue.2 , pp. 315-326
    • Higdon, R.1    Foster, N.L.2    Koeppe, R.A.3
  • 72
    • 52449112654 scopus 로고    scopus 로고
    • Automatic striatal volumetry allows for identification of patients with choreaacanthocytosis at single subject level
    • Huppertz HJ, Kröll-Seger J, Danek A, et al. Automatic striatal volumetry allows for identification of patients with choreaacanthocytosis at single subject level. J Neural Transm. 2008;115(10):1393-1400.
    • (2008) J Neural Transm. , vol.115 , Issue.10 , pp. 1393-1400
    • Huppertz, H.J.1    Kröll-Seger, J.2    Danek, A.3
  • 73
    • 34447322271 scopus 로고    scopus 로고
    • Research criteria for the diagnosis of Alzheimer's disease: Revising the NINCDS-ADRDA criteria
    • Dubois B, Feldman HH, Jacova C et al. Research criteria for the diagnosis of Alzheimer?s disease: Revising the NINCDS-ADRDA criteria. Lancet Neurol. 2007;6(8):734-746.
    • (2007) Lancet Neurol. , vol.6 , Issue.8 , pp. 734-746
    • Dubois, B.1    Feldman, H.H.2    Dubois, B.3    Feldman, H.H.4    Jacova, C.5
  • 74
    • 54049129625 scopus 로고    scopus 로고
    • Pivotal evaluation of the accuracy of a biomarker used for classification or prediction: Standards for study design
    • Pepe MS, Feng Z, Janes H, et al. Pivotal evaluation of the accuracy of a biomarker used for classification or prediction: Standards for study design. J Natl Cancer Inst. 2008;100(20):1432-1438.
    • (2008) J Natl Cancer Inst. , vol.100 , Issue.20 , pp. 1432-1438
    • Pepe, M.S.1    Feng, Z.2    Janes, H.3
  • 75
    • 77950821257 scopus 로고    scopus 로고
    • Pitfalls in the use of voxel-Based morphometry as a biomarker: Examples from Huntington disease
    • Henley SM, Ridgway GR, Scahill RI, et al. Pitfalls in the use of voxel-Based morphometry as a biomarker: Examples from Huntington disease. Am J Neuroradiol. 2010;31(4):711-719.
    • (2010) Am J Neuroradiol. , vol.31 , Issue.4 , pp. 711-719
    • Henley, S.M.1    Ridgway, G.R.2    Scahill, R.I.3
  • 76
    • 79955133484 scopus 로고    scopus 로고
    • Poster presented at the Annual Meeting of the Organization for Human Brain Mapping. Florence (IT) Available from
    • Detre GJ, Polyn SM, Moore CD, et al. The Multi-Voxel Pattern Analysis (MVPA) toolbox. Poster presented at the Annual Meeting of the Organization for Human Brain Mapping. 2006 Florence (IT). Available from: Http://www.csbmb. princeton.edu/mvpa.
    • (2006) The Multi-Voxel Pattern Analysis (MVPA) Toolbox
    • Detre, G.J.1    Polyn, S.M.2    Moore, C.D.3
  • 77
    • 64049085419 scopus 로고    scopus 로고
    • PyMVPA: A Python toolbox for multivariate pattern analysis of fMRI data
    • Available from
    • Hanke M, Halchenko YO, Sederberg PB, et al. PyMVPA: A Python toolbox for multivariate pattern analysis of fMRI data. Neuroinformatics. 2009;7(1):37-53. Available from: Http://www.pymvpa.org.
    • (2009) Neuroinformatics. , vol.7 , Issue.1 , pp. 37-53
    • Hanke, M.1    Halchenko, Y.O.2    Sederberg, P.B.3
  • 79
    • 0037306384 scopus 로고    scopus 로고
    • Support vector machines for diagnosis of breast tumors on US images
    • Chang RF, Wu WJ, Moon WK, et al. Support vector machines for diagnosis of breast tumors on US images. Acad Radiol. 2003;10(2):189-197.
    • (2003) Acad Radiol. , vol.10 , Issue.2 , pp. 189-197
    • Chang, R.F.1    Wu, W.J.2    Moon, W.K.3
  • 81
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Furey TS, Cristianini N, Duffy N, et al. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics. 2000;16(10):906-914.
    • (2000) Bioinformatics. , vol.16 , Issue.10 , pp. 906-914
    • Furey, T.S.1    Cristianini, N.2    Duffy, N.3
  • 82
    • 77950588524 scopus 로고    scopus 로고
    • High-Dimensional pattern regression using machine learning: From medical images to continuous clinical variables
    • Wang Y, Fan Y, Bhatt P, et al. High-Dimensional pattern regression using machine learning: From medical images to continuous clinical variables. Neuroimage. 2010;50(4):1519-1535.
    • (2010) Neuroimage. , vol.50 , Issue.4 , pp. 1519-1535
    • Wang, Y.1    Fan, Y.2    Bhatt, P.3
  • 83
    • 27744509503 scopus 로고    scopus 로고
    • Whole-Brain morphometric study of schizophrenia revealing a spatially complex set of focal abnormalities
    • Davatzikos C, Shen D, Gur RC, et al. Whole-Brain morphometric study of schizophrenia revealing a spatially complex set of focal abnormalities. Arch Gen Psychiatry. 2005;62(11):1218-1227.
    • (2005) Arch Gen Psychiatry. , vol.62 , Issue.11 , pp. 1218-1227
    • Davatzikos, C.1    Shen, D.2    Gur, R.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.