메뉴 건너뛰기




Volumn 72-73, Issue , 2016, Pages 160-183

Mono-component feature extraction for mechanical fault diagnosis using modified empirical wavelet transform via data-driven adaptive Fourier spectrum segment

Author keywords

Data driven adaptive Fourier spectrum segment; Empirical wavelet transform; Feature extraction; Mechanical fault diagnosis

Indexed keywords

CONDITION MONITORING; EXTRACTION; FAILURE ANALYSIS; FEATURE EXTRACTION; FOURIER TRANSFORMS; MODULATION; SIGNAL PROCESSING; VIBRATIONS (MECHANICAL); WAVELET TRANSFORMS;

EID: 84955487882     PISSN: 08883270     EISSN: 10961216     Source Type: Journal    
DOI: 10.1016/j.ymssp.2015.10.017     Document Type: Article
Times cited : (158)

References (45)
  • 1
    • 33644547646 scopus 로고    scopus 로고
    • Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics
    • Q. Hai, L. Jay, L. Jing, and et al. Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics J. Sound Vib. 289 4 2006 1066 1090
    • (2006) J. Sound Vib. , vol.289 , Issue.4 , pp. 1066-1090
    • Hai, Q.1    Jay, L.2    Jing, L.3
  • 2
    • 58949101481 scopus 로고    scopus 로고
    • Detection of signal transients based on wavelet and statistics for machine fault diagnosis
    • Z.K. Zhu, R.Q. Yan, L.H. Luo, and et al. Detection of signal transients based on wavelet and statistics for machine fault diagnosis Mech. Syst. Signal Process. 23 4 2009 1076 1097
    • (2009) Mech. Syst. Signal Process. , vol.23 , Issue.4 , pp. 1076-1097
    • Zhu, Z.K.1    Yan, R.Q.2    Luo, L.H.3
  • 3
    • 79953856339 scopus 로고    scopus 로고
    • Weak fault feature extraction of rolling bearing based on cyclic Wiener filter and envelope spectrum
    • M. Yang, J. Chen, and G.M. Dong Weak fault feature extraction of rolling bearing based on cyclic Wiener filter and envelope spectrum Mech. Syst. Signal Process. 25 5 2011 1773 1785
    • (2011) Mech. Syst. Signal Process. , vol.25 , Issue.5 , pp. 1773-1785
    • Yang, M.1    Chen, J.2    Dong, G.M.3
  • 4
    • 78649600770 scopus 로고    scopus 로고
    • Rolling element bearing diagnostics - A tutorial
    • R.B. Randall, and J. Antoni Rolling element bearing diagnostics - a tutorial Mech. Syst. Signal Process. 25 2 2011 485 520
    • (2011) Mech. Syst. Signal Process. , vol.25 , Issue.2 , pp. 485-520
    • Randall, R.B.1    Antoni, J.2
  • 5
    • 84864860074 scopus 로고    scopus 로고
    • Hilbert transforms in signal processing
    • S.L. Hahn, Hilbert transforms in signal processing, Artech House on Demand, 1996.
    • (1996) Artech House on Demand
    • Hahn, S.L.1
  • 6
    • 0027676955 scopus 로고
    • Energy separation in signal modulations with application to speech analysis
    • P. Maragos, J.F. Kaiser, and T.F. Quatieri Energy separation in signal modulations with application to speech analysis IEEE Trans. Signal Process. 41 10 1993 3024 3051
    • (1993) IEEE Trans. Signal Process. , vol.41 , Issue.10 , pp. 3024-3051
    • Maragos, P.1    Kaiser, J.F.2    Quatieri, T.F.3
  • 7
    • 0027576027 scopus 로고
    • On amplitude and frequency demodulation using energy operators
    • P. Maragos, J.F. Kaiser, and T.F. Quatieri On amplitude and frequency demodulation using energy operators IEEE Trans. Signal Process. 41 4 1993 1532 1550
    • (1993) IEEE Trans. Signal Process. , vol.41 , Issue.4 , pp. 1532-1550
    • Maragos, P.1    Kaiser, J.F.2    Quatieri, T.F.3
  • 8
    • 79951574600 scopus 로고    scopus 로고
    • Hilbert transform in vibration analysis
    • M. Feldman Hilbert transform in vibration analysis Mech. Syst. Signal Process. 25 3 2011 735 802
    • (2011) Mech. Syst. Signal Process. , vol.25 , Issue.3 , pp. 735-802
    • Feldman, M.1
  • 9
    • 79954586071 scopus 로고    scopus 로고
    • A demodulating approach based on local mean decomposition and its applications in mechanical fault diagnosis
    • B.J. Chen, Z.J. He, X.F. Chen, and et al. A demodulating approach based on local mean decomposition and its applications in mechanical fault diagnosis Meas. Sci. Technol. 22 5 2011 055704
