메뉴 건너뛰기




Volumn 332, Issue 2, 2013, Pages 423-441

A novel signal compression method based on optimal ensemble empirical mode decomposition for bearing vibration signals

Author keywords

[No Author keywords available]

Indexed keywords

BEARING DEFECT; BEARING FAULT; BEARING FAULT DIAGNOSIS; COMPRESSION METHODS; DATA SAMPLE; DECOMPOSITION PERFORMANCE; ENSEMBLE EMPIRICAL MODE DECOMPOSITION; FAULT IDENTIFICATIONS; INTRINSIC MODE FUNCTIONS; NOISE LEVELS; OPTIMAL ENSEMBLE; OPTIMAL LEVEL; OPTIMIZATION METHOD; REMOTE MACHINES; REMOTE MAINTENANCE; ROOT-MEAN SQUARE ERRORS; ROTATING MACHINE; SIGNAL COMPONENTS; SIGNAL COMPRESSION; TRANSMITTED SIGNAL; VIBRATION DATA; VIBRATION SIGNAL; WAVELET COMPRESSION; WIRELESS COMMUNICATIONS;

EID: 84867674014     PISSN: 0022460X     EISSN: 10958568     Source Type: Journal    
DOI: 10.1016/j.jsv.2012.08.017     Document Type: Article
Times cited : (168)

