메뉴 건너뛰기




Volumn , Issue , 2016, Pages 1018-1027

Context-aware image tweet modelling and recommendation

Author keywords

Context; Image semantics; Image tweets; Microblog; Recommendation; Twitter

Indexed keywords

FACTORIZATION; SOCIAL NETWORKING (ONLINE); WEBSITES;

EID: 84994662771     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2964284.2964291     Document Type: Conference Paper
Times cited : (87)

References (35)
  • 1
    • 84901785711 scopus 로고    scopus 로고
    • Are some tweets more interesting than others? #hardquestion
    • O. Alonso, C. C. Marshall, and M. Najork. Are Some Tweets More Interesting Than Others? #HardQuestion. In Proc. of HCIR, 2013.
    • (2013) Proc. of HCIR
    • Alonso, O.1    Marshall, C.C.2    Najork, M.3
  • 2
    • 84889606830 scopus 로고    scopus 로고
    • Multimedia summarization for trending topics in microblogs
    • J. Bian, Y. Yang, and T.-S. Chua. Multimedia Summarization for Trending Topics in Microblogs. In Proc. of CIKM, 2013.
    • (2013) Proc. of CIKM
    • Bian, J.1    Yang, Y.2    Chua, T.-S.3
  • 3
    • 84904572119 scopus 로고    scopus 로고
    • Predicting trending messages and diffusion participants in microblogging network
    • J. Bian, Y. Yang, and T.-S. Chua. Predicting Trending Messages and Diffusion Participants in Microblogging Network. In Proc. of SIGIR, 2014.
    • (2014) Proc. of SIGIR
    • Bian, J.1    Yang, Y.2    Chua, T.-S.3
  • 4
    • 84994635151 scopus 로고    scopus 로고
    • What are popular: Exploring twitter features for event detection, tracking and visualization
    • H. Cai, Y. Yang, X. Li, and Z. Huang. What Are Popular: Exploring Twitter Features for Event Detection, Tracking and Visualization. In Proc. of MM, 2015.
    • (2015) Proc. of MM
    • Cai, H.1    Yang, Y.2    Li, X.3    Huang, Z.4
  • 5
    • 84963935991 scopus 로고    scopus 로고
    • Diving deep into sentiment: Understanding fine-tuned cnns for visual sentiment prediction
    • V. Campos, A. Salvador, X. Giro-i Nieto, and B. Jou. Diving Deep into Sentiment: Understanding Fine-tuned CNNs for Visual Sentiment Prediction. In Proc. of ASM, 2015.
    • (2015) Proc. of ASM
    • Campos, V.1    Salvador, A.2    Giro-I Nieto, X.3    Jou, B.4
  • 8
    • 84994671489 scopus 로고    scopus 로고
    • Understanding and classifying image tweets
    • T. Chen, D. Lu, M.-Y. Kan, and P. Cui. Understanding and Classifying Image Tweets. In Proc. of MM, 2013.
    • (2013) Proc. of MM
    • Chen, T.1    Lu, D.2    Kan, M.-Y.3    Cui, P.4
  • 10
    • 84874224568 scopus 로고    scopus 로고
    • Retweet or not?: Personalized tweet re-ranking
    • W. Feng and J. Wang. Retweet or Not?: Personalized Tweet Re-ranking. In Proc. of WSDM, 2013.
    • (2013) Proc. of WSDM
    • Feng, W.1    Wang, J.2
  • 11
    • 80052668032 scopus 로고    scopus 로고
    • Large-scale matrix factorization with distributed stochastic gradient descent
    • R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis. Large-scale Matrix Factorization with Distributed Stochastic Gradient Descent. In Proc. of SIGKDD, 2011.
    • (2011) Proc. of SIGKDD
    • Gemulla, R.1    Nijkamp, E.2    Haas, P.J.3    Sismanis, Y.4
  • 12
    • 84959275581 scopus 로고    scopus 로고
    • Trirank: Review-aware explainable recommendation by modeling aspects
    • X. He, T. Chen, M.-Y. Kan, and X. Chen. TriRank: Review-aware Explainable Recommendation by Modeling Aspects. In Proc. of CIKM, 2015.
    • (2015) Proc. of CIKM
    • He, X.1    Chen, T.2    Kan, M.-Y.3    Chen, X.4
  • 13
    • 84980329382 scopus 로고    scopus 로고
    • Fast matrix factorization for online recommendation with implicit feedback
    • X. He, H. Zhang, and M.-Y. Kan. Fast Matrix Factorization for Online Recommendation with Implicit Feedback. In Proc. of SIGIR, 2016.
    • (2016) Proc. of SIGIR
    • He, X.1    Zhang, H.2    Kan, M.-Y.3
  • 15
    • 84874223205 scopus 로고    scopus 로고
    • Co-factorization machines: Modeling user interests and predicting individual decisions in twitter
    • L. Hong, A. S. Doumith, and B. D. Davison. Co-factorization Machines: Modeling User Interests and Predicting Individual Decisions in Twitter. In Proc. of WSDM, 2013.
    • (2013) Proc. of WSDM