    • (2011) Meas. Sci. Technol. , vol.22 , Issue.5 , pp. 055704
    • Chen, B.J.1    He, Z.J.2    Chen, X.F.3
  • 10
    • 33750499513 scopus 로고    scopus 로고
    • The application of energy operator demodulation approach based on EMD in machinery fault diagnosis
    • J.S. Cheng, D.J. Yu, and Y. Yu The application of energy operator demodulation approach based on EMD in machinery fault diagnosis Mech. Syst. Signal Process. 21 2 2007 668 677
    • (2007) Mech. Syst. Signal Process. , vol.21 , Issue.2 , pp. 668-677
    • Cheng, J.S.1    Yu, D.J.2    Yu, Y.3
  • 11
    • 84925960336 scopus 로고    scopus 로고
    • Rolling bearing fault diagnosis based on LCD-TEO and multifractal detrended fluctuation analysis
    • H. Liu, X. Wang, and C. Lu Rolling bearing fault diagnosis based on LCD-TEO and multifractal detrended fluctuation analysis Mech. Syst. Signal Process. 60 2015 273 288
    • (2015) Mech. Syst. Signal Process. , vol.60 , pp. 273-288
    • Liu, H.1    Wang, X.2    Lu, C.3
  • 12
    • 47749084703 scopus 로고    scopus 로고
    • Research on iterated Hilbert transform and its application in mechanical fault diagnosis
    • Q. Yi, S.R. Qin, and Y.F. Mao Research on iterated Hilbert transform and its application in mechanical fault diagnosis Mech. Syst. Signal Process. 22 8 2008 1967 1980
    • (2008) Mech. Syst. Signal Process. , vol.22 , Issue.8 , pp. 1967-1980
    • Yi, Q.1    Qin, S.R.2    Mao, Y.F.3
  • 13
    • 77953139252 scopus 로고    scopus 로고
    • Rolling element bearing faults diagnosis based on optimal Morlet wavelet filter and autocorrelation enhancement
    • W.S. Su, F. Wang, H. Zhu, and et al. Rolling element bearing faults diagnosis based on optimal Morlet wavelet filter and autocorrelation enhancement Mech. Syst. Signal Process. 24 5 2010 1458 1472
    • (2010) Mech. Syst. Signal Process. , vol.24 , Issue.5 , pp. 1458-1472
    • Su, W.S.1    Wang, F.2    Zhu, H.3
  • 14
    • 33746821083 scopus 로고    scopus 로고
    • A generalized demodulation approach to time-frequency projections for multicomponent signals
    • S. Olhede, and A.T. Walden A generalized demodulation approach to time-frequency projections for multicomponent signals Proc. R. Soc. A: Math. Phys. Eng. Sci. 461 2059 2005 2159 2179
    • (2005) Proc. R. Soc. A: Math. Phys. Eng. Sci. , vol.461 , Issue.2059 , pp. 2159-2179
    • Olhede, S.1    Walden, A.T.2
  • 15
    • 0024700097 scopus 로고
    • A theory for multiresolution signal decomposition: The wavelet representation
    • S.G. Mallat A theory for multiresolution signal decomposition: the wavelet representation IEEE Trans. Pattern Anal. Mach. Intell. 11 1989 674 693
    • (1989) IEEE Trans. Pattern Anal. Mach. Intell. , vol.11 , pp. 674-693
    • Mallat, S.G.1
  • 16
    • 63449086032 scopus 로고    scopus 로고
    • Adaptive multiwavelets via two-scale similarity transforms for rotating machinery fault diagnosis
    • J. Yuan, Z.J. He, Y.Y. Zi, and et al. Adaptive multiwavelets via two-scale similarity transforms for rotating machinery fault diagnosis Mech. Syst. Signal Process 23 5 2009 1490 1508
    • (2009) Mech. Syst. Signal Process , vol.23 , Issue.5 , pp. 1490-1508
    • Yuan, J.1    He, Z.J.2    Zi, Y.Y.3
  • 17
    • 84860218743 scopus 로고    scopus 로고
    • Novel indices for broken rotor bars fault diagnosis in induction motors using wavelet transform
    • B.M. Ebrahimi, J. Faiz, S. Lotfi-Fard, and et al. Novel indices for broken rotor bars fault diagnosis in induction motors using wavelet transform Mech. Syst. Signal Process. 30 2012 131 145
    • (2012) Mech. Syst. Signal Process. , vol.30 , pp. 131-145
    • Ebrahimi, B.M.1    Faiz, J.2    Lotfi-Fard, S.3
  • 18
    • 84887433963 scopus 로고    scopus 로고
    • Wavelets for fault diagnosis of rotary machines: A review with applications