References (45)
  • 2
    • 0346306460 scopus 로고    scopus 로고
    • Application of the wavelet transform in machine condition monitoring and fault diagnostics: A review with bibliography
    • Z.K. Peng, and F.L. Chu Application of the wavelet transform in machine condition monitoring and fault diagnostics: a review with bibliography Mechanical Systems and Signal Processing 18 2004 199 221
    • (2004) Mechanical Systems and Signal Processing , vol.18 , pp. 199-221
    • Peng, Z.K.1    Chu, F.L.2
  • 3
    • 0036231788 scopus 로고    scopus 로고
    • An effective coding technique for the compression of one-dimensional signals using wavelet transforms
    • DOI 10.1016/S1350-4533(02)00004-8, PII S1350453302000048
    • M. Abo-Zahhad, and B.A. Rajoub An effective coding technique for the compression of one-dimensional signals using wavelet transforms Medical Engineering and Physics 24 2002 185 199 (Pubitemid 34327598)
    • (2002) Medical Engineering and Physics , vol.24 , Issue.3 , pp. 185-199
    • Abo-Zahhad, M.1    Rajoub, B.A.2
  • 4
    • 24944569633 scopus 로고    scopus 로고
    • Improved modified AZTEC technique for ECG data compression: Effect of length of parabolic filter on reconstructed signal
    • DOI 10.1016/j.compeleceng.2005.02.002, PII S0045790605000625
    • V. Kumar, S.C. Saxena, V.K. Giri, and D. Singh Improved modified AZTEC technique for ECG data compression: effect of length of parabolic filter on reconstructed signal Computers and Electrical Engineering 31 2005 334 344 (Pubitemid 41328536)
    • (2005) Computers and Electrical Engineering , vol.31 , Issue.4-5 , pp. 334-344
    • Kumar, V.1    Saxena, S.C.2    Giri, V.K.3    Singh, D.4
  • 5
    • 60949087539 scopus 로고    scopus 로고
    • Context-based near-lossless compression of EEG signals using neural network predictors
    • N. Sriraam Context-based near-lossless compression of EEG signals using neural network predictors AEU - International Journal of Electronics and Communications 63 2009 311 320
    • (2009) AEU - International Journal of Electronics and Communications , vol.63 , pp. 311-320
    • Sriraam, N.1
  • 6
    • 39449088431 scopus 로고    scopus 로고
    • Performance evaluation of neural network and linear predictors for near-lossless compression of EEG signals
    • DOI 10.1109/TITB.2007.899497
    • N. Sriraam, and C. Eswaran Performance evaluation of neural network and linear predictors for near-lossless compression of EEG signals IEEE Transactions on Information Technology in Biomedicine 12 2008 87 93 (Pubitemid 351266646)
    • (2008) IEEE Transactions on Information Technology in Biomedicine , vol.12 , Issue.1 , pp. 87-93
    • Sriraam, N.1    Eswaran, C.2
  • 7
    • 79952452396 scopus 로고    scopus 로고
    • Feature extraction for rolling element bearing fault diagnosis utilizing generalized S transform and two-dimensional non-negative matrix factorization
    • B. Li, P. Zhang, D. Liu, S. Mi, G. Ren, and H. Tian Feature extraction for rolling element bearing fault diagnosis utilizing generalized S transform and two-dimensional non-negative matrix factorization Journal of Sound and Vibration 330 2011 2388 2399
    • (2011) Journal of Sound and Vibration , vol.330 , pp. 2388-2399
    • Li, B.1    Zhang, P.2    Liu, D.3    Mi, S.4    Ren, G.5    Tian, H.6
  • 8
    • 33646918413 scopus 로고    scopus 로고
    • Signal compression using discrete fractional Fourier transform and set partitioning in hierarchical tree
    • DOI 10.1016/j.sigpro.2005.09.025, PII S016516840500349X
    • C. Vijaya, and J.S. Bhat Signal compression using discrete fractional Fourier transform and set partitioning in hierarchical tree Signal Processing 86 2006 1976 1983 (Pubitemid 43795453)
    • (2006) Signal Processing , vol.86 , Issue.8 , pp. 1976-1983
    • Vijaya, C.1    Bhat, J.S.2
  • 9
    • 0034975547 scopus 로고    scopus 로고
    • Compression of ECG signals by optimized quantization of discrete cosine transform coefficients
    • DOI 10.1016/S1350-4533(01)00030-3, PII S1350453301000303
    • L.V. Batista, E.U.K. Melcher, and L.C. Carvalho Compression of ECG signals by optimized quantization of discrete cosine transform coefficients Medical Engineering and Physics 23 2001 127 134 (Pubitemid 32544592)
    • (2001) Medical Engineering and Physics , vol.23 , Issue.2 , pp. 127-134
    • Batista, L.V.1    Melcher, E.U.K.2    Carvalho, L.C.3
  • 10
    • 0000452013 scopus 로고    scopus 로고
    • Wavelet based compression and feature selection for vibration analysis
    • W.J. Staszewski Wavelet based compression and feature selection for vibration analysis Journal of Sound and Vibration 211 1998 735 760 (Pubitemid 128379322)
    • (1998) Journal of Sound and Vibration , vol.211 , Issue.5 , pp. 735-760
    • Staszewski, W.J.1
  • 14
    • 33847103626 scopus 로고    scopus 로고
    • A noise robust feature extraction algorithm using joint wavelet packet subband decomposition and AR modeling of speech signals
    • DOI 10.1016/j.sigpro.2006.10.009, PII S0165168406003781