    • Hong, L.1    Doumith, A.S.2    Davison, B.D.3
  • 16
    • 84874089397 scopus 로고    scopus 로고
    • Towards automatic image understanding and mining via social curation
    • K. Ishiguro, A. Kimura, and K. Takeuchi. Towards Automatic Image Understanding and Mining via Social Curation. In Proc. of ICDM, 2012.
    • (2012) Proc. of ICDM
    • Ishiguro, K.1    Kimura, A.2    Takeuchi, K.3
  • 19
    • 85008044987 scopus 로고    scopus 로고
    • Matrix factorization techniques for recommender systems
    • Y. Koren, R. Bell, and C. Volinsky. Matrix Factorization Techniques for Recommender Systems. Computer, 42(8):30-37, 2009.
    • (2009) Computer , vol.42 , Issue.8 , pp. 30-37
    • Koren, Y.1    Bell, R.2    Volinsky, C.3
  • 20
    • 77954619566 scopus 로고    scopus 로고
    • What is twitter, a social network or a news media?
    • H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter, a Social Network or a News Media? In Proc. of WWW, 2010.
    • (2010) Proc. of WWW
    • Kwak, H.1    Lee, C.2    Park, H.3    Moon, S.4
  • 22
    • 84893336793 scopus 로고    scopus 로고
    • Bad news travel fast: A content-based analysis of interestingness on twitter
    • N. Naveed, T. Gottron, J. Kunegis, and A. C. Alhadi. Bad News Travel Fast: A Content-based Analysis of Interestingness on Twitter. In Proc. of WebSci, 2011.
    • (2011) Proc. of WebSci
    • Naveed, N.1    Gottron, T.2    Kunegis, J.3    Alhadi, A.C.4
  • 24
    • 79951760087 scopus 로고    scopus 로고
    • Factorization machines
    • S. Rendle. Factorization Machines. In Proc. of ICDM, 2010.
    • (2010) Proc. of ICDM
    • Rendle, S.1
  • 26
    • 84962422678 scopus 로고    scopus 로고
    • Visual event summarization on social media using topic modelling and graph-based ranking algorithms
    • M. Schinas, S. Papadopoulos, Y. Kompatsiaris, and P. A. Mitkas. Visual Event Summarization on Social Media Using Topic Modelling and Graph-based Ranking Algorithms. In Proc. of ICMR, 2015.
    • (2015) Proc. of ICMR
    • Schinas, M.1    Papadopoulos, S.2    Kompatsiaris, Y.3    Mitkas, P.A.4
  • 28
    • 83055179234 scopus 로고    scopus 로고
    • User oriented tweet ranking: A filtering approach to microblogs
    • I. Uysal and W. B. Croft. User Oriented Tweet Ranking: A Filtering Approach to Microblogs. In Proc. of CIKM, 2011.
    • (2011) Proc. of CIKM
    • Uysal, I.1    Croft, W.B.2
  • 29
    • 84994564430 scopus 로고    scopus 로고
    • Re-tweeting from a linguistic perspective
    • A. Wang, T. Chen, and M.-Y. Kan. Re-tweeting from a Linguistic Perspective. In Proc. of LSM, 2012.
    • (2012) Proc. of LSM
    • Wang, A.1    Chen, T.2    Kan, M.-Y.3
  • 31
    • 84905222346 scopus 로고    scopus 로고
    • Bilateral correspondence model for words-and-pictures association in multimedia-rich microblogs
    • Z. Wang, P. Cui, L. Xie, W. Zhu, Y. Rui, and S. Yang. Bilateral Correspondence Model for Words-and-Pictures Association in Multimedia-Rich Microblogs. ACM TOMM, 10(4):34:1-34:21, 2014.
    • (2014) ACM TOMM , vol.10 , Issue.4 , pp. 3401-3421
    • Wang, Z.1    Cui, P.2    Xie, L.3    Zhu, W.4    Rui, Y.5    Yang, S.6
  • 32
    • 84878211803 scopus 로고    scopus 로고
    • Tweet recommendation with graph co-ranking
    • R. Yan, M. Lapata, and X. Li. Tweet Recommendation with Graph Co-ranking. In Proc. of ACL, 2012.
    • (2012) Proc. of ACL
    • Yan, R.1    Lapata, M.2    Li, X.3
  • 34
    • 84954108838 scopus 로고    scopus 로고
    • Dynamic topic modeling for monitoring market competition from online text and image data
    • H. Zhang, G. Kim, and E. P. Xing. Dynamic Topic Modeling for Monitoring Market Competition from Online Text and Image Data. In Proc. of KDD, 2015.
    • (2015) Proc. of KDD
    • Zhang, H.1    Kim, G.2    Xing, E.P.3
  • 35
    • 85035206689 scopus 로고    scopus 로고
    • Learning from collective intelligence: Feature learning using social images and tags
    • H. Zhang, X. Shang, H. Luan, M. Wang, and T.-S. Chua. Learning from Collective Intelligence: Feature Learning Using Social Images and Tags. ACM TOMM, 2016.
    • (2016) ACM TOMM
    • Zhang, H.1    Shang, X.2    Luan, H.3    Wang, M.4    Chua, T.-S.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.