    • R.Q. Yan, R.X. Gao, and X.F. Chen Wavelets for fault diagnosis of rotary machines: a review with applications Signal Process. 96 2014 1 15
    • (2014) Signal Process. , vol.96 , pp. 1-15
    • Yan, R.Q.1    Gao, R.X.2    Chen, X.F.3
  • 19
    • 45249094142 scopus 로고    scopus 로고
    • Detection of rolling bearing defects using discrete wavelet analysis
    • A. Djebala, N. Ouelaa, and N. Hamzaoui Detection of rolling bearing defects using discrete wavelet analysis Meccanica 43 3 2008 339 348
    • (2008) Meccanica , vol.43 , Issue.3 , pp. 339-348
    • Djebala, A.1    Ouelaa, N.2    Hamzaoui, N.3
  • 20
    • 33646190241 scopus 로고    scopus 로고
    • Application of wavelet transform technique to detect tool failure in turning operations
    • J.S. Kwak Application of wavelet transform technique to detect tool failure in turning operations Int. J. Adv. Manuf. Technol. 28 2006 1078 1083
    • (2006) Int. J. Adv. Manuf. Technol. , vol.28 , pp. 1078-1083
    • Kwak, J.S.1
  • 22
    • 0033684356 scopus 로고    scopus 로고
    • Wavelet packet feature extraction for vibration monitoring
    • G.G. Yen, and K.C. Lin Wavelet packet feature extraction for vibration monitoring IEEE Trans. Ind. Electron. 47 3 2000 650 667
    • (2000) IEEE Trans. Ind. Electron. , vol.47 , Issue.3 , pp. 650-667
    • Yen, G.G.1    Lin, K.C.2
  • 23
    • 31044443061 scopus 로고    scopus 로고
    • Gearbox fault detection using Hilbert and wavelet packet transform
    • X.F. Fan, and M.J. Zuo Gearbox fault detection using Hilbert and wavelet packet transform Mech. Syst. Signal Process. 20 4 2006 966 982
    • (2006) Mech. Syst. Signal Process. , vol.20 , Issue.4 , pp. 966-982
    • Fan, X.F.1    Zuo, M.J.2
  • 24
    • 5444236478 scopus 로고    scopus 로고
    • The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
    • N.E. Huang, Z. Shen, S.R. Long, and et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 454 1971 1998
    • (1998) Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. , vol.454 , Issue.1971
    • Huang, N.E.1    Shen, Z.2    Long, S.R.3
  • 25
    • 84878277346 scopus 로고    scopus 로고
    • Multicomponent AM-FM demodulation based on energy separation and adaptive filtering
    • Y. Qin Multicomponent AM-FM demodulation based on energy separation and adaptive filtering Mech. Syst. Signal Process. 38 2 2013 440 459
    • (2013) Mech. Syst. Signal Process. , vol.38 , Issue.2 , pp. 440-459
    • Qin, Y.1
  • 26
    • 84870404381 scopus 로고    scopus 로고
    • A review on empirical mode decomposition in fault diagnosis of rotating machinery
    • Y.G. Lei, J. Lin, Z.J. He, and et al. A review on empirical mode decomposition in fault diagnosis of rotating machinery Mech. Syst. Signal Process. 35 1 2013 108 126
    • (2013) Mech. Syst. Signal Process. , vol.35 , Issue.1 , pp. 108-126
    • Lei, Y.G.1    Lin, J.2    He, Z.J.3
  • 27
    • 13844262669 scopus 로고    scopus 로고
    • Damage detection in gear systems using empirical mode decomposition
    • S.J. Loutridis Damage detection in gear systems using empirical mode decomposition Eng. Struct. 26 12 2004 1833 1841
    • (2004) Eng. Struct. , vol.26 , Issue.12 , pp. 1833-1841
    • Loutridis, S.J.1
  • 28
    • 84934970878 scopus 로고    scopus 로고
    • Rolling bearing fault diagnosis under variable conditions using Hilbert-Huang transform and singular value decomposition
    • 765621
    • H.M. Liu, X. Wang, and C. Lu Rolling bearing fault diagnosis under variable conditions using Hilbert-Huang transform and singular value decomposition Math. Probl. Eng. 765621 2014 1 10
    • (2014) Math. Probl. Eng. , pp. 1-10
    • Liu, H.M.1    Wang, X.2    Lu, C.3
  • 29
    • 18144399334 scopus 로고    scopus 로고
    • A comparison study of improved Hilbert-Huang transform and wavelet transform: Application to fault diagnosis for rolling bearing
    • Z.K. Peng, P.W. Tse, and F.L. Chu A comparison study of improved Hilbert-Huang transform and wavelet transform: application to fault diagnosis for rolling bearing Mech. Syst. Signal Process. 19 2005 974 988