    • B. Kotnik, and Z. Kacic A noise robust feature extraction algorithm using joint wavelet packet subband decomposition and AR modeling of speech signals Signal Processing 87 2007 1202 1223 (Pubitemid 46282981)
    • (2007) Signal Processing , vol.87 , Issue.6 , pp. 1202-1223
    • Kotnik, B.1    Kacic, Z.2
  • 15
    • 0040119433 scopus 로고    scopus 로고
    • Vibration data compression with optimal wavelet coefficients
    • 1997. GALESIA 97. Second International Conference on (Conf. Publ. No. 446)
    • W.J. Staszewski, Vibration data compression with optimal wavelet coefficients, in: Genetic Algorithms in Engineering Systems: Innovations and Applications, 1997. GALESIA 97. Second International Conference on (Conf. Publ. No. 446), 1997, pp. 186-190.
    • (1997) Genetic Algorithms in Engineering Systems: Innovations and Applications , pp. 186-190
    • Staszewski, W.J.1
  • 16
    • 0031118045 scopus 로고    scopus 로고
    • Application of wavelet transform to compression of mechanical vibration data
    • M. Tanaka, M. Sakawa, K. Kato, and M. Abe Application of wavelet transform to compression of mechanical vibration data Cybernetics and Systems: An International Journal 28 1997 225 244 (Pubitemid 127597208)
    • (1997) Cybernetics and Systems , vol.28 , Issue.3 , pp. 225-244
    • Tanaka, M.1    Sakawa, M.2    Abe, M.3
  • 17
    • 0347602267 scopus 로고    scopus 로고
    • Method of data compressing for rotating machinery vibration signal based on wavelet transform
    • M. Xu, J. Zhang, G. Zhang, and W. Huang Method of data compressing for rotating machinery vibration signal based on wavelet transform Journal of Vibration Engineering 13 2000 531 536
    • (2000) Journal of Vibration Engineering , vol.13 , pp. 531-536
    • Xu, M.1    Zhang, J.2    Zhang, G.3    Huang, W.4
  • 18
    • 18444379354 scopus 로고    scopus 로고
    • Selection of wavelet packet basis for rotating machinery fault diagnosis
    • DOI 10.1016/j.jsv.2004.06.047, PII S0022460X04006078
    • B. Liu Selection of wavelet packet basis for rotating machinery fault diagnosis Journal of Sound and Vibration 284 2005 567 582 (Pubitemid 40643826)
    • (2005) Journal of Sound and Vibration , vol.284 , Issue.3-5 , pp. 567-582
    • Liu, B.1
  • 19
    • 33644547646 scopus 로고    scopus 로고
    • Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics
    • H. Qiu, J. Lee, J. Lin, and G. Yu Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics Journal of Sound and Vibration 289 2006 1066 1090
    • (2006) Journal of Sound and Vibration , vol.289 , pp. 1066-1090
    • Qiu, H.1    Lee, J.2    Lin, J.3    Yu, G.4
  • 21
    • 20444484584 scopus 로고    scopus 로고
    • An improved Hilbert-Huang transform and its application in vibration signal analysis
    • DOI 10.1016/j.jsv.2004.10.005, PII S0022460X04007928
    • Z.K. Peng, P.W. Tse, and F.L. Chu An improved Hilbert-Huang transform and its application in vibration signal analysis Journal of Sound and Vibration 286 2005 187 205 (Pubitemid 40822806)
    • (2005) Journal of Sound and Vibration , vol.286 , Issue.1-2 , pp. 187-205
    • Peng, Z.K.1    Tse, P.W.2    Chu, F.L.3
  • 23
    • 0033489494 scopus 로고    scopus 로고
    • A new view of nonlinear water waves: The Hilbert spectrum
    • DOI 10.1146/annurev.fluid.31.1.417
    • N.E. Huang, Z. Shen, and S.R. Long A new view of nonlinear water waves - the Hilbert spectrum Annual Review of Fluid Mechanics 31 1999 417 457 (Pubitemid 36186209)
    • (1999) Annual Review of Fluid Mechanics , vol.31 , pp. 417-457
    • Huang, N.E.1    Shen, Z.2    Long, S.R.3
  • 24
    • 67349218405 scopus 로고    scopus 로고
    • Analytical basics of the EMD: Two harmonics decomposition
    • M. Feldman Analytical basics of the EMD: two harmonics decomposition Mechanical Systems and Signal Processing 23 2009 2059 2071
    • (2009) Mechanical Systems and Signal Processing , vol.23 , pp. 2059-2071
    • Feldman, M.1
  • 26
    • 33646680084 scopus 로고    scopus 로고
    • Structural health monitoring using empirical mode decomposition and the Hilbert phase
    • DOI 10.1016/j.jsv.2005.10.024, PII S0022460X05007029
    • D. Pines, and L. Salvino Structural health monitoring using empirical mode decomposition and the Hilbert phase Journal of Sound and Vibration 294 2006 97 124 (Pubitemid 43732432)
    • (2006) Journal of Sound and Vibration , vol.294 , Issue.1-2 , pp. 97-124
    • Pines, D.1    Salvino, L.2
  • 27
    • 78650490727 scopus 로고    scopus 로고
    • A probabilistic description scheme for rotating machinery health evaluation
    • Q. Miao, D. Wang, and M. Pecht A probabilistic description scheme for rotating machinery health evaluation Journal of Mechanical Science and Technology 24 2010 2421 2430
    • (2010) Journal of Mechanical Science and Technology , vol.24 , pp. 2421-2430
    • Miao, Q.1    Wang, D.2    Pecht, M.3
  • 28
    • 80052078099 scopus 로고    scopus 로고
    • Ensemble empirical mode decomposition: A noise-assisted data analysis method
    • Z. Wu, and N.E. Huang Ensemble empirical mode decomposition: a noise-assisted data analysis method Advances in Adaptive Data Analysis 1 2009 1 41
    • (2009) Advances in Adaptive Data Analysis , vol.1 , pp. 1-41
    • Wu, Z.1    Huang, N.E.2
