메뉴 건너뛰기




Volumn 62, Issue , 2015, Pages 444-459

An adaptively fast ensemble empirical mode decomposition method and its applications to rolling element bearing fault diagnosis

Author keywords

Adaptively fast EEMD (AFEEMD); Complementary EEMD (CEEMD); Ensemble empirical mode decomposition; Fault diagnosis; Upper frequency limit

Indexed keywords

FAILURE ANALYSIS; FAULT DETECTION; MEAN SQUARE ERROR; ROLLER BEARINGS; SIGNAL RECONSTRUCTION;

EID: 84928609215     PISSN: 08883270     EISSN: 10961216     Source Type: Journal    
DOI: 10.1016/j.ymssp.2015.03.002     Document Type: Article
Times cited : (139)

References (24)
  • 1
    • 5444236478 scopus 로고    scopus 로고
    • The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
    • N.E. Huang, Z. Shen, and S.R. Long The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis Proc. R. Soc. London, Ser. A: Math. Phys. Eng. Sci. 454 1971 1998 903 995
    • (1998) Proc. R. Soc. London, Ser. A: Math. Phys. Eng. Sci. , vol.454 , Issue.1971 , pp. 903-995
    • Huang, N.E.1    Shen, Z.2    Long, S.R.3
  • 2
    • 84870404381 scopus 로고    scopus 로고
    • A review on empirical mode decomposition in fault diagnosis of rotating machinery
    • Y.G. Lei, J. Lin, and Z. He A review on empirical mode decomposition in fault diagnosis of rotating machinery Mech. Syst. Sig. Process. 35 1 2013 108 126
    • (2013) Mech. Syst. Sig. Process. , vol.35 , Issue.1 , pp. 108-126
    • Lei, Y.G.1    Lin, J.2    He, Z.3
  • 3
    • 28844481396 scopus 로고    scopus 로고
    • Gearbox fault diagnosis using empirical mode decomposition and Hilbert spectrum
    • B. Liu, S. Riemenschneider, and Y. Xu Gearbox fault diagnosis using empirical mode decomposition and Hilbert spectrum Mech. Syst. Sig. Process. 20 3 2006 718 734
    • (2006) Mech. Syst. Sig. Process. , vol.20 , Issue.3 , pp. 718-734
    • Liu, B.1    Riemenschneider, S.2    Xu, Y.3
  • 4
    • 33646519024 scopus 로고    scopus 로고
    • A roller bearing fault diagnosis method based on EMD energy entropy and ANN
    • Y. Yang, and J.S. Cheng A roller bearing fault diagnosis method based on EMD energy entropy and ANN J. Sound Vib. 294 1 2006 269 277
    • (2006) J. Sound Vib. , vol.294 , Issue.1 , pp. 269-277
    • Yang, Y.1    Cheng, J.S.2
  • 5
    • 80054736879 scopus 로고    scopus 로고
    • The complex bidimensional empirical mode decomposition
    • M.H. Yeh The complex bidimensional empirical mode decomposition Sign. Process. 92 2 2012 523 541
    • (2012) Sign. Process. , vol.92 , Issue.2 , pp. 523-541
    • Yeh, M.H.1
  • 6
    • 27644585905 scopus 로고    scopus 로고
    • The processing of rotor startup signals based on empirical mode decomposition
    • G.H. Gai The processing of rotor startup signals based on empirical mode decomposition Mech. Syst. Sig. Process. 20 1 2006 222 235
    • (2006) Mech. Syst. Sig. Process. , vol.20 , Issue.1 , pp. 222-235
    • Gai, G.H.1
  • 7
    • 79952707334 scopus 로고    scopus 로고
    • Study of empirical mode decomposition and spectral analysis for stress and emotion classification in natural speech
    • L. He, M. Lech, and N.C. Maddage Study of empirical mode decomposition and spectral analysis for stress and emotion classification in natural speech Biomed. Signal Process. Control 6 2 2011 139 146
    • (2011) Biomed. Signal Process. Control , vol.6 , Issue.2 , pp. 139-146
    • He, L.1    Lech, M.2    Maddage, N.C.3
  • 8
    • 84861584843 scopus 로고    scopus 로고
    • Elimination of end effects in empirical mode decomposition by mirror image coupled with support vector regression