    • (2005) Mech. Syst. Signal Process. , vol.19 , pp. 974-988
    • Peng, Z.K.1    Tse, P.W.2    Chu, F.L.3
  • 32
    • 84880891329 scopus 로고    scopus 로고
    • Empirical wavelet transform
    • J. Gilles Empirical wavelet transform IEEE Trans. Signal Process. 61 16 2013 3999 4010
    • (2013) IEEE Trans. Signal Process. , vol.61 , Issue.16 , pp. 3999-4010
    • Gilles, J.1
  • 33
    • 84937870234 scopus 로고    scopus 로고
    • A parameterless scale-space approach to find meaningful modes in histograms - Application to image and spectrum segmentation
    • J. Gilles, and K. Heal A parameterless scale-space approach to find meaningful modes in histograms - application to image and spectrum segmentation Int. J. Wavelets Multiresolution Inf. Process. 12 2014 06
    • (2014) Int. J. Wavelets Multiresolution Inf. Process. , vol.12 , pp. 06
    • Gilles, J.1    Heal, K.2
  • 34
    • 84938451367 scopus 로고
    • A product theorem for Hilbert transforms
    • E. Bedrosian A product theorem for Hilbert transforms Proc. IEEE 51 5 1963 868 869
    • (1963) Proc. IEEE , vol.51 , Issue.5 , pp. 868-869
    • Bedrosian, E.1
  • 36
    • 0003833285 scopus 로고
    • Society for industrial and applied mathematics Philadelphia
    • I. Daubechies Ten Lectures on Wavelets Vol. 61 1992 Society for industrial and applied mathematics Philadelphia
    • (1992) Ten Lectures on Wavelets , vol.61
    • Daubechies, I.1
  • 39
    • 84952503562 scopus 로고
    • Thirteen ways to look at the correlation coefficient
    • J. Lee Rodgers, and W.A. Nicewander Thirteen ways to look at the correlation coefficient Am. Stat. 42 1 1988 59 66
    • (1988) Am. Stat. , vol.42 , Issue.1 , pp. 59-66
    • Lee Rodgers, J.1    Nicewander, W.A.2
  • 41
    • 80052078099 scopus 로고    scopus 로고
    • Ensemble empirical mode decomposition: A noise-assisted data analysis method
    • Z.H. Wu, and N.E. Huang Ensemble empirical mode decomposition: a noise-assisted data analysis method Adv. Adapt. Data Anal. 1 01 2009 1 41
    • (2009) Adv. Adapt. Data Anal. , vol.1 , Issue.1 , pp. 1-41
    • Wu, Z.H.1    Huang, N.E.2
  • 42
    • 27744553270 scopus 로고    scopus 로고
    • The spectral kurtosis: Application to the vibratory surveillance and diagnostics of rotating machines
    • J. Antoni, and R.B. Randall The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines Mech. Syst. Signal Process. 20 2 2006 308 331
    • (2006) Mech. Syst. Signal Process. , vol.20 , Issue.2 , pp. 308-331
    • Antoni, J.1    Randall, R.B.2
  • 43
    • 84897556821 scopus 로고    scopus 로고
    • 2D empirical transforms. Wavelets, ridgelets, and curvelets revisited
    • J. Gilles, G. Tran, and S. Osher 2D empirical transforms. Wavelets, ridgelets, and curvelets revisited SIAM J. Imaging Sci. 7 1 2014 157 186
    • (2014) SIAM J. Imaging Sci. , vol.7 , Issue.1 , pp. 157-186
    • Gilles, J.1    Tran, G.2    Osher, S.3
  • 44
    • 58949088453 scopus 로고    scopus 로고
    • Application of the EEMD method to rotor fault diagnosis of rotating machinery
    • Y.G. Lei, Z.J. He, and Y.Y. Zi Application of the EEMD method to rotor fault diagnosis of rotating machinery Mech. Syst. Signal Process. 23 4 2009 1327 1338
    • (2009) Mech. Syst. Signal Process. , vol.23 , Issue.4 , pp. 1327-1338
    • Lei, Y.G.1    He, Z.J.2    Zi, Y.Y.3
  • 45
    • 84945246972 scopus 로고    scopus 로고
    • Spectral kurtosis for fault detection, diagnosis and prognostics of rotating machines: A review with applications
    • Y.X. Wang, J.W. Xiang, R. Markert, and M. Liang Spectral kurtosis for fault detection, diagnosis and prognostics of rotating machines: a review with applications Mech. Syst. Signal Process. 67 2016 679 698
    • (2016) Mech. Syst. Signal Process. , vol.67 , pp. 679-698
    • Wang, Y.X.1    Xiang, J.W.2    Markert, R.3    Liang, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.