  • 29
    • 58949088453 scopus 로고    scopus 로고
    • Application of the EEMD method to rotor fault diagnosis of rotating machinery
    • Y. Lei, Z. He, and Y. Zi Application of the EEMD method to rotor fault diagnosis of rotating machinery Mechanical Systems and Signal Processing 23 2009 1327 1338
    • (2009) Mechanical Systems and Signal Processing , vol.23 , pp. 1327-1338
    • Lei, Y.1    He, Z.2    Zi, Y.3
  • 30
    • 79951581707 scopus 로고    scopus 로고
    • EEMD method and WNN for fault diagnosis of locomotive roller bearings
    • Y. Lei, Z. He, and Y. Zi EEMD method and WNN for fault diagnosis of locomotive roller bearings Expert Systems with Applications 38 2011 7334 7341
    • (2011) Expert Systems with Applications , vol.38 , pp. 7334-7341
    • Lei, Y.1    He, Z.2    Zi, Y.3
  • 31
    • 72149130282 scopus 로고    scopus 로고
    • Fault diagnosis of rotating machinery using an improved HHT based on EEMD and sensitive IMFs
    • 125712pp
    • Y. Lei, and M.J. Zuo Fault diagnosis of rotating machinery using an improved HHT based on EEMD and sensitive IMFs Measurement Science and Technology 20 2009 125701 125712pp
    • (2009) Measurement Science and Technology , vol.20 , pp. 125701
    • Lei, Y.1    Zuo, M.J.2
  • 33
    • 70350664662 scopus 로고    scopus 로고
    • Misalignment diagnosis of rotating machinery through vibration analysis via the hybrid EEMD and EMD approach
    • T.Y. Wu, and Y.L. Chung Misalignment diagnosis of rotating machinery through vibration analysis via the hybrid EEMD and EMD approach Smart Materials and Structures 18 2009 095004
    • (2009) Smart Materials and Structures , vol.18 , pp. 095004
    • Wu, T.Y.1    Chung, Y.L.2
  • 34
    • 61449244592 scopus 로고    scopus 로고
    • Signal extraction using ensemble empirical mode decomposition and sparsity in pipeline magnetic flux leakage nondestructive evaluation
    • L. Chen, X. Li, X.B. Li, and Z.Y. Huang Signal extraction using ensemble empirical mode decomposition and sparsity in pipeline magnetic flux leakage nondestructive evaluation Review of Scientific Instruments 80 2009 025105
    • (2009) Review of Scientific Instruments , vol.80 , pp. 025105
    • Chen, L.1    Li, X.2    Li, X.B.3    Huang, Z.Y.4
  • 35
    • 77957598733 scopus 로고    scopus 로고
    • The multidimensional ensemble empirical mode decomposition method
    • Z.H. Wu, N.E. Huang, and X.Y. Chen The multidimensional ensemble empirical mode decomposition method Advances in Adaptive Data Analysis 1 2009 339 372
    • (2009) Advances in Adaptive Data Analysis , vol.1 , pp. 339-372
    • Wu, Z.H.1    Huang, N.E.2    Chen, X.Y.3
  • 36
    • 77949491282 scopus 로고    scopus 로고
    • Multivariate and multiscale monitoring of large-size low-speed bearings using ensemble empirical mode decomposition method combined with principal component analysis
    • M. Žvokelj, S. Zupan, and I. Prebil Multivariate and multiscale monitoring of large-size low-speed bearings using ensemble empirical mode decomposition method combined with principal component analysis Mechanical Systems and Signal Processing 24 2010 1049 1067
    • (2010) Mechanical Systems and Signal Processing , vol.24 , pp. 1049-1067
    • Žvokelj, M.1    Zupan, S.2    Prebil, I.3
  • 37
    • 79960045420 scopus 로고    scopus 로고
    • Nonlinear multivariate and multiscale monitoring and signal denoising strategy using Kernel principal component analysis combined with ensemble empirical mode decomposition method
    • M. Žvokelj, S. Zupan, and I. Prebil Nonlinear multivariate and multiscale monitoring and signal denoising strategy using Kernel principal component analysis combined with ensemble empirical mode decomposition method Mechanical Systems and Signal Processing 25 2011 2631 2653
    • (2011) Mechanical Systems and Signal Processing , vol.25 , pp. 2631-2653
    • Žvokelj, M.1    Zupan, S.2    Prebil, I.3
  • 38
    • 80051664910 scopus 로고    scopus 로고
    • Gaussian noise filtering from ECG by Wiener filter and ensemble empirical mode decomposition
    • K.M. Chang, and S.H. Liu Gaussian noise filtering from ECG by Wiener filter and ensemble empirical mode decomposition Journal of Signal Processing 64 2011 249 264
    • (2011) Journal of Signal Processing , vol.64 , pp. 249-264
    • Chang, K.M.1    Liu, S.H.2
  • 40
    • 79956369785 scopus 로고    scopus 로고
    • Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method
    • J.R. Yeh, J.S. Shieh, and N.E. Huang Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method Advances in Adaptive Data Analysis 2 2010 135 156
    • (2010) Advances in Adaptive Data Analysis , vol.2 , pp. 135-156
    • Yeh, J.R.1    Shieh, J.S.2    Huang, N.E.3
  • 44
    • 0027655722 scopus 로고
    • ECG compression using long-term prediction
    • DOI 10.1109/10.245608
    • G. Nave, and A. Cohen ECG compression using long-term prediction IEEE Transactions on Biomedical Engineering 40 1993 877 885 (Pubitemid 24064400)
    • (1993) IEEE Transactions on Biomedical Engineering , vol.40 , Issue.9 , pp. 877-885
    • Nave, G.1    Cohen, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.