    • D.C. Lin, Z.L. Guo, and F.P. An Elimination of end effects in empirical mode decomposition by mirror image coupled with support vector regression Mech. Syst. Sig. Process. 31 2012 13 28
    • (2012) Mech. Syst. Sig. Process. , vol.31 , pp. 13-28
    • Lin, D.C.1    Guo, Z.L.2    An, F.P.3
  • 9
    • 80052078099 scopus 로고    scopus 로고
    • Ensemble empirical mode decomposition: A noise-assisted data analysis method
    • Z.H. Wu, and N.E. Huang Ensemble empirical mode decomposition: a noise-assisted data analysis method Adv. Adapt. Data Anal. 1 01 2009 1 41
    • (2009) Adv. Adapt. Data Anal. , vol.1 , Issue.1 , pp. 1-41
    • Wu, Z.H.1    Huang, N.E.2
  • 10
    • 54949146599 scopus 로고    scopus 로고
    • A review on Hilbert-Huang transform: Method and its applications to geophysical studies
    • N.E. Huang, and Z.H. Wu A review on Hilbert-Huang transform: method and its applications to geophysical studies Rev. Geophys. 46 2 2008
    • (2008) Rev. Geophys. , vol.46 , Issue.2
    • Huang, N.E.1    Wu, Z.H.2
  • 11
    • 84875269406 scopus 로고    scopus 로고
    • An improved EEMD with multiwavelet packet for rotating machinery multi-fault diagnosis
    • H.K. Jiang, C.L. Li, and H.X. Lin An improved EEMD with multiwavelet packet for rotating machinery multi-fault diagnosis Mech. Syst. Sig. Process. 36 2 2013 225 239
    • (2013) Mech. Syst. Sig. Process. , vol.36 , Issue.2 , pp. 225-239
    • Jiang, H.K.1    Li, C.L.2    Lin, H.X.3
  • 12
    • 84867674014 scopus 로고    scopus 로고
    • A novel signal compression method based on optimal ensemble empirical mode decomposition for bearing vibration signals
    • W. Guo, and P.W. Tse A novel signal compression method based on optimal ensemble empirical mode decomposition for bearing vibration signals J. Sound Vib. 332 2 2013 423 441
    • (2013) J. Sound Vib. , vol.332 , Issue.2 , pp. 423-441
    • Guo, W.1    Tse, P.W.2
  • 13
    • 79960045420 scopus 로고    scopus 로고
    • Non-linear multivariate and multiscale monitoring and signal denoising strategy using kernel principal component analysis combined with ensemble empirical mode decomposition method
    • M. Žvokelj, S. Zupan, and L. Prebil Non-linear multivariate and multiscale monitoring and signal denoising strategy using kernel principal component analysis combined with ensemble empirical mode decomposition method Mech. Syst. Sig. Process. 25 7 2011 2631 2653
    • (2011) Mech. Syst. Sig. Process. , vol.25 , Issue.7 , pp. 2631-2653
    • Žvokelj, M.1    Zupan, S.2    Prebil, L.3
  • 14
    • 80052078621 scopus 로고    scopus 로고
    • Application of the ensemble empirical mode decomposition and Hilbert transform to pedestal looseness study of direct-drive wind turbine
    • X.L. An, D.X. Jiang, and S.H. Li Application of the ensemble empirical mode decomposition and Hilbert transform to pedestal looseness study of direct-drive wind turbine Energy 36 9 2011 5508 5520
    • (2011) Energy , vol.36 , Issue.9 , pp. 5508-5520
    • An, X.L.1    Jiang, D.X.2    Li, S.H.3
  • 15
    • 33845388316 scopus 로고    scopus 로고
    • Application of support vector regression machines to the processing of end effects of Hilbert-Huang transform
    • J.S. Cheng, D.J. Yu, and Y. Yang Application of support vector regression machines to the processing of end effects of Hilbert-Huang transform Mech. Syst. Sig. Process. 21 3 2007 1197 1211
    • (2007) Mech. Syst. Sig. Process. , vol.21 , Issue.3 , pp. 1197-1211
    • Cheng, J.S.1    Yu, D.J.2    Yang, Y.3
  • 16
    • 79956369785 scopus 로고    scopus 로고
    • Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method
    • J.R. Yeh, J.S. Shieh, and N.E. Huang Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method Adv. Adapt. Data Anal. 2 02 2010 135 156
    • (2010) Adv. Adapt. Data Anal. , vol.2 , Issue.2 , pp. 135-156
    • Yeh, J.R.1    Shieh, J.S.2    Huang, N.E.3
  • 17
    • 77955569587 scopus 로고    scopus 로고
    • Performance enhancement of ensemble empirical mode decomposition
    • J. Zhang, R.Q. Yan, and R.X. Gao Performance enhancement of ensemble empirical mode decomposition Mech. Syst. Sig. Process. 24 7 2010 2104 2123
    • (2010) Mech. Syst. Sig. Process. , vol.24 , Issue.7 , pp. 2104-2123
    • Zhang, J.1    Yan, R.Q.2    Gao, R.X.3
  • 18
    • 84887305871 scopus 로고    scopus 로고
    • Partly ensemble empirical mode decomposition: An improved noise-assisted method for eliminating mode mixing
    • J.D. Zheng, J.S. Cheng, and Y. Yang Partly ensemble empirical mode decomposition: an improved noise-assisted method for eliminating mode mixing Sign. Process. 96 2014 362 374
    • (2014) Sign. Process. , vol.96 , pp. 362-374
    • Zheng, J.D.1    Cheng, J.S.2    Yang, Y.3
  • 19
    • 84928634603 scopus 로고    scopus 로고
    • Improvement of ensemble empirical mode decomposition by over-sampling
    • R.E. Bekka, and Y. Berrouche Improvement of ensemble empirical mode decomposition by over-sampling Adv. Adapt. Data Anal. 5 03 2013
    • (2013) Adv. Adapt. Data Anal. , vol.5 , Issue.3
    • Bekka, R.E.1    Berrouche, Y.2
  • 20
    • 79955561406 scopus 로고    scopus 로고
    • Performance evaluation of ensemble empirical mode decomposition
    • R.K. Niazy, C.F. Beckmann, and J.M. Brady Performance evaluation of ensemble empirical mode decomposition Adv. Adapt. Data Anal. 1 02 2009 231 242
    • (2009) Adv. Adapt. Data Anal. , vol.1 , Issue.2 , pp. 231-242
    • Niazy, R.K.1    Beckmann, C.F.2    Brady, J.M.3
  • 21
    • 84890013214 scopus 로고    scopus 로고
    • Fault diagnosis of rotating machinery based on an adaptive ensemble empirical mode decomposition
    • Y.G. Lei, N.P. Li, and J. Lin Fault diagnosis of rotating machinery based on an adaptive ensemble empirical mode decomposition Sensors 13 12 2013 16950 16964
    • (2013) Sensors , vol.13 , Issue.12 , pp. 16950-16964
    • Lei, Y.G.1    Li, N.P.2    Lin, J.3
  • 22
    • 84859163659 scopus 로고    scopus 로고
    • Faulty bearing signal recovery from large noise using a hybrid method based on spectral kurtosis and ensemble empirical mode decomposition
    • W. Guo, P.W. Tse, and A. Djordjevich Faulty bearing signal recovery from large noise using a hybrid method based on spectral kurtosis and ensemble empirical mode decomposition Measurement 45 5 2012 1308 1322
    • (2012) Measurement , vol.45 , Issue.5 , pp. 1308-1322
    • Guo, W.1    Tse, P.W.2    Djordjevich, A.3
  • 23
    • 84859433868 scopus 로고    scopus 로고
    • Classification of fault location and the degree of performance degradation of a rolling bearing based on an improved hyper-sphere-structured multi-class support vector machine
    • Y. Wang, S. Kang, and Y. Jiang Classification of fault location and the degree of performance degradation of a rolling bearing based on an improved hyper-sphere-structured multi-class support vector machine Mech. Syst. Sig. Process. 29 2012 404 414
    • (2012) Mech. Syst. Sig. Process. , vol.29 , pp. 404-414
    • Wang, Y.1    Kang, S.2    Jiang, Y.3
  • 24
    • 37349079091 scopus 로고    scopus 로고
    • Case Western Reserve University Cleveland, Ohio, USA
    • K. Loparo Bearings Vibration Data Set 2003 Case Western Reserve University Cleveland, Ohio, USA
    • (2003) Bearings Vibration Data Set
    • Loparo